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Abstract: The pharmacological effects of carbon to silicon bioisosteric replacements have been widely
explored in drug design and medicinal chemistry. Here, we present a systematic investigation of
the impact of different silyl groups on the anticancer activity of mucobromic acid (MBA) bearing
furan-2(5H)-one core. We describe a comprehensive characterization of obtained compounds with
respect to their anticancer potency and selectivity towards cancer cells. All four novel compounds
exert stronger antiproliferative activity than MBA. Moreover, 3b induce apoptosis in colon cancer cell
lines. A detailed investigation of the mechanism of action revealed that 3b activity stems from the
down-regulation of survivin and the activation of caspase-3. Furthermore, compound 3b attenuates
the clonogenic potential of HCT-116 cells. Interestingly, we also found that depending on the type of
the silyl group, compound selectivity towards cancer cells could be precisely controlled. Collectively,
we demonstrated the utility of silyl groups for adjusting both the potency and selectivity of silicon-
containing compounds. These data reveal a link between the types of silyl group and compound
potency, which could have bearings for the design of novel silicon-based anticancer drugs.

Keywords: antiproliferative activity; apoptosis; furan-2(5H)-one; bioisosteres; silyl ethers

1. Introduction

With over 19 million new cases and 9.9 million deaths in 2020, cancer remains a
worldwide cause of premature mortality [1]. Despite the continuous progress in the de-
velopment of novel anticancer drugs, current treatments, including targeted therapies,
have their limitations and they still cause severe side effects [2]. To overcome this, cancer
immunotherapies have recently emerged to provide improved clinical outcomes. Disap-
pointingly, not all cancers respond to such treatment and further evaluation of predictive
markers and combination therapies is required before cancer immunotherapy becomes a
gold standard in clinical oncology [3]. Therefore, there is still a great need for the discovery
and development of new lead small-molecule compounds with increased activity and
reduced toxicity to non-malignant cells.

Furan-2(5H)-one scaffold and its variations are widely present in many bioactive
natural products [4,5]. The modification of this structural motif led previously to multiple
derivatives with a wide range of activity against cancers [6–9], bacterial infections [10,11],
and fungus [12,13]. While the primary mechanism(s) of action and direct target(s) of furan-
2(5H)-one remain unclear, some of its reported derivatives have been implicated in a range
of functions including the inhibition of MDM2-p53 interaction [14], inhibition of COX-
1 [15], as well as the inhibition of topoisomerase I [16]. In recent years, furan-2(5H)-one has
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emerged as a privileged scaffold in medicinal chemistry. The great interest in furan-2(5H)-
one stems from two main reasons. First, this five-membered ring offers unique positioning
of substituents thereby creating a scaffold that might be applied to design compounds to a
wide range of molecular targets [17]. Second, the commercial availability of inexpensive
reactive forms of furan-2(5H)-one, such as mucochloric (MCA) or mucobromic acids (MBA),
provides medicinal chemists a rapid access for the generation of new molecules by tailoring
the type of substituent and its position on the furan-2(5H)-one scaffold [18].

One of the main reasons for the failure of small molecules in in vivo and clinical stud-
ies is poor pharmacological and ADMET properties [19]. One potentially attractive strategy
to improve the pharmacological properties of anticancer drugs is their modification with
silicon-containing groups. Small molecules harboring hydroxyl groups offer great possi-
bility to transform them into silyl derivatives, which may exhibit better pharmacological
profiles and activity than the parent molecule. This is due to the unique properties of silicon,
which have been reviewed previously in detail. Besides the bond length, the difference
between carbon and silicon that is relevant in the drug design is the increased lipophilic
character of silicon, which confers better penetration through cell membranes [20,21].

In our previous work, the design of mono- and disubstituted derivatives containing
furan-2(5H)-one core was guided by the idea of incorporating aliphatic groups at C-5
and aromatic moieties at 4-C (Figure 1A). Primary SAR for 5-alkoxy derivatives of MCA
suggests that the introduction of bulky hydrophobic groups at the C-5 position increases
antiproliferative potency and provides a good level of selectivity towards non-small lung
cancer cell line A549 [22]. In the current study, we hypothesized that silyl ethers of MBA
may combine this effect with unique properties of silicon in terms of pharmacological
properties. The concept is depicted in Figure 1B. The MBA molecule containing a reactive
hydroxyl group is converted to its silyl ether derivative. This approach proceeds by reaction
of the MBA with the silyl derivatizing agent. The nature of three auxiliary R and R1 groups
would provide flexibility in modulation of both the hydrophobicity and hydrolytic stability
of derivatives.
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Figure 1. Strategy of compound design. (A) synthesis of alkoxy derivatives of MCA, (B) synthesis of
silyloxy derivatives of MBA.

Herein, we report the synthesis and the evaluation of the anticancer activity of novel
set of MBA and its silyl ethers in several cancer cell lines. Interestingly, new derivatives were
particularly active in colorectal cancer cell lines. Furthermore, the detailed investigation
of the potential mechanism of action revealed that some of new silyl ethers of MBA have
a complex mechanism of action which involves the down-regulation of survivin and
caspase-dependent apoptosis.
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2. Results
2.1. Chemistry

To access various 5-O-silylated MBA derivatives, commercially available 3,4-dibromo-5-
hydroxyfuran-2(5H)-one (MBA) 1 was treated with different silyl chlorides 2a–d (Scheme 1,
Table 1). Silylation reactions were carried out in anhydrous DMF in the presence of DIPEA
at 0 ◦C. This approach furnished compounds 3a–d with yields ranging from 32% to 76%.
The structure of the obtained MBA derivatives was confirmed using 1H NMR, 13C NMR
and high-resolution electrospray ionization mass spectroscopy (ESI-MS).
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3c Ph tert-Bu Ph
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2.2. Antiproliferative Activity

The in vitro antitumor activities of the MBA and its derivatives (Table 2) were assayed
against a panel of human cancer cell lines (HCT116, HCT-116 −/−p53, HT-29, MCF-7,
SJSA-1, U2OS, HepG2 and Hep3B) using the MTT assay. As a reference drug we used
5-fluorouracil (5-FU). As illustrated in Table 2, three of four novel silyl derivatives of
MBA displayed better antiproliferative activity than the parent compound in all tested
cell lines. Interestingly, colon cancer cells were much more sensitive to MBA and its silyl
derivatives than the cells of other types. In particular, compound 3a and 3d exhibited an
excellent antiproliferative activity only in the HCT-116 cell line IC50 = 1.3 µM and 1.6 µM,
respectively, while their efficacy in other tested cell lines was comparable to that of the
MBA. In contrast, compounds 3b and 3c have been shown to be effective across all tested
cancer cells with IC50 ranges 7.3 to 21.3 µM and 3.9 to 65.6 µM, respectively. Compound 3d
had superior anticancer activity in the HCT-116 and HCT-116 −/−p35 cell lines, but was
significantly less active in MCF-7 cells (IC50 = 89 µM) and therefore its evaluation in other
cell lines has been halted. On the basis of in vitro antiproliferative activities, compounds
3b and 3c were selected for further mechanistic studies in the HCT-116 cell line.
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Table 2. Cytotoxicity of MBA derivatives and 5FU against multiple cancer cell lines (nt—not tested).

Compound

Cell Line MBA 3a 3b 3c 3d 5FU

HCT 116 wt 20.5 ± 5.2 1.3 ± 0.12 15.1 ± 1.2 6.3 ± 0.3 1.6 ± 0.4 6.3 ± 1.0
HCT 116 p53−/− 25.4 ± 6.0 21.4 ± 3.4 10.8 ± 1.0 4.0 ± 0.3 4.4 ± 0.4 13.4 ± 1.5

HT-29 97.1 ± 6.6 88.7 ± 8.2 7.3 ± 0.8 3.9 ± 0.2 nt 32.8 ± 4.7
MCF-7 141.8 ± 22.6 186.4 ± 14.2 7.7 ± 0.9 10.9 ± 0.7 89.2 ± 6.0 29.7 ± 1.4
SJSA-1 212.8 ± 8.8 196.3 ± 5.4 9.9 ± 1.1 14.9 ± 1.5 nt nt
U2OS 97.6 ± 1.1 nt 9.3 ± 0.2 10.2 ± 0.8 nt 89.8 ± 2.1

HepG2 91.7 ± 2.2 135.4 ± 6.0 15.6 ± 1.2 nt nt nt
Hep3B 125.4 ± 10.5 135.3 ± 6.1 21.3 ± 3.5 65.6 ± 2.2 nt nt

2.3. Cell Cycle Analysis and Apoptosis Induction

To better understand the origin of the higher susceptibility of colon cancer cells to MBA
and its novel derivatives, compounds 3b and 3c were selected to test their ability to perturb
the cell cycle in the HCT-116 cell line. Interestingly, neither the MBA nor its silyl derivatives
3b and 3c tested at 10 µM, influenced the progression of the cell cycle in HCT-116 after
24 h of exposure. When tested at 20 µM, the MBA decreased the number of cells in the G1
phase (from 49.7% to 38.9%) with a concomitant slight increase in the percentage of cells in
both S and G2 phases. Compounds 3b and 3c did not alter the progression of the cell cycle
at 20 µM as well. However, a significant increase in the percentage of sub-G1 cells after
treatment with compounds 3b and 3c was observed. Compound 3b increased the sub-G1
population by 10% and 31%, at a concentration of 10 µM and 20 µM, respectively, while
compound 3c exerts such effect only by 10% at the highest tested concentration (Figure 2).
Of note, treatment with compound 1 did not cause any significant increase of the sub-G1
cells (0.7% at 10 and 1.6% at 20 µM) when compared to the untreated cells (0.3%). This
result highlights the importance of the type of silyl group on the mechanism of action of
tested compounds on HCT-116 cells.
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Figure 2. Effect of MBA and its silyl derivatives 3b and 3c on cell cycle in HCT 116 cells after 24 h
exposure; Representative cytograms (with percentage of cells in cell cycle phases) from one of at
least two independent experiments are shown; quantification of sub-G1 cell percentage is shown (left
bottom column plot); ns—not significant, *** p < 0.005, **** p < 0.0005.

The concentration-dependent accumulation of cells in the sub-G1 peak after treatment
with compounds 3b and 3c suggests that these compounds may exert their antiproliferative
effects in HCT-116 through the induction of apoptosis. To verify this thesis, we utilized
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annexin-V/PI double staining of cells, which were subsequently subjected to flow cyto-
metric analysis. The cells exposed to compound 3b at 20 µM showed a significant increase
in both early (annexin-V+/PI−) and late (annexin-V+/PI+) apoptotic populations, which
accounts for roughly 30% of death cells in total (Figure 3A,B). The percentage of apoptotic
cells after treatment with compound 3c was lower and reached only 18.5%. In the same
conditions, MBA tested at 20 µM had negligible proapoptotic activity.
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Figure 3. Effect of MBA and derivatives 3b and 3c on apoptisis in HCT-116 cell line after 24 h
exposure at 20 µM. (A) representative cytograms (with percentage of cells in each quadrant) from
one of at least two independent experiments are shown, (B) quantification of cell death as a sum of
both annexin+/PI− and annexin+/PI+ cells, (C) changes in apoptosis-related proteins determined
with using a Human Apoptosis Proteome Profiler kit. (D) quantification of changes of expression
of pro-caspase-3 and cleaved caspase-3, (E) quantification of changes of expression of survivin;
* p < 0.05, ** p < 0.005.

To explore in detail the molecular mechanism of apoptosis induction by compounds 3b
and 3c, we employed Human Apoptosis Proteome Profiler arrays that allow quantification
of apoptosis-related biomarkers (Figure 3C). We detected significant up-regulation of
cleaved caspase-3, a well-known apoptosis marker, after short exposure (1 h) of HCT-116
to compound 3b tested at 30.2 µM (2 × IC50). In such conditions, neither the MBA nor
compound 3c induced caspase-3 activation. Moreover, 3b caused the down-regulation
of survivin, a member of the inhibitors of apoptosis (IAP) family. Collectively, it can be
concluded that silyl derivative 3b promotes cell death in HCT 116 cells by the alteration of
expression levels of survivin and activation of caspase-3.

2.4. Colony-Formation Assay

We next sought to investigate the effects of the MBA and compound 3b clonogenic
potential of the HCT-116 cell line. The cells were treated with compounds 1 and 3b at
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10 µM for 24 h. After harvesting, the cells were re-seeded and cultivated for another 10 days
in a drug-free medium. Compound 3b completely abolished the re-growth of HCT-116
colonies after 24 h of pretreatment. The MBA also attenuated the clonogenic potential of
HCT-116 to a much less extent than the novel silyl derivative (Figure 4).
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2.5. Effect of Silyl Group on Compounds Selectivity

One of the major drawbacks of currently used anticancer drugs is their low selectivity,
which often leads to undesired side effects that may be harmful to patients. Overcoming this
challenging task requires special attention at the pre-clinical development level. To check
whether silyl group incorporation may affect the selectivity of compounds towards cancer
cells, MBA and all its new silyl derivatives were tested for their efficacy on noncancerous
BEAS-2B and cancerous A549 cells line. The cytotoxicity of all silylated analogues in A549
cells was higher than that of the MBA (IC50 = 203 µM) exhibiting IC50 values ranging
from 4.7 to 23.4 µM (Table 3). The MBA was also more cytotoxic to BEAS-2B cells with
IC50 39.7 µM and SI = 0.2, indicating that the parent compound affects cell viability in
noncancerous cells more than in cancerous ones. Derivatives 3b and 3c were more potent
than the MBA in the A549 cell line, but they also remarkably affect the viability of BEAS-2B
cells (IC50 12.5 µM and 20.3 µM, respectively) having SI values 0.41 and 0.70, respectively.
In contrast, compounds 3a and 3d were more cytotoxic to A549 cells with SI values 6.05
and 1.72, respectively. Strikingly, those two compounds have similar cLogP values 3.08 and
3.22, respectively. This suggests that incorporation of silyl groups into drugs may impact
not only their efficacy but also could alter compound selectivity.

Table 3. Selectivity of MBA and compounds 3a–d in NSCLC cell line A549 and normal bronchial
epithelium cell line BEAS-2B.

Compound
Cell Line

SI cLogP a

A549 BEAS-2B

MBA 203 ± 0.3 39.7 ± 9.7 0.2 1.02
3a 23.4 ± 6.6 141.7 ± 23.1 6.05 3.08
3b 30.4 ± 4.2 12.5 ± 1.4 0.41 4.06
3c 29.1 ± 1.0 20.3 ± 0.6 0.70 4.68
3d 4.7 ± 0.1 8.1 ± 1.2 1.72 3.22

a—calculated with swissadme.ch.

3. Discussion

Targeting apoptosis is a promising strategy for cancer treatment. However, the number
of FDA-approved drugs that exert proapoptotic activity is limited. Currently, multiple
small-molecules triggering cancer cell death are under preclinical and clinical investigation.
The majority of these agents act through the inhibition of anti-apoptotic members of the
BCL-2 family (Bcl-2, Bcl-a, Mcl-2). Among them, only venetoclax gained FDA approval
for the treatment of certain types of cancers. Therefore, there is an urgent need for the
development of new therapeutic strategies that selectively target apoptosis in cancer.
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In a continuation of our efforts on the development of furan-2(5H)-one derivatives,
we obtained here simple but potent compounds able to trigger colon cancer cell death. We
found that their proapoptotic activity could be adjusted by the presence of particular silyl
groups. This was especially highlighted by compounds 3a and 3b. The first one, bearing
the TBDMS group was the most potent in suppressing cell proliferation (IC50 = 1.4 µM)
but failed to induce apoptosis in the HCT-116 cell line. In contrast, compound 3b having
the TIPS group, rapidly triggered cell death in the HCT-116 cells. Why were there such
dramatic differences in the proapoptotic activity of the silylated MBA derivatives? We
speculate that silylation of the MBA may greatly improve penetration through cell mem-
branes. The increase of proapoptotic activity through the incorporation of silyl groups
(i.e., TBDMS) has been reported previously for several classes of compounds, including
camptothecin and genistein glycoconjugates, and has been correlated with an increase of
hydrophobicity [23,24]. In fact, the two most active compounds 3b and 3c have the highest
cLogP values (4.06 and 4.68, respectively), a well-known indicator of cell permeability.
This may suggest that among all tested compounds, 3b and 3c may be the most effec-
tive in the penetration of cell membranes. Another possible explanation of the superior
proapoptotic activity of 3b is that the bulky TIPS group enhances the interaction between
the molecule and its intracellular target. Such potentiation by the introduction of silyl
groups has been observed previously for compounds targeting HIV-1 reverse transcriptase
(HIV-1 RT) [25,26].

We cannot also exclude that compounds developed by us may act as pro-drugs. It is
well known, that depending on the steric hindrance on the silicon atom, the hydrolysis
rates will vary significantly between derivatives. This would support our hypothesis that
the TIPS group of 3b enhances its interaction with molecular targets. However, further
studies are required to identify direct molecular targets of tested compounds.

The mechanistic studies on the activity of compounds revealed that compound 3b
may act through targeting survivin, which ultimately leads to triggering apoptosis.

4. Materials and Methods
4.1. Chemistry

All reagents were obtained from commercially available sources (Merck (Darmstadt,
Germany), Sigma-Aldrich, and Avantor Performance Materials). NMR spectra were
recorded on a Varian spectrometer 600 MHz and Agilent spectrometer 400 MHz in DMSO-
d6 solution using tetramethylsilane (TMS) as an internal standard. Chemical shifts are
reported as δ values (ppm). Melting point measurements were performed in an open
capillary using Stuart® SMP30 apparatus. High-resolution electrospray ionization mass
spectroscopy (ESI-MS) experiments were performed using a Waters Xevo G2 QTOF instru-
ment equipped with an injection system (cone voltage 50 V; source 120 ◦C).

Silyl Ethers of 3,4-Dibromo-5-hydroxy-furan-2(5H)-one 3a–d

3,4-Dibromo-5-hydroxy-furan-2(5H)-one (1, 1 eq.) was dissolved in anhydrous DMF
(10 mL DMF for 1 mmol of 1). The appropriate silyl chloride 2a–d (1.1 eq.) and DIPEA
(1.2 eq.) were added while stirring at 0 ◦C. The reaction mixture was stirred at 0 ◦C
until TLC (MeOH:CHCl3, 5:95, v/v) indicated the total decay of the starting material
(2 h). The reaction mixture was quenched with cold water (10 mL) and extracted with
dichloromethane (2 × 10 mL). The organic layer was dried over anhydrous MgSO4 and
the solvent was removed under reduced pressure. The residue was purified by column
chromatography (n-hexane: ethyl acetate, 20:1 v/v) to give compounds 3a–d.

3,4-Dibromo-5-(tert-butyldimethylsilyloxy)-furan-2(5H)-one (3a)

Brown solid; yield: 76%; m.p. = 91–93 ◦C; 1H NMR (400 MHz, DMSO-d6) δ: 0.22 (s,
3H), 0.25 (s, 3H), 0.95 (s, 9H,), 5.99 (s, 1H, H-5); 13C NMR (100 MHz, DMSO-d6) δ: −5.25,
−4.53, 18.00, 25.36, 98.77, 117.42, 146.18, 164.18; ESI-MS: m/z 392.9133 [M+Na+]+ (m/z
calcd. 392.9133 [M+Na+]+).
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3,4-Dibromo-5-(triisopropylsilyloxy)-furan-2(5H)-one (3b)

Yellow oil; yield: 42%; 1H NMR (600 MHz, DMSO-d6) δ: 1.11 (s, 9H, 3×-CH3), 1.12 (s,
9H, 3×-CH3), 1.18–1.26 (m, 3H, 3×CH), 6.10 (s, 1H, H-5); 13C NMR (150 MHz, DMSO-d6)
δ: 12.07, 17.65, 98.80, 117.61, 146.45, 164.33; ESI-MS: m/z 434.9602 [M+Na+]+ (m/z calcd.
434.9603 [M+Na+]+).

3,4-Dibromo-5-(tert-butyldiphenylsilyloxy)-furan-2(5H)-one (3c)

Colorless oil; yield: 60%; 1H NMR (600 MHz, DMSO-d6) δ: 1.13 (s, 9H, C(CH3)3), 5.88
(s, 1H, H-5), 7.40–7.43 (m, 4H), 7.46–7.49 (m, 2H), 7.69–7.72 (m, 4H,); 13C NMR (150 MHz,
DMSO-d6) δ: 19.41, 26.74, 96.55, 123.43, 149.95, 163.35; ESI-MS: m/z 516.9445 [M+Na+]+

(m/z calcd. 516.9446 [M+Na+]+).

3,4-Dibromo-5-(trietylsilyloxy)-furan-2(5H)-one (3d)

Yellow oil; yield: 27%; 1H NMR (400 MHz, DMSO-d6) δ: 0.74 (q, 6H, J = 16.0 Hz,
J1 = 8.0 Hz, 3 × Si-CH2-CH3), 1.02 (t, 9H, J = 16.0 Hz, J1 = 8.0 Hz, 3 × CH3), 6.00 (s, 1H,
H-1); 13C NMR (100 MHz, DMSO-d6) δ: 4.72 (3 × CH3), 6.48 (3 × Si-CH2-CH3), 98.79,
117.58 (C3), 146.40 (C4), 164.35 (C2); ESI-MS: m/z 392.9134 [M+Na+]+ (m/z calcd. 392.9133
[M+Na+]+).

4.2. Cell Lines

Human cells lines: colon cancer (HCT-116 wt, HT-29), non-small lung carcinoma
(A549), and bronchial epithelial cells (BEAS-2B) were obtained from American Type Cul-
ture Collection (ATCC, Manassas, VA, USA). Isogenic cell line HCT 116 p53−/− (deleted
both p53 alleles) were a gift from Dr. Bert Vogelstein. Other cell lines, namely MCF-7,
SJSA-1, U2OS, HepG2, and Hep3B were received from the collection stored at Centre
of Biotechnology of Silesian University of Technology. All cells were grown in DMEM
with a high glucose medium (Sigma-Aldrich, Taufkirchen, Germany) supplemented with
10% (v/v) inactivated fetal bovine serum (FBS) (EURx, Gdańsk, Poland) and 1% antibi-
otics (10,000 µg/mL of streptomycin and 10,000 units/ml of penicillin) (Sigma-Aldrich,
Taufkirchen, Germany) at 37 ◦C in humidified 5% CO2. The maximum concentration of
DMSO in the culture media was 0.4%.

4.3. MTT Assay

5 × 103 cells per well for the MCF-7 cell line and 2.5 × 103 cells per well for the
other cell lines were seeded in 96-well plates to adhere for 24 h. Afterward, the cells were
treated with tested compounds. After 72 hours of incubation, 50 µL 0.5 mg/ml solution
of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) were added
to each well and the plates were incubated for 3 h at 37 ◦C. Next, the MTT solution was
removed from the plates and formed formazan crystals were dissolved in 2-propanol
(Avantor Performance Materials, Gliwice, Poland) containing 0.04 M hydrochloric acid
(Avantor Performance Materials, Gliwice, Poland). The absorbance was measured at
570 nm wavelength using a multiwall plate reader (BioTek, Winooski, VT, USA). The
experiment was performed at a minimum of 3 independent replicates. Cell viability was
set as a percentage versus vehicle control. IC50 was defined as a concentration of a drug
that decreased cell viability by 50% relative to the untreated control.

4.4. Cell Cycle Analysis

The HCT 116 cells were seeded in 6-well plates (Nunc, ThermoFisher, Waltham, MA,
USA) at a density of 5 × 104 cells/well. After 24 h the medium was replaced with tested
compounds. The cells were incubated for 24 h at 37 ◦C. Afterward, floating cells were
collected and adherent cells were harvested by trypsinization and centrifuged at 600× g.
The cells were washed with PBS (phosphate buffered saline) (Sigma-Aldrich, Taufkirchen,
Germany) and then fixed in 70% ice-cold ethanol and stored at −20 ◦C overnight. The
next day the cells were centrifuged at 600× g, washed with PBS, treated with 100 µg/mL
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RNase A solution (EURx, Gdańsk, Poland), 100 µg/ml solution of propidium iodide (PI)
(Acros Organics, Geel, Belgium) and incubated for 30 min at room temperature in the dark.
After staining, the cells were analyzed using a Becton Dickinson FACS Aria III sorter (BD
Company, San Diego, CA, USA). Experiments were repeated at least twice. Data were
analyzed using ModFit LTTM Software (Verity Software House, Topsham, ME, USA).

4.5. Annexin V-FITC Apoptosis Assay

The HCT 116 cells were seeded in 6-well plate (Nunc, ThermoFisher, Waltham, MA,
USA) at a density of 5 × 104 cells/well and allowed to attach. After 24 h the medium
was replaced with tested compounds. The cells were then incubated for 24 h at 37 ◦C.
Next, both floating and adherent cells were harvested and centrifuged at 600× g. The
cells were washed with PBS (phosphate buffered saline) (Sigma-Aldrich, Taufkirchen,
Germany) and we followed instructions from the manufacturer of the Annexin V-FITC
Apoptosis Detection Kit (Biotool, Jupiter, FL, USA). Fluorescence was measured using a
Becton Dickinson FACS Aria III sorter (BD Company, San Diego, CA, USA). Experiments
were repeated at least twice. Data were analyzed using FCE Express 7 Software (DeNovo
Software, Pasadena, CA, USA).

4.6. Analysis of the Expression of Apoptosis-Related Proteins

The Human Apoptosis Array Kit (R&D Systems, Abingdon, UK) was used to deter-
mine the levels of expression of apoptosis-related proteins. 2.5 × 105 HCT 116 wt cells
were seeded on 100 mm dishes (Nunc, ThermoFisher, Waltham, MA, USA) and allowed to
attach for 24 h. Then the medium was replaced with tested compounds at a concentration
corresponding 2 × IC50 value and the cells were incubated in 37 ◦C. After 60 min the
cells were lysed and the lysates were clarified by centrifugation for 30 min at 14,000× g.
The total protein concentration was measured using the Protein Quantification Kit-Rapid
(Sigma-Aldrich, Taufkirchen, Germany) according to the manufacturer’s instruction. The
next steps followed instructions from the manufacturer of the Human Apoptosis Array Kit.
The membranes were then scanned in the G:Box trans illuminator (Syngene, Cambridge,
UK) and the protein expression levels were quantified by densitometric analysis using
ImageJ software.

4.7. Clonogenic Assay

The HCT116 wt cells (5 × 104 cells/well) were plated in 6-well plates (Nunc, Ther-
moFisher, Waltham, USA) and treated with the tested compounds for 24 and 72 h. Cells
were harvested by trypsinization and then re-seeded on the new 6-well plate (Nunc, Ther-
moFisher, Waltham, MA, USA) with a density of 2 × 103 cells/well. After 10 days the
cells were washed with cold PBS (Sigma-Aldrich, Taufkirchen, Germany), fixed in ice-cold
ethanol (−20 ◦C) for 3 minutes, air-dried, washed again with cold PBS and stained with
0.01% crystal violet (Sigma-Aldrich, Taufkirchen, Germany) in dH2O (deionized water) for
15 min. Next the plates were washed in dH2O and allowed to dry. Colonies were counted
with a microscope (Zeiss, Oberkochen, Germany). Aggregates of 30 cells or more were
considered as colonies. Photos were made using the G:Box transilluminator (Syngene,
Cambridge, UK).

4.8. Statistical Analysis

The results were expressed as means ± S.D. and performed by unpaired t-test. All
statistics calculations were carried out in GraphPad Prism software.

5. Conclusions

The strategy reported here provides the ability to control both hydrophobicity and the
selectivity of novel derivatives of MBA. Silylation of 5-hydroxyl group in the MBA ring
leads to set of novel compounds with increased cytotoxic potency against cancer cells in
comparison to lead molecule 1. Interestingly, compounds showed to be most active against
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colorectal cancer cell lines, which makes them potential candidates for the development of
novel treatments for CRC.

In conclusion, this study not only presents a set of potent and highly-cell-active
compounds, but it also sheds light on the importance of silyl groups as crucial factors in
addressing mechanisms of action and selectivity towards cancer cells. Taking into account
the availability of various silylating agents, many further optimizations could be imagined
in order to obtain compounds with an appropriate balance between potency and cancer
cell selectivity.
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