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Abstract: Paeonia lactiflora Pallas (PL) and Poria cocos Wolf (PC) have been traditionally used to treat
inflammatory diseases reported in Dongui Bogam and Shen Nong Ben Cao Jing, traditional medical
books in Korean and China, respectively. We determined the efficacies and the molecular mechanisms
of PL, PC, and PL + PC aqueous extracts on androgenetic alopecia (AGA) induced by testosterone
propionate in C57BL/6 mice. The molecular mechanisms of PL and PC in AGA treatment were
examined using experimental assays and network pharmacology. The AGA model was generated
by topically applying 0.5% testosterone propionate in 70% ethanol solution to the backs of mice
daily for 28 days while the normal-control (Normal-Con; no AGA induction) mice applied 70%
ethanol. The 0.1% PL (AGA-PL), 0.1% PC (AGA-PC), 0.05% PL + 0.05% PC (AGA-MIX), and 0.1%
cellulose (AGA-Con; control) were supplemented in a high-fat diet for 28 days in AGA-induced mice.
Positive-control (AGA-Positive) were administered 2% finasteride daily on the backs of the AGA
mice. Hair growth rates decreased in the order of AGA-PL, AGA-MIX, AGA-PC, AGA-Positive, and
AGA-Con after 21 days of treatment (ED21). On ED28, skins were completely covered with hair in
the AGA-PL and AGA-MIX groups. Serum testosterone concentrations were lower in the AGA-PL
group than in the AGA-Con group and similar to concentrations in the Normal-Con group, whereas
serum 17β-estradiol concentrations showed the opposite pattern with increasing aromatase mRNA
expression (p < 0.05). In the dorsal skin, DKK1 and NR3C2 mRNA expressions were significantly
lower, but TGF-β2, β-Catenin, and PPARG expressions were higher in the AGA-PL and AGA-PC
groups than in the AGA-Con group (p < 0.05), whereas TNF-α and IL-6 mRNA expressions were
lower in the AGA-PL, AGA-MIX, and Normal-Con groups than in the AGA-Con group (p < 0.05).
The phosphorylation of Akt and GSK-3β in the dorsal skin was lower in AGA-Con than normal-Con,
and PL and MIX ingestion suppressed their decrease similar to the Normal-Con. In conclusion,
PL or PL + PC intake had beneficial effects on hair growth similar to Normal-Con. The promotion
was related to lower serum testosterone concentrations and pro-inflammatory cytokine levels, and
inhibition of the steroid hormone pathway, consistent with network pharmacology analysis findings.

Keywords: androgenic alopecia; testosterone; Paeonia lactiflora pall; Poria cocos; inflammation;
network pharmacology

1. Introduction

Androgenetic alopecia (AGA) is the most common cause of chronic progressive hair
loss in young and middle-aged men [1] and has a worldwide incidence rate of about
20% [2]. AGA has a considerable negative impact on quality of life and physical and
mental health [2]. The exact mechanism remains unclear, but excessive androgen receptor
activation in the scalp shortens the anagen or growth phase in the hair growth cycle and
miniaturizes the follicles. It contributes to thinner and shorter hair follicles, resulting in

Pharmaceuticals 2021, 14, 1128. https://doi.org/10.3390/ph14111128 https://www.mdpi.com/journal/pharmaceuticals

https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-6092-8340
https://doi.org/10.3390/ph14111128
https://doi.org/10.3390/ph14111128
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ph14111128
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph14111128?type=check_update&version=2


Pharmaceuticals 2021, 14, 1128 2 of 20

accelerating hair loss. Individuals lacking androgen receptors do not develop AGA [3].
AGA pathogenesis is also linked to endocrine factors and genetic susceptibility [4]. Inade-
quate oxygen and nutrient supply due to the reduced blood supply to the scalp may cause
hair loss [3]. Inflammation, dyslipidemia, hyperglycemia, and insulin resistance are also
involved in AGA etiology, and Western-style diets containing high sugar and cholesterol
and a low mineral diet may increase the potential to induce AGA [5].

Topical minoxidil and finasteride for oral medication are clinically approved by the
US Food and Drug Administration (FDA) and European Medicines Agency (EMA) for the
treatment of AGA [6]. Finasteride is a 5α-reductase inhibitor to suppress dihydrotestos-
terone production and reverses male hair loss, although its efficacy highly varies between
individuals [7]. However, they have safety issues, and the overall successful treatment
rates are low [8]. Topical finasteride has been examined for AGA treatment with decreas-
ing complications induced with oral administration [9]. Topical finasteride has a phase
III clinical trial, demonstrating the increase of hair count and decreased adverse effect
compared to placebo [10]. A systematic review of topical finasteride efficacy for AGA
demonstrates a positive result for AGA treatment (0.1–1%), with a favorable safety result in
men [9]. Topical finasteride (2%) is reported to increase follicular density without increas-
ing serum finasteride in male hairless animals with topical testosterone solution [11,12].
Researchers have turned to Traditional Chinese Medicine (TCM) as a source of potential
AGA medication in recent years [13].

Paeonia lactiflora Pallas (PL; English name: peony) has been used as traditional Chinese
medicine (TCM) reported in the classic Ming prescription “Wu Tou Decoction” from
Jin Gui Yao Lue [14] and also “Donguibogam” from Lee’s Chosun Dynasty in Korea
(Jun, 1613). In “Gu Tu Qi Fang”, Paeonia lactiflora Pallas is recorded to replenish the
essence of blood, stabilize hair loss, and promote hair growth in persons with hair loss
due to deficient essence of blood (Qi, 2019). It also reduces inflammation and pain and
improves blood circulation and hyperglycemia [15]. Paeoniflorin, peony glycosides, and 8-
debenzoylpaeoniflorin, the PL components, have been reported to have immune regulation
and anti-inflammatory activity [16] and reduce cerebral hemorrhage [17]. Meanwhile,
Poria cocos Wolf (PC) can be traced back to an ancient Chinese medical book “Shen Nong
Ben Cao Jing” [18] and “Huang Di Nei Jing” (Liang et al., 2014), where it is reported to
have been used for edema, nephrosis, and chronic gastritis, and relieve mental stress. The
chemical constituents of PC mainly include triterpenes, polysaccharides, and steroids.
Triterpenoids in PC have been reported to have beneficial impacts on autoimmune-related
diseases [19] and hypoglycemic [20], whereas polysaccharides of PC promote immune
response [21]. Since AGA is partially related to the immune privilege collapse in the
hair follicles and hyperglycemia, the suppressors of pro-inflammatory and hyperglycemia
activities are usually administered to treat the condition [5,22], which suggests PL and PC
might alleviate AGA symptoms by promoting anti-inflammatory activities.

The effectiveness of medications can be screened by network pharmacology before
conducting experimental studies. Network pharmacology has recently been used to check
the effectiveness and mechanisms responsible for TCM on various diseases and provide
potential action mechanisms [23]. The chemical components of PL and PC are retrieved
from the TCM system pharmacology database and analysis platform (TCMSP) and their
active ingredients and related targets of AGA are screened. Mice hair follicles express an-
drogen receptors, which testosterone binds to and activates to inhibit hair growth, leading
to hair loss [24–26]. We preliminarily confirmed the hair loss in mice induced by applying
testosterone propionate solution into the dorsal skins of C57BL/6, commonly used as
an animal model for studying the efficacy and mechanism of hair growth according to
the hair follicle growth cycle [25,27]. This is a similar etiology of human AGA and this
was used as an animal model in the present study. Topical application of 2% finasteride
solution was used as a positive control in previous and present studies [25]. We aimed
to evaluate the efficacy of PL and PC in AGA treatment and their molecular mechanism
in network pharmacology and an established AGA animal model. We hypothesized that
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PL and PC intake might improve hair growth in the AGA animal model by suppressing
testosterone-related pathways because of their suppressive effects on androgen, hyper-
glycemia, and pro-inflammatory cytokines. The hypothesis was examined in C57BL/6
mice with testosterone-induced alopecia [25,26]. This study was novel to show the PL and
PL + PC intake had a potential AGA treatment in AGA animal model through modulating
lowering inflammation and steroid hormone pathway and network pharmacology analysis
supported the results.

2. Results
2.1. Screening of Active Ingredients in PL and PC and Predictions of Potential Targets for AGA
Treatment Using TCMSP

Using OB (≥30%) and DL (≥0.18) as required by the TCMSP database [23,28], 13
and 15 relevant active ingredients of PL and PC, respectively, were identified (Table 1).
Paeoniflorgenone, paeoniflorin, albiflorin, and 12beta-olide of PL had the highest OB
(>60%) and DL (0.3–0.8) values, whereas dehydroeburicoic acid, ergosta-7, 22E-dien-3beta-
ol, ergosterol peroxide, pachymic acid, and poricoic acids of PC had the highest OB
(30–40%) and DL (0.7–0.8) values (Supplemental Table S1).

Table 1. Body composition and food intake at the end of the experimental periods.

AGA-Con
(N = 12)

AGA-Positive
(N = 12)

AGA-PL
(N = 12)

AGA- PC
(N = 12)

AGA-MIX
(N = 11)

Normal-Con
(N = 11)

Final weight (g) 25.6 ± 0.76 26.8 ± 0.55 26.7 ± 0.58 25.4 ± 0.69 25.5 ± 0.39 26.5 ± 0.38
Weight gain (g/8 weeks) 3.71 ± 0.32 ab 4.13 ± 0.38 a 3.83 ± 0.39 ab 2.64 ± 0.38 b 2.55 ± 0.42 b 3.25 ± 0.31 ab

Food intake (g/day) 4.10 ± 0.31 3.59 ± 0.20 4.08 ± 0.33 3.48 ± 0.40 3.78 ± 0.27 3.22 ± 0.28
PL or PC intake

(mg/kg bw/day) - - 153 ± 12 139 ± 16 148 ± 11 -

Efficiency of food 0.97 ± 0.10 ab 1.14 ± 0.07 a 0.94 ± 0.08 ab 0.76 ± 0.13 ab 0.67 ± 0.09 b 1.09 ± 0.12 a

Epididymal fat (g) 0.53 ± 0.06 b 0.68 ± 0.06 a 0.55 ± 0.07 b 0.49 ± 0.04 b 0.40 ± 0.03 c 0.59 ± 0.04 b

Retroperitoneal fat (g) 0.18 ± 0.02 0.25 ± 0.02 0.20 ± 0.04 0.19 ± 0.02 0.15 ± 0.02 0.22 ± 0.02
Total visceral fat (g) 0.72 ± 0.07 b 0.93 ± 0.09 a 0.75 ± 0.11 b 0.67 ± 0.06 b 0.55 ± 0.04 c 0.81 ± 0.05 b

AGA was induced with the application of 0.5% testosterone propionate solution on the back of mice, and AGA-induced mice orally
consumed 0.1% PL, 0.1% PC, or 0.1% mixture of PL and PC (1:1, w/w) in a 43% fat diet (HFD), called AGA-PL, AGA-PC, or AGA-MIX
groups, respectively. Among, AGA-induced mice, 2% finasteride was applied daily to the back, as AGA-Positive (positive control).
AGA-Positive and AGA-Con (control) mice had 0.1% cellulose (no effective activity in AGA treatment) in an HFD. Normal-Con did not
induce AGA and consumed 0.1% cellulose in an HFD. All mice had an 8-week treatment. The efficiency of food was obtained by dividing
the weight gain by the food intake. Values are means ± standard deviations. a,b,c Different superscript letters on the means indicate a
significant difference as per a Tukey test at p < 0.05, and no or the same letters indicate no significance between the groups.

In total, 48 and 14 molecular targets of active ingredients of PL and PC, respectively,
and 3412 and 3431 molecular targets of PL and PC, respectively, on AGA, were also
collected. Twenty-three and four potential targets for PL and PC, respectively, intersected
with AGA targets. They were used for TCMSP analysis.

2.2. Network Topology Diagram of “Active Component-Disease-Target” for PL and PC

The network topology diagram of “Active-component-disease-target” showed in-
teractions between active ingredients of PL and PC and AGA treatment (Figure 1A). In
Figure 1A, interactions that involved 23 target genes are shown as blue rhombuses, AGA
is represented as black dots, located in the middle of the target genes, and the active
compounds of PC and PL are shown as pink triangles. PL and PC had six and four core
active ingredients for AGA treatment, respectively.

2.3. PPI Network Analysis and GO Enrichment Analysis

PPI network analysis revealed 20 protein nodes and 85 edges (connection degrees)
with AKT1 as the core gene and the presence of protein–protein interactions (Supplemental
Figure S1).
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The functional distribution of PL and PC prediction targets was explored by GO
analysis. The X-axis represents the number of genes enriched in each function, and the
Y-axis represents the function related to active components of PL and PC (Figure 1B).
Different colors represent different degrees of enrichment and statistical differences: the
darker red the color, the greater the enrichment degree (Figure 1B). GO analysis showed
that the predicted PL targets were enriched in the mechanisms of nuclear receptor activity,
ligand-activated transcription factor activity, DNA-binding transcription factor binding,
nuclear hormone receptor binding, and protein phosphatase binding (p < 0.001; Figure 1C).
The predicted molecular targets for PC were mainly enriched steroid hormone receptor
activity, nuclear receptor activity, and ligand-activated transcription factor activity (p < 0.01;
Figure 1C).

2.4. Contents of Index Compounds in PL and PC, Food and Herbal Intake, Body Weight, and Fat
Weight in Mice

PL contained 54.01 ± 2.70 mg paeoniflorin/g dry powder, while PC contained
0.56 mg ± 0.02 mg pachymic acid (Supplemental Figure S2).

The experimental schedule is presented in Figure 2. After a 28-day intervention, the
mean final weight tended to be lower in the AGA-PC and AGA-MIX groups than in the
other groups, but not significantly (Table 1). However, weight gain in the AGA-PC and
AGA-MIX groups was lower than in the AGA-Positive group (p < 0.05) (Table 1). Although
no significant difference in food intake was observed among groups, food efficiency in the
AGA-MIX group was lowest, and food efficiencies were similar in the AGA-PL, AGA-PC,
and AGA-Con groups (Table 1). PL and PC ingestion were not significantly different in
the AGA-PL and AGA-PC groups (about 147 mg/kg/day, Table 1). PL and PC mixture
ingestion lowered epididymal fat, retroperitoneal fat, and total visceral fat contents than
AGA-Con mice, while they were lowest in the AGA-Positive group among all groups
(p < 0.05) (Table 1).
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Figure 1. Active component-target network and gene ontology (GO) function enrichment analysis of active components 
of Paeonia Lactiflora (PL), Poria Cocos (PC), and androgenetic alopecia (AGA). (A) Active component-target network of 
primary active ingredients of Paeonia Lactiflora (PL) and Poria Cocos (PC). (B) GO function enrichment analysis results 
between PL and AGA. (C) GO function enrichment analysis results between PC and AGA. Main active ingredients 
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Figure 1. Active component-target network and gene ontology (GO) function enrichment analysis of active components of
Paeonia Lactiflora (PL), Poria Cocos (PC), and androgenetic alopecia (AGA). (A) Active component-target network of primary
active ingredients of Paeonia Lactiflora (PL) and Poria Cocos (PC). (B) GO function enrichment analysis results between PL and
AGA. (C) GO function enrichment analysis results between PC and AGA. Main active ingredients (triangle-purple), targets
(rhombus-blue), PC and PL (rectangle-yellow), AGA (dots-black). The X-axis represents the number of genes enriched in
each function, and the Y-axis is the name of the function. Different colors represent different degrees of enrichment. The
redder color and the bigger bubble indicated a higher degree of enrichment of the target pathways and a smaller p-value.
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Figure 2. Experimental design of the animal study. AGA was induced with the application of 0.5% testosterone propionate
solution on the back of mice, and AGA-induced mice orally consumed 0.1% PL, 0.1% PC, or 0.1% mixture of PL and PC (1:1,
w/w) in a 43% fat diet (HFD), called AGA-PL, AGA-PC, or AGA-MIX groups, respectively. AGA-induced mice were daily
applied with 2% finasteride on the back, as AGA-Positive (positive control). AGA-Positive and AGA-Con (control) mice
had 0.1% cellulose (no effective activity in AGA treatment) in an HFD. Normal-Con did not induce AGA and consumed
0.1% cellulose in an HFD. All mice had an 8-week treatment.

2.5. Hair Growth Status and Clinical Hair Growth Scores

On experimental day 7, as many new hairs were visible in the AGA-PL group as
the Normal-Con group (Figure 3A). On experimental day 14, PL and PC ingestion was
associated with fast hair growth, but hair growth was just initiated in the AGA-Con
group. At this time, hair growth in the AGA-Con was observed on less than 20% of
the exposed dorsal skin but more than 20% in the AGA-Positive and AGA-PC groups,
and more than 80% in the AGA-PL, AGA-MIX, and Normal-Con groups (Figure 3A,B).
On experimental day 21, exposed skin was visible in the AGA-Con group, while dorsal
skin was completely covered with as much hair in the AGA-PL group as in the Normal-
Con group, but slightly exposed in the AGA-Positive, AGA-MIX, and AGA-PC groups
(Figure 3A,B). On experimental day 28, most dorsal skin tissues were still exposed in
the AGA-Con group, partially exposed in the AGA-PC group, slightly exposed in the
AGA-Positive and AGA-MIX groups, and completely covered in the AGA-PL and the
Normal-Con groups (p < 0.05) (Figure 3A,B). Overall, mice in the AGA-PL and AGA-MIX
groups exhibited faster skin hair growth than those in the AGA-Con group (p < 0.05).

The result of the 1st week was not added to Figure 3C, since the hair on the back
did not grow in any group. In the 2nd week, the ratio of hair length and weight was
significantly higher in the treatment groups than in the AGA-Con group, and the ratio of
the AGA-PL and AGA-MIX groups was similar to that of Normal-Con (p < 0.05; Figure 3C).
In the 3rd and 4th weeks, the hair length ratio with weight was higher in the treatment
groups than that of the AGA-Con group. AGA-PL increased the ratio as much as the
Normal-Con (p < 0.05; Figure 3C). PL and PL and PC mixture ingestion was associated
with complete hair growth in AGA mice during the 8-week treatment.

2.6. Histopathology of Dorsal Skins

On experimental day 28, hair follicles were miniaturized, and hair densities were
significantly lower in the AGA-Con group than in the other groups (Figure 4A,B). Mice in
the Normal-Con, AGA-PL, AGA-PC, and AGA-MIX groups had significantly greater hair
follicle densities than those in the AGA-Con group (p < 0.05) (Figure 4A,B). The number of
hair follicle was similar in the AGA-MIX and AGA-Positive groups. Mice in the AGA-Con
groups had significantly greater dermal thickness than those in the AGA-PL and AGA-MIX
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group (p < 0.05) (Figure 4A,B). The dermal thickness ratio was similar in the AGA-Positive,
AGA-PC, and Normal-Con groups (Figure 4B). These results suggested that PL ingestion
exhibited more effectiveness for AGA therapy than PC and PC and PL mixture ingestion.
PL ingestion was associated with promoting hair growth as much as finasteride.

2.7. Serum Testosterone, 17β-Estradiol, and Triglyceride Concentrations

After the intervention, serum testosterone concentrations were lowered only in the
AGA-PL group, and were similar to those in the Normal-Con (p < 0.05) (Table 2). AGA-PC
and AGA-MIX tended to lower serum testosterone concentrations, but these reductions
were not significant. Serum 17β-estradiol concentrations were higher in the Normal-Con
and AGA-PL groups than in the AGA-CON group (Table 2), but lower in the AGA-Positive,
AGA-PC, and AGA-MIX groups. Serum triglyceride concentrations were lower in the
AGA-PC and AGA-PL groups than in the AGA-CON and similar to those observed in the
Normal-Con group (p < 0.05) (Table 2).
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start to finish. (C) The ratio of hair weight to the length of the 30 hairs on the 2nd, 3rd, and 4th week. AGA was induced
with the application of 0.5% testosterone propionate solution on the back of mice, and AGA-induced mice orally consumed
0.1% PL, 0.1% PC, or 0.1% mixture of PL and PC (1:1, w/w) in a 43% fat diet (HFD), called AGA-PL, AGA-PC, or AGA-MIX
groups, respectively. AGA-induced mice were daily applied with 2% finasteride on the back, as AGA-Positive (positive
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Table 2. Sex hormones, cholesterol, and triglyceride concentrations in the circulation.

AGA-Con
(N = 12)

AGA-Positive
(N = 12)

AGA-PL
(N = 12)

AGA- PC
(N = 12)

AGA-MIX
(N = 11)

Normal-Con
(N = 11)

Serum testosterone (ng/mL) 27.10 ± 0.81 a 27.83 ± 0.62 a 21.15 ± 0.78 b 23.88 ± 0.38 ab 24.54 ± 0.56 ab 21.23 ± 1.33 b

Serum 17β-estradiol
(ng/mL) 13.95 ± 2.01 b 16.14 ± 1.86 ab 19.38 ± 0.86 a 17.69 ± 1.84 ab 16.78 ± 1.39 ab 18.71 ± 1.86 a

Serum total cholesterol
(mg/dL) 149.39 ± 6.71 149.96 ± 8.72 137.10 ± 5.04 135.53 ± 2.99 137.28 ± 4.35 144.98 ± 4.20

Serum triglyceride
(mg/dL) 63.68 ± 4.96 a 64.19 ± 4.15 a 47.51 ± 3.48 ab 34.64 ± 2.86 b 58.06 ± 2.80 a 46.65 ± 2.67 ab

AGA was induced with the application of 0.5% testosterone propionate solution on the back of mice, and AGA-induced mice orally
consumed 0.1% PL, 0.1% PC, or 0.1% mixture of PL and PC (1:1, w/w) in a 43% fat diet (HFD), called AGA-PL, AGA-PC, or AGA-MIX
groups, respectively. AGA-induced mice were daily applied with 2% finasteride on the back, as AGA-Positive (positive control). AGA-
Positive and AGA-Con (control) mice had 0.1% cellulose (no effective activity in AGA treatment) in an HFD. Normal-Con did not induce
AGA and consumed 0.1% cellulose in an HFD. All mice had an 8-week treatment. Values are means ± standard deviations. a,b Different
superscripts on the means indicate a significant difference as per a Tukey test at p < 0.05, and no or the same superscripts included on them
indicate no significance between the groups.

2.8. mRNA Expressions of AGA-Related Genes in Dorsal Skin

After the intervention, the mRNA expressions of tumor necrosis factor-α (TNF-α)
and interleukin 6 (IL-6) cytokines in dorsal skin tissues were much higher in the AGA-
Con group than in the Normal-Con group (Figure 5A), but similar in the AGA-PL and
Normal-Con groups, and also reduced in the AGA-PC and AGA-MIX groups, but not as
much as that observed in the AGA-PL group. Their expressions were also reduced in the
AGA-Positive group compared with AGA-Con, but the decrease of IL-6 mRNA expression
was much more significant than that of TNF-α (Figure 5A).
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had 0.1% cellulose (no effective activity in AGA treatment) in HFD. Normal-Con did not induce AGA and consumed 0.1% 
cellulose in HFD. All mice had an 8-week treatment. After 28 days of treatment, dorsal skins were fixed with 10% 
formaldehyde, embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Original magnification 100×. 
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2.7. Serum Testosterone, 17β-Estradiol, and Triglyceride Concentrations 
After the intervention, serum testosterone concentrations were lowered only in the 

AGA-PL group, and were similar to those in the Normal-Con (p < 0.05) (Table 2). AGA-
PC and AGA-MIX tended to lower serum testosterone concentrations, but these 
reductions were not significant. Serum 17β-estradiol concentrations were higher in the 
Normal-Con and AGA-PL groups than in the AGA-CON group (Table 2), but lower in 
the AGA-Positive, AGA-PC, and AGA-MIX groups. Serum triglyceride concentrations 
were lower in the AGA-PC and AGA-PL groups than in the AGA-CON and similar to 
those observed in the Normal-Con group (p < 0.05) (Table 2). 

Figure 4. Histological differences and hair follicle densities in dorsal skins. (A) Histology of H&E-stained dorsal skins.
(B) The red arrows indicate the hair follicle. AGA was induced with the application of 0.5% testosterone propionate solution
on the back of mice, and AGA-induced mice orally consumed 0.1% PL, 0.1% PC, or 0.1% mixture of PL and PC (1:1, w/w) in
a 43% fat diet (HFD), called AGA-PL, AGA-PC, or AGA-MIX groups, respectively. AGA-induced mice were daily applied
with 2% finasteride on the back, as AGA-Positive (positive control). AGA-Positive and AGA-Con (control) mice had 0.1%
cellulose (no effective activity in AGA treatment) in HFD. Normal-Con did not induce AGA and consumed 0.1% cellulose
in HFD. All mice had an 8-week treatment. After 28 days of treatment, dorsal skins were fixed with 10% formaldehyde,
embedded in paraffin, sectioned, and stained with hematoxylin and eosin. Original magnification 100×. Bars and error bars
are mean ± standard deviations (N = 11 or 12). a,b,c Different letters on the bars indicate a significant difference as per a
Tukey test at p < 0.05, and no or the same letters indicate no significance between the groups.
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Nuclear receptor subfamily 3 Group (NR3C2) and peroxisome proliferator-activated
receptor gamma (PPARG) genes are related to steroid hormone receptor signaling, and their
expressions are negatively related to hair growth. After the intervention, NR3C2 mRNA
expression was highest in the AGA-Con group (Figure 5B), but similar in the AGA-PL,
AGA-PC, AGA-MIX, and Normal-Con groups. Interestingly, its expression was similar
in the Positive-Control and AGA-Con groups. On experimental day 28, group PPARG
mRNA expressions were lowest in the AGA-MIX and Normal-C groups and similar in the
AGA-PL, AGA-PC, and Positive-Control groups (Figure 5B).

Aromatase (CYP19A1) converts androgens into estrogen in scalp hair follicles. The
increase in estrogen in the experiment promotes hair growth. CYP19A1 mRNA expression
was much lower in the AGA-Con than in the AGA-PL, AGA-PC, and AGA-MIX groups
(Figure 5B). CYP19A1 mRNA expression was markedly and similarly lower in AGA-
Positive and AGA-Con groups (Figure 5B).

Hair growth is also associated with Wnt signaling: Dickkopf Wnt signaling pathway
inhibitor 1 (DKK1) and catenin beta-1 (β-catenin) are the central regulators of hair growth.
TGF-β signaling interacts with Wnt signaling. The mRNA expression of DKK1, an inhibitor
of the Wnt signaling pathway, was much higher in the AGA-Con group than in the other
groups (Figure 5C). AGA-PL, AGA-PC, and AGA-MIX also reduced DKK1 expression
but not to the same extent observed in the AGA-Positive group (Figure 5C). The mRNA
expression of β-catenin, an indicator of Wnt signaling activation, was much lower in the
AGA-Con than in the Normal-Con, AGA-Positive, and AGA-PL groups. PC and PL/PL
also reduced its expression but not to the same extent as AGA-PL (Figure 5C). In addition,
TGF-β2 mRNA expression was much higher in the AGA-Positive and AGA-Con group than
in the other groups (Figure 5C). TGF-β2 mRNA expression was markedly lower in AGA-
PL, AGA-MIX, and Normal-Con groups than AGA-Con (Figure 5C). These observations
suggested that finasteride acted on Wnt signaling to promote hair growth, but PL ingestion
promoted aromatase and Wnt signaling pathways.
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HFD. Normal-Con did not induce AGA and consumed 0.1% cellulose in an HFD. All mice had an 8-week treatment. 
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similar in the Positive-Control and AGA-Con groups. On experimental day 28, group 
PPARG mRNA expressions were lowest in the AGA-MIX and Normal-C groups and 
similar in the AGA-PL, AGA-PC, and Positive-Control groups (Figure 5B). 

Aromatase (CYP19A1) converts androgens into estrogen in scalp hair follicles. The 
increase in estrogen in the experiment promotes hair growth. CYP19A1 mRNA expression 
was much lower in the AGA-Con than in the AGA-PL, AGA-PC, and AGA-MIX groups 
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Positive and AGA-Con groups (Figure 5B). 

Figure 5. mRNA expression levels in the dorsal skin. (A) Tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6).
(B) Aromatase (CYP19A1), nuclear receptor subfamily 3 group (NR3C2), and peroxisome proliferator-activated receptor
gamma (PPARG). (C) β-Catenin, Dickkopf-related protein 1 (DKK1), and tumor growth factor-β2 (TGF-β2). Bars and error
bars are mean ± standard deviations (N = 4). a,b,c Different letters on the bars indicate a significant difference as per a
Tukey test at p < 0.05, and no or the same letters indicate no significance between the groups. AGA was induced with the
application of 0.5% testosterone propionate solution on the back of mice, and AGA-induced mice orally consumed 0.1%
PL, 0.1% PC, or 0.1% mixture of PL and PC (1:1, w/w) in a 43% fat diet (HFD), called AGA-PL, AGA-PC, or AGA-MIX
groups, respectively. AGA-induced mice were daily applied with 2% finasteride on the back, as AGA-Positive (positive
control). AGA-Positive and AGA-Con (control) mice had 0.1% cellulose (no effective activity in AGA treatment) in an HFD.
Normal-Con did not induce AGA and consumed 0.1% cellulose in an HFD. All mice had an 8-week treatment.

2.9. Phosphorylation of Akt and GSK-3β in the Dorsal Skin

Akt and GSK-3β phosphorylation are involved in Wnt signaling to promote hair
growth. Phosphorylation of Akt and GSK-3β to their proteins was significantly higher in the
AGA-PL, AGA-MIX, and Normal-Con groups than the AGA-Con (p < 0.05; Figure 6A,B).
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The increase of GSK-3β phosphorylation was higher in the AGA-Positive group, but its
increase was much lower than the other treatment groups (Figure 6A,B).
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Figure 6. Phosphorylation of Akt and GSK-3β in the dorsal skin. (A) The phosphorylation and protein contents of Akt and
glycogen-synthase kinase-3β (GSK-3β). (B) The ratio of the phosphorylation and protein of Akt and GSK-3β. Bars and error
bars are mean ± standard deviations (N = 4). a,b,c Different letters on the bars indicate a significant difference as per a Tukey
test at p < 0.05, and no or the same letters indicate no significance between the groups. The insulin signaling pathways
were measured with western blotting analysis, and an image analyzer measured their intensity. AGA was induced with
the application of 0.5% testosterone propionate solution on the back of mice, and AGA-induced mice orally consumed
0.1% PL, 0.1% PC, or 0.1% mixture of PL and PC (1:1, w/w) in a 43% fat diet (HFD), called AGA-PL, AGA-PC, or AGA-MIX
groups, respectively. AGA-induced mice were daily applied with 2% finasteride on the back, as AGA-Positive (positive
control). AGA-Positive and AGA-Con (control) mice had 0.1% cellulose (no effective activity in AGA treatment) in an HFD.
Normal-Con did not induce AGA and consumed 0.1% cellulose in an HFD. All mice had an 8-week treatment.

3. Discussion

We undertook this study to determine whether PL and PC intake would improve
hair growth in AGA-induced C57BL/6 mice and reduce androgen and pro-inflammatory
cytokine contents. Before the animal experiment, the efficacy and action mechanisms of PL
and PC were evaluated by system pharmacology network analysis [23], which showed their
potential efficacies are derived mainly by their effects on steroid hormone receptor activity,
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nuclear receptor activity, and ligand-activated transcription factor activity. It indicated
that PL and PC had the potential to alleviate AGA and their efficacy and mechanism
were examined in a murine animal model. PL and PC increased hair follicle densities
by reducing serum testosterone concentrations and pro-inflammatory concentrations. Its
mechanism was validated to increase the mRNA expression of aromatase and nuclear
receptor expression to promote Wnt-related signaling in the dorsal skin. As a result, PL
and PC protected against hair loss, and PL had a better protection effect on AGA.

AGA causes the progressive miniaturization of hair follicles and induces androgen-
like effects in the epithelial cells of hair follicles in androgen-dependent regions [4,29].
The androgens secreted by the human body combine with type 2 5α-reductase in hair
follicles to form DHT, which attacks hair follicles, causing them to shrink, which weakens
hair strength, and eventually causes hair loss [30,31]. Aromatase reduces testosterone to
inhibit testosterone-related hair loss [32]. We observed that AGA-CON mice had lower
hair follicle densities and sizes and that PL, PL/PC, and finasteride protected against
these effects. PL and PC have usually been reported to have anti-inflammatory effects in
various inflammation-associated diseases [33,34]. Ong et al. [35] showed that paeoniflorin,
a dominant component of PL, suppresses the over-secretion of testosterone induced by
dexamethasone in theca cells by downregulating CYP17A1 (aromatase) and CYP11A1 and
suggested PL might prevent excessive testosterone levels by converting to estrogen. No
study has been previously conducted on the effects of PC or PL on AGA. The present
study consistently showed that PL and PC increased CYP17A1 mRNA expression related to
converting testosterone into estrogen and both elevated serum 17β-estradiol concentration.
Thus, PL and PC can be a candidate of therapeutic agents for AGA, although the pathway
to treat AGA may be different from finasteride.

Improvements in living standards have increased the desire for AGA treatment,
but safer, more effective drugs are required. TCM provides treatments with multiple
components that target many bio-entities [36]. Integrating with the recently developed
network pharmacology aids understanding of the systemic therapeutic mechanisms of
TCMs [37]. Network pharmacology can be used to investigate the effectiveness and action
mechanisms of TCMs based on their active ingredients and disease targets [23,28]. In
the present study, we conducted an integrated analysis of AGA treatment by PL and PC
and investigated the interactions between their active components and genes related to
AGA. The network pharmacology data provided the PL and PC efficacy on AGA and their
potential side effects of strengthening the feasibility of the animal study results.

Paeoniflorin, albiflorin, penta-O-galloyl-β-d-glucose, and other ingredients of PL have
anti-oxidant, anti-inflammatory, anti-viral, and anti-tumor activities [15]. Polysaccharides
in PC extract have been shown to possess potent anti-tumor and anti-apoptotic activities
and immune regulatory, hypoglycemic, anti-inflammatory, and anti-oxidant effects [38,39].
System network pharmacology analysis indicated that PL might be an effective treatment
for AGA and that PC might also be effective but not as effective as PL. However, system
biology analysis did not support that combined treatment of PL and PC in AGA might
be effective.

Serum androgen levels are elevated in AGA [30,40]. In this study, after topical appli-
cation of testosterone propionate solution, the dorsal hair growth by C57BL/6 mice was
inhibited by disturbing the synchronized growth cycle at the initial stage [40]. Changes in
the hair growth cycle resulted in skin color changes from fleshy pink to gray and black,
as previously described [30,41]. In the present study, after C57BL/6 mice had ingested
PL, hair growth in dorsal skin was quickly started, and the numbers and sizes of hair
follicles increased, suggesting that hair quickly entered the growth phase. Hair growth
in the AGA-PC group was slower initially but faster during the later stage. Hair growth
in the AGA-MIX and AGA-Positive groups were similar. These results show that PL and
PL/PC reduced the symptoms of AGA in our murine model.

AGA is positively associated with immune modulation and inflammation, and thus,
anti-inflammatory agents can be used to treat the condition [42]. In previous studies, PC
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was found to reduce the mRNA expressions of TNF-α and IL-6 and to combat chronic
nonbacterial prostatitis (a male disease) and arteriosclerosis [39,43]. Chronic nonbacterial
prostatitis can be relieved by regulating testosterone, DHT, and 17β-estradiol levels [43].
Interestingly, in the present study, PL significantly reduced serum testosterone and elevated
17β-estradiol levels, reduced the mRNA expressions of pro-inflammatory cytokines (TNF-α
and IL-6), and lowered NR3C2 levels in the AGA-PL group than in the AGA-PC group
(p < 0.05). Thus, PL more effectively inhibited pro-inflammatory cytokines [44]. We also
found that AGA-Con reduced the PPARG expression and the other treatment groups raised
the expression of PPARG. The potentiation of Akt and GSK-3β phosphorylation improved
Wnt signaling to protect against hair loss induced by testosterone. Finasteride provides a
recognized treatment for AGA [6,41,45] and has also been used to treat prostate cancer [46].
We demonstrated that finasteride had no apparent effect on hair growth during the early
stage of the experiment, but that subsequently, it quickly promoted hair growth.

In conclusion, PL ingestion effectively promoted hair regeneration with increased
hair follicle numbers and sizes in our C57BL/6 mouse model of AGA by reducing serum
testosterone and pro-inflammatory cytokines levels and steroid nuclear receptor expression
and promoting the expressions of aromatase and Wnt-related transcription factors. System
pharmacology analysis showed that the active ingredients of PC and PL also modulated
steroid hormone receptor activity, nuclear receptor activity, and ligand-activated transcrip-
tion factor activity, and these results were consistent with our animal experimental results.
In clinical symptoms of hair loss, PL exhibited better protection against hair loss than PC.
We concluded that PC and mixtures of PC and PL are potential treatments for AGA in an
AGA murine model. This needs to be confirmed in a human study in the future.

4. Materials and methods
4.1. Screening PL and PC Active Ingredients as Potential Medications

The TCMSP contains 499 Chinese medications, 29,384 TCM-related components,
3311 targets, 837 associated diseases [23], and metabolism characteristics, including ab-
sorption, distribution, metabolism, and excretion (ADME), of each component. Drug
screening criteria oral bioavailability (OB) and drug-likeness (DL) were set at ≥30% and
≥0.18, respectively [28]. OB is defined as the percentage of unchanged drug that reaches
the systemic circulation after oral intake, whereas DL is quantified by scoring “drug-like”
properties to optimize pharmacokinetics and pharmaceutical characteristics, such as solu-
bility and stability. We searched all chemical components contained in “bai shao”, “Paeonia
lactiflora Pallas”, “fu ling”, and “Poria cocos Wolf” in the TCMSP. Active ingredients of
PL and PC were selected for a network topology using the drug-related target prediction
function in TCMSP [47].

4.2. A Network Topology Map of PL and PC Bioactive Ingredient Targets and AGA Targets

Potentially related targets of PL and PC bioactive components were screened from
the TCMSP database (https://tcmsp-e.com, accessed on 4 March 2020) [47] and they
were converted into canonical SMILES standard format using PubChem database (https:
//pubchem.ncbi.nlm.nih.gov/, accessed on 12 March 2020). The converted PL and PC
active compounds were imported into the Swiss Target Prediction database (http://www.
swisstargetprediction.ch/, accessed on 19 March 2020). The molecular targets of active
components of PL and PC were collected. After the conversion of their target names
into official gene symbols using the Uniprot database (https://uniprot.org/, accessed
on 26 March 2020), duplicated targets and those with no corresponding gene names
were deleted. The targets of “androgenetic alopecia” were searched in the Gene cards
(https://www.genecards.org/, accessed on 31 March 2020) [48], DisGeNET (https://
www.disgenet.org/home/, accessed on 16 April 2020), NCBI gene (https://www.ncbi.
nlm.nih.gov/gene, accessed on 24 April 2020), OMIM (https://omim.org/, accessed on
6 May 2020) [49], and Mala Cards databases (https://www.malacards.org, accessed on
20 May 2020) [50] to identify disease-related targets, and duplicate gene targets were

https://tcmsp-e.com
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://www.swisstargetprediction.ch/
http://www.swisstargetprediction.ch/
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https://www.ncbi.nlm.nih.gov/gene
https://www.ncbi.nlm.nih.gov/gene
https://omim.org/
https://www.malacards.org
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deleted. Human genome database using “androgenetic alopecia”, “seborrheic alopecia”,
and “hair loss” as keywords. The targets of the active component of PL and PC and related
targets of AGA were integrated into unified UNIPROT ID through the Uniport database
(https://www.uniprot.org/, accessed on 25 May 2020) and mapped with VENNY2.1
(https://bioinfogp.cnb.csic.es/tools/venny/index.html, accessed on 29 May 2020). To
identify disease-related targets, and duplicate gene targets were deleted. Finally, the
potential targets of active components and AGA were matched, and common targets were
selected. This target data were imported into Cytoscape 3.8.2 software (https://www.
cytoscape.org, accessed on 1 June 2020) to construct the “drug-component-disease-target”
network topology. In the network, nodes represented active ingredients, target genes, and
disease targets. The principle of node connection was to use edges to represent active
ingredients and target genes and relationships between AGA and target genes. The multi-
components, multi-targets, and multi-pathways of PL and PC against AGA therapy were
examined by constructing a network topology diagram.

4.3. Protein–Protein Interaction (PPI) Network Construction and Gene Ontology (GO)
Enrichment Analysis

The potential targets of PL and PC for AGA treatment were input into the STRING
database (https://www.stringdb/, accessed on 4 June 2020) [51]. When constructing a PPI
network for the active ingredients of PL and PC for AGA treatment, the organism was set
for homo sapiens. Data received from the STRING database were sorted and imported into
Cytoscape 3.8.2, and summary statistics of the network were analyzed using the “Network
Analyzer” function of the program. Key targets with higher degree values than the average
values were selected.

Drug-disease intersection (overlapping) targets were obtained, as described in
Section 2.2, and were introduced into the Kyoto Encyclopedia of Genes and Genome (KEGG)
database generated from Kanehisa Laboratories, Kyoto University (Kyoto, Japan) (https:
//www.kegg.jp/, accessed on 11 June 2020) to extract a canonical pathway highly related to
these target proteins. Potential therapeutics among PL and PC active components with dif-
ferent molecular functions related to AGA were identified by GO enrichment analysis using
the Bioconductor package (http://www.bioconductor.org/, accessed on 24 June 2020) [52].
The Bioconductor database (http://www.bioconductor.org/, accessed on 30 June 2020)
analyzed biological processes, cellular components, and molecular functions of potential
targets by PL and PC. The enrichment analysis of PL-AGA and PC-AGA by KEGG and
GO was determined with their action molecular pathways. Statistical significance was
examined at p < 0.05 with the R program.

4.4. Preparation of PL and PC Water Extracts and Analysis of Their Index Compounds

The root of PL and the sclerotium of PC were purchased from Kyungdong Herbal
Market (Seoul). Dr. Young Seng Joo at Woo Suk University confirmed their authenticity
in 2019, and it was stored in Hoseo University. Both were boiled in water at 95 °C for 3 h,
filtered, and filtrates were evaporated in a rotary evaporator to 25% (w/v). The concentrates
were lyophilized with a freeze dryer (IlShinBioBase, Dongdoocheon, Korea). The yields of
PL and PC were 17.4 and 21.5%, respectively.

The index compounds of PL and PC were paeoniflorin and pachymic acid, respec-
tively. Their contents in the extracts were measured using HPLC analysis. Quantitative
analysis was conducted by peak integration using external paeoniflorin and pachymic acid
standards having ≥95% purity purchased from Tokyo Chemical Industry Co., Ltd. (Tokyo,
Japan). The HPLC condition was provided in the legend of Supplemental Figure S1.

4.5. Experimental Animal Model

Sixty 6-week-old male C57BL/6 mice (20 g–26 g) were purchased from Dae Han
Bio Link (Um-Sung, Korea). Animals were adapted for one week in an animal facility
in separate cages under controlled conditions (temperature: 20 ± 2◦C, humidity: 65 ±
5%) under a 12-h light/dark cycle (08:00–20:00 h/20:00–08:00 h) and provided food and

https://www.uniprot.org/
https://bioinfogp.cnb.csic.es/tools/venny/index.html
https://www.cytoscape.org
https://www.cytoscape.org
https://www.stringdb/
https://www.kegg.jp/
https://www.kegg.jp/
http://www.bioconductor.org/
http://www.bioconductor.org/
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water ad libitum. The study protocols complied with the guidelines issued by the National
Institute of Health and Animal Care and were approved beforehand by the Animal Care
and Use Review Committee of Hoseo University (Asan, Korea; HSIACUC-18-230; approved
on 6 January 2019).

After anesthetizing C57BL/6 mice with an intramuscular injection of a mixture of
ketamine and xylazine (100 and 10 mg/kg of body weight, respectively; Bayer AG, Lev-
erkusen, Germany), dorsal hair C57BL/6 mice was completely removed. Mice were then
replaced in single cages for 12 h. Testosterone propionate solution (100 µL, 0.5%) in 70%
ethanol applied daily for 28 days to dorsal skin to generate AGA-induced mice. Normal
control mice were treated with 100 µL of 70% ethanol without testosterone propionate
daily, as to not induce AGA. The hair changes on the backs of mice were evaluated daily.

4.6. Experimental Design

AGA-induced mice were divided into five treatment groups and assigned the follow-
ing treatments: (1) 0.1% cellulose in diet (the AGA-Con group; control), (2) 0.1% lyophilized
water extract of PL daily in diet (the AGA-PL group), (3) 0.1% lyophilized water extract
of PC daily in diet (the AGA-PC group), (4) lyophilized water extracts of 0.05% PL plus
0.05% PC (the AGA-MIX group) daily in a high-fat diet (HFD), or (5) 2 mg finasteride
daily application to backs plus 0.1% cellulose in diet (the AGA-Positive group). A total of
2 mg finasteride was used on the back of the AGA-positive mice by applying 100 µL of
2% finasteride solution (2 mg) in 70% ethanol daily. Normal control mice without AGA
induction were fed 0.1% cellulose supplementation in HFD (Normal-Con). Mice in each
group consumed the designated diet for 28 days. The HFD contained 43% fat (lard and corn
oil = 10:1) and 0.5% cholesterol, and 0.1% of the designated herbal extracts or cellulose were
added into the HFD. The diets in all groups had equivalent energy and nutrient contents,
and control diets contained cellulose, which did not affect AGA symptoms, instead of PL
or PC. Food and water were provided ad libitum. Food intakes, body weights, and hair
growth statuses were measured weekly.

4.7. Assess the Degree of Hair Growth in AGA Mice

Dorsal hair growth was evaluated weekly by assessing hair growth on pictures taken
during each evaluation. Hair regrowth ratios (%) were measured blindly by two designated
trained technicians. The evaluation criteria for hair regrowth were as follows: score 0 = no
growth observed; 1 = up to 20% growth; 2 = 20–40% growth; 3 = 40–60% growth; 4 = 60–80%
growth; and 5 = 80% observed full growth [53]

At 0, 1, 2, 3, and 4 weeks, the technicians used tweezers to randomly pluck hair from
each group of mice shaved back area and pull at least 30 hairs from each mouse. The
hair length was measured using a Vernier caliper (mm). At the same time, 20 hairs were
weighed using a precision balance (Sartorius, Germany).

4.8. Blood and Tissue Collection and Serum Analysis

On experimental day 28, mice were anesthetized with a ketamine and xylazine mixture
(100 and 10 mg/kg body weight, respectively). Serum was separated from venous blood
by centrifugation at 500 rpm. Livers and epididymal fat were dissected and weighed using
a precision balance (Sartorius, Germany). Dorsal skin tissue was removed and divided into
two parts: histopathology or quick-frozen for biochemical assays. Other isolated organs
were promptly placed in liquid nitrogen and stored at −70 ◦C for biochemical experiments.

Total serum testosterone and estradiol were quantified using a Testosterone ELISA Kit
and Estradiol ELISA Kit (BD Biosciences, San Diego, CA, USA). Serum total cholesterol and
triglyceride and liver tissue triglyceride concentrations were measured using a colorimetric
kit (Asan Pharm. Co., Ltd., Seoul, Korea).
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4.9. Histopathological Analysis

The dorsal skin tissues were fixed in 10% formalin (Sigma-Aldrich, St. Loise, MO,
USA) and dehydrated using an ethanol series followed by xylene. Dehydrated back tissues
were paraffin-embedded and sectioned at 4 µm using a microtome (Leica Microsystems,
Wetzlar, Germany) [54]. Back-skin sections were hematoxylin and eosin-stained (H-E;
Sigma-Aldrich, St. Loise, MO, USA) to determine the total hair follicle numbers and their
ratio of total skin area and to measure skin thickness using I-Solution software to an optical
microscope (Axio Imager 2; Carl Zeiss AG, Oberkochen, Germany; magnification 100×).
The dermal thickness ratio was determined with the ratio of the distance between the
epidermis and the dermis to the thickness of the total skin layer.

4.10. Relative mRNA Expressions of pro-Inflammatory Cytokines, Nuclear Receptors, and Wnt
Signaling-Related Genes in Skin Tissues

Total RNA was extracted from dorsal skin tissues using Trizol Reagent (Ambion Inc.,
Austin, TX, USA), according to the manufacturer’s instructions. cDNA was synthesized
from 1 µg of total qualified RNA using the Superscript III reverse transcriptase kit (Bio-
Rad, Richmond, CA, USA). During this process, equal amounts of cDNA to total RNA
were generated. PCR was conducted using cDNA, primers of genes of interest, and a
SYBR Green mixture (Bio-Rad, Richmond, CA, USA). Using Ct values, relative mRNA
expressions of genes of interest are determined by real-time fluorescent quantitative PCR
(CFX Connect™ real-time PCR detection system; Bio-Rad Laboratories, Inc., Hercules, CA,
USA) using Ct values and the 2−∆∆Ct method [55] and β-actin as the housekeeping gene.
The primers for the PCR reaction were used as previously described [56].

4.11. Western Blot

A frozen skin sample was added into RIPA lysis buffer (1.5, w/v), and its supernatant
was collected after centrifuging at 4 ◦C at 14,000 rpm for 20 min. The amount of protein in
the supernatant was measured using the Bio-Rad protein assay kit (Bio-Rad, Hercules, CA,
USA). The lysates having protein (30–50 µg) were resolved into sodium dodecyl sulfate-
polyacrylamide gel electrophoresis as described in the previous study [57]. The amount
of the interested protein was examined with the specific antibodies as follows: protein
kinase B (PKB or Akt), phosphorylated PKBSer473, glycogen synthase kinase (GSK)-3β, and
phosphorylated GSK-3βser9. The intensity of the proteins of interest was measured using
optical densitometry (I-Solution software).

4.12. Statistical Analysis

Statistical analysis was performed using SPSS version 20.0 (IBM Corp., Armonk, NY,
USA). Results are presented as means ± standard deviations or frequency distributions.
A one-way analysis of variance (ANOVA) was used to determine the significances of
intergroup differences, and if its result was significant, Tukey’s test was used for multiple
comparisons between groups. Statistical significance was accepted for p values < 0.05.

Supplementary Materials: https://www.mdpi.com/article/10.3390/ph14111128/s1. Table S1. Ac-
tive ingredients of Paeonia lactiflora Pallas (PL) and Poria cocos Wolf (PC) from Traditional Chinese
Medicine system pharmacology database and analysis platform. Figure S1 HPLC chromatogram
of Paeonia lactiflora pallas and Poria cocos Wolf water extracts. Figure S2. Protein-protein interaction
network construction diagram for PL, PC and androgenetic alopecia (AGA).

Author Contributions: S.P. participated in making design, mentoring, supervising the study, and
revising the manuscript. T.Z. and H.Y. conducted a network pharmacology analysis. T.Z. and S.C.
performed animal and biochemical experiments. T.Z. wrote the first draft of the manuscript. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the fund from the National Research Foundation of Korea
(2019R1A2C1007203).

https://www.mdpi.com/article/10.3390/ph14111128/s1


Pharmaceuticals 2021, 14, 1128 18 of 20

Institutional Review Board Statement: Approved beforehand by the Animal Care and Use Review
Committee of Hoseo University (Asan, Korea; HSIACUC-18-230; approved on 06-01-19) and complied
with the guidelines issued by the National Institute of Health and Animal Care.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and Supplementary Materials.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
PL, Paeonia lactiflora Pallas; PC, Poria cocos Wolf; AGA, androgenetic alopecia; DKK1, dickkopf-

related protein 1; NR3C2, nuclear receptor subfamily 3 group; PPARG, peroxisome proliferator-
activated receptor-gamma; β-Catenin, catenin beta 1; TGF-β2, Tumor growth factor-beta 2; TNF-α,
tumor necrosis factor-α; IL-6, interleukin 6; CYP19A1(Aromatase), Cytochrome P450 Family 19 Sub-
family A Member 1; TGF-β2, Transforming Growth Factor-Beta 2; DHT, dihydrotestosterone; FDA,
food and drug administration; EMA, European medicines agency; TCM, traditional Chinese medicine;
TCMSP, traditional Chinese medicine systems pharmacology database and analysis platform; ADME,
absorption distribution metabolism and excretion; OB, oral bioavailability; DL, drug-likeness; PPI,
protein–protein interaction; GO, gene ontology; BW, body weight; PCR, polymerase chain reaction;
SD, standard deviation; ANOVA, a one-way analysis of variance.

References
1. Nanes, B.A. Androgenetic alopecia in COVID-19: Compared to what? J. Am. Acad. Dermatol. 2020, 83, e451. [CrossRef]
2. Zheng, Y.; Hu, Y.; Liu, K.; Lu, Y.; Hu, Y.; Zhou, X. Therapeutic effect of Impatiens balsamina, Lawsonia inermis L. and Henna on

androgenetic alopecia in mice. J. South. Med Univ. 2019, 39, 1376–1380. [CrossRef]
3. Dhariwala, M.Y.; Ravikumar, P. An overview of herbal alternatives in androgenetic alopecia. J. Cosmet. Dermatol. 2019, 18, 966–975.

[CrossRef]
4. Lolli, F.; Pallotti, F.; Rossi, A.; Fortuna, M.C.; Caro, G.; Lenzi, A.; Sansone, A.; Lombardo, F. Androgenetic alopecia: A review.

Endocrine 2017, 57, 9–17. [CrossRef]
5. Sadgrove, N.J. The ‘Bald’ Phenotype (Androgenetic Alopecia) is Caused by the High Glycaemic, High Cholesterol and Low

Mineral ‘Western Diet’. Trends Food Sci. Technol. 2021, 116, 1170–1178. [CrossRef]
6. Lee, S.W.; Juhasz, M.; Mobasher, P.; Ekelem, C.; Mesinkovska, N.A. A Systematic Review of Topical Finasteride in the Treatment

of Androgenetic Alopecia in Men and Women. J. Drugs Dermatol. 2018, 17, 457–463.
7. Mysore, V.; Shashikumar, B.M. Guidelines on the use of finasteride in androgenetic alopecia. Indian J. Dermatol. Venereol. Leprol.

2016, 82, 128–134. [CrossRef]
8. Almohanna, H.M.; Perper, M.; Tosti, A. Safety concerns when using novel medications to treat alopecia. Expert Opin. Drug Saf.

2018, 17, 1115–1128. [CrossRef]
9. Suchonwanit, P.; Iamsumang, W.; Leerunyakul, K. Topical finasteride for the treatment of male androgenetic alopecia and female

pattern hair loss: A review of the current literature. J. Dermatol. Treat. 2020, 1–6. [CrossRef]
10. Piraccini, B.M.; Blume-Peytavi, U.; Scarci, F.; Jansat, J.M.; Falqués, M.; Otero, R.; Tamarit, M.L.; Galván, J.; Tebbs, V.; Massana,

E. Efficacy and safety of topical finasteride spray solution for male androgenetic alopecia: A phase III, randomized, controlled
clinical trial. J. Eur. Acad. Dermatol. Venereol. JEADV 2021. [CrossRef] [PubMed]

11. Monti, D.; Tampucci, S.; Burgalassi, S.; Chetoni, P.; Lenzi, C.; Pirone, A.; Mailland, F. Topical formulations containing finasteride.
Part I: In vitro permeation/penetration study and in vivo pharmacokinetics in hairless rat. J. Pharm. Sci. 2014, 103, 2307–2314.
[CrossRef] [PubMed]

12. Noubarani, M.; Rostamkhani, H.; Erfan, M.; Kamalinejad, M.; Eskandari, M.R.; Babaeian, M.; Salamzadeh, J. Effect of Adiantum
Capillus veneris Linn on an Animal Model of Testosterone-Induced Hair Loss. Iran. J. Pharm. Res. IJPR 2014, 13, 113–118.
[PubMed]

13. Sadgrove, N.J. The new paradigm for androgenetic alopecia and plant-based folk remedies: 5α-reductase inhibition, reversal of
secondary microinflammation and improving insulin resistance. J. Ethnopharmacol. 2018, 227, 206–236. [CrossRef]

14. Mao, X.; Chen, W.J.; Li, Y.F.; Li, W.J.; Li, T.X.; Wang, X.Y.; Guo, M.Q.; Zhang, Y.Q.; Lin, N. An exploration into the therapeutic effects
and molecular mechanisms of paeoniflorin in the treatment of adjuvant-induced arthritis rats by a network pharmacology-based
research strategy. Acta Pharm. 2019, 54, 2000–2010.

15. Parker, S.; May, B.; Zhang, C.; Zhang, A.L.; Lu, C.; Xue, C.C. A Pharmacological Review of Bioactive Constituents of Paeonia
lactiflora Pallas and Paeonia veitchii Lynch. Phytother Res. 2016, 30, 1445–1473. [CrossRef]

16. He, D.Y.; Dai, S.M. Anti-inflammatory and immunomodulatory effects of paeonia lactiflora pall., a traditional chinese herbal
medicine. Front. Pharmacol. 2011, 2, 10. [CrossRef]

http://doi.org/10.1016/j.jaad.2020.06.1031
http://doi.org/10.12122/j.issn.1673-4254.2019.11.17
http://doi.org/10.1111/jocd.12930
http://doi.org/10.1007/s12020-017-1280-y
http://doi.org/10.1016/j.tifs.2021.06.056
http://doi.org/10.4103/0378-6323.177432
http://doi.org/10.1080/14740338.2018.1533549
http://doi.org/10.1080/09546634.2020.1782324
http://doi.org/10.1111/jdv.17738
http://www.ncbi.nlm.nih.gov/pubmed/34634163
http://doi.org/10.1002/jps.24028
http://www.ncbi.nlm.nih.gov/pubmed/24942358
http://www.ncbi.nlm.nih.gov/pubmed/24711836
http://doi.org/10.1016/j.jep.2018.09.009
http://doi.org/10.1002/ptr.5653
http://doi.org/10.3389/fphar.2011.00010


Pharmaceuticals 2021, 14, 1128 19 of 20

17. Liu, J.; Jin, D.Z.; Xiao, L.; Zhu, X.Z. Paeoniflorin attenuates chronic cerebral hypoperfusion-induced learning dysfunction and
brain damage in rats. Brain Res. 2006, 1089, 162–170. [CrossRef]

18. Jia, X.; Ma, L.; Li, P.; Chen, M.; He, C. Prospects of Poria cocos polysaccharides: Isolation process, structural features and
bioactivities. Trends Food Sci. Technol. 2016, 54, 52–62.

19. Feng, Y.L.; Lei, P.; Tian, T.; Yin, L.; Chen, D.Q.; Chen, H.; Mei, Q.; Zhao, Y.Y.; Lin, R.C. Diuretic activity of some fractions of the
epidermis of Poria cocos. J. Ethnopharmacol. 2013, 150, 1114–1118. [CrossRef]

20. Sun, S.S.; Wang, K.; Ma, K.; Bao, L.; Liu, H.W. An insoluble polysaccharide from the sclerotium of Poria cocos improves
hyperglycemia, hyperlipidemia and hepatic steatosis in ob/ob mice via modulation of gut microbiota. Chin. J. Nat. Med. 2019, 17,
3–14. [CrossRef]

21. Ríos, J.L. Chemical constituents and pharmacological properties of Poria cocos. Planta Med. 2011, 77, 681–691. [CrossRef]
22. Goren, A.; Cadegiani, F.A.; Wambier, C.G.; Vano-Galvan, S.; Tosti, A.; Shapiro, J.; Mesinkovska, N.A.; Ramos, P.M.; Sinclair, R.;

Lupi, O.; et al. Androgenetic alopecia may be associated with weaker COVID-19 T-cell immune response: An insight into a
potential COVID-19 vaccine booster. Med. Hypotheses 2021, 146, 110439. [CrossRef]

23. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems
pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [CrossRef]

24. Kim, J.H.; Na, J.; Bak, D.H.; Lee, B.C.; Lee, E.; Choi, M.J.; Ryu, C.H.; Lee, S.; Mun, S.K.; Park, B.C.; et al. Development of finasteride
polymer microspheres for systemic application in androgenic alopecia. Int. J. Mol. Med. 2019, 43, 2409–2419. [CrossRef] [PubMed]

25. Wang, Z.-D.; Feng, Y.; Ma, L.-Y.; Li, X.; Ding, W.-F.; Chen, X.-M. Hair growth promoting effect of white wax and policosanol from
white wax on the mouse model of testosterone-induced hair loss. Biomed. Pharmacother. 2017, 89, 438–446. [CrossRef] [PubMed]

26. Orăsan, M.S.; Coneac, A. Evaluation of Animal Models Suitable for Hair Research and Regeneration, Experimental Animal Models of
Human Diseases—An Effective Therapeutic Strategy; IntechOpen: London, UK, 2017.

27. Lee, S.Y.; Lee, D.J.; Kwon, K.; Lee, C.H.; Shin, H.J.; Kim, J.E.; Ha, K.T.; Jeong, H.S.; Seo, H.S. Cornu cervi pantotrichum
Pharmacopuncture Solution Facilitate Hair Growth in C57BL/6 Mice. J. Pharmacopunct. 2016, 19, 122–128. [CrossRef]

28. Gang, L.; Bo, X.; Liang, X.-Z.; Gai, S.-S.; Xia, C.-M.; Yan, B.-Z.; Li, J.-C. Study on the molecular mechanism of osteoporosis treated
by Epimedium based on network pharmacology. Chin. Pharmacol. Bull. 2018, 34, 267–273.

29. Fu, D.; Huang, J.; Li, K.; Chen, Y.; He, Y.; Sun, Y.; Guo, Y.; Du, L.; Qu, Q.; Miao, Y.; et al. Dihydrotestosterone-induced hair
regrowth inhibition by activating androgen receptor in C57BL6 mice simulates androgenetic alopecia. Biomed Pharm. 2021,
137, 111247. [CrossRef]

30. English, R.S., Jr. A hypothetical pathogenesis model for androgenic alopecia: Clarifying the dihydrotestosterone paradox and
rate-limiting recovery factors. Med. Hypotheses 2018, 111, 73–81. [CrossRef] [PubMed]

31. Truong, V.L.; Bak, M.J.; Lee, C.; Jun, M.; Jeong, W.S. Hair Regenerative Mechanisms of Red Ginseng Oil and Its Major Components
in the Testosterone-Induced Delay of Anagen Entry in C57BL/6 Mice. Molecules 2017, 22, 1505. [CrossRef]

32. Grymowicz, M.; Rudnicka, E.; Podfigurna, A.; Napierala, P.; Smolarczyk, R.; Smolarczyk, K.; Meczekalski, B. Hormonal Effects on
Hair Follicles. Int. J. Mol. Sci. 2020, 21, 5342. [CrossRef]

33. Sun, Y. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives. Int. J. Biol.
Macromol. 2014, 68, 131–134. [CrossRef] [PubMed]

34. Chang, Y.; Wei, W.; Zhang, L.; Xu, H.-M. Effects and mechanisms of total glucosides of paeony on synoviocytes activities in rat
collagen-induced arthritis. J. Ethnopharmacol. 2009, 121, 43–48. [CrossRef]

35. Ong, M.; Cheng, J.; Jin, X.; Lao, W.; Johnson, M.; Tan, Y.; Qu, X. Paeoniflorin extract reverses dexamethasone-induced testosterone
over-secretion through downregulation of cytochrome P450 17A1 expression in primary murine theca cells. J. Ethnopharmacol.
2019, 229, 97–103. [CrossRef] [PubMed]

36. Li, S.; Zhang, B.; Zhang, N. Network target for screening synergistic drug combinations with application to traditional Chinese
medicine. BMC Syst. Biol. 2011, 5, S10. [CrossRef]

37. Li, P.; Su, W. Recent progress in applying network pharmacology to research of Chinese materia medica. Chin. Tradit. Herb. Drugs
2016, 47, 2938–2942.

38. Ansari, S.; Bari, A.; Ullah, R.; Mathanmohun, M.; Veeraraghavan, V.P.; Sun, Z. Gold nanoparticles synthesized with Smilax glabra
rhizome modulates the anti-obesity parameters in high-fat diet and streptozotocin induced obese diabetes rat model. J. Photochem.
Photobiol. B Biol. 2019, 201, 111643. [CrossRef]

39. Zhao, J.; Niu, X.; Yu, J.; Xiao, X.; Li, W.; Zang, L.; Hu, Z.; Siu-Po Ip, P.; Li, W. Poria cocos polysaccharides attenuated ox-LDL-
induced inflammation and oxidative stress via ERK activated Nrf2/HO-1 signaling pathway and inhibited foam cell formation in
VSMCs. Int. Immunopharmacol. 2020, 80, 106173. [CrossRef]

40. Zhang, Y.; Xu, J.; Jing, J.; Wu, X.; Lv, Z. Serum Levels of Androgen-Associated Hormones Are Correlated with Curative Effect in
Androgenic Alopecia in Young Men. Med. Sci. Monit. 2018, 24, 7770–7777. [CrossRef] [PubMed]

41. Chen, X.; Liu, B.; Li, Y.; Han, L.; Tang, X.; Deng, W.; Lai, W.; Wan, M. Dihydrotestosterone Regulates Hair Growth Through the
Wnt/β-Catenin Pathway in C57BL/6 Mice and In Vitro Organ Culture. Front. Pharmacol. 2020, 10, 1528. [CrossRef]

42. Peyravian, N.; Deo, S.; Daunert, S.; Jimenez, J.J. The Inflammatory Aspect of Male and Female Pattern Hair Loss. J. Inflamm. Res.
2020, 13, 879–881. [CrossRef]

http://doi.org/10.1016/j.brainres.2006.02.115
http://doi.org/10.1016/j.jep.2013.10.043
http://doi.org/10.1016/S1875-5364(19)30003-2
http://doi.org/10.1055/s-0030-1270823
http://doi.org/10.1016/j.mehy.2020.110439
http://doi.org/10.1186/1758-2946-6-13
http://doi.org/10.3892/ijmm.2019.4149
http://www.ncbi.nlm.nih.gov/pubmed/30942390
http://doi.org/10.1016/j.biopha.2017.02.036
http://www.ncbi.nlm.nih.gov/pubmed/28249244
http://doi.org/10.3831/kpi.2016.19.013
http://doi.org/10.1016/j.biopha.2021.111247
http://doi.org/10.1016/j.mehy.2017.12.027
http://www.ncbi.nlm.nih.gov/pubmed/29407002
http://doi.org/10.3390/molecules22091505
http://doi.org/10.3390/ijms21155342
http://doi.org/10.1016/j.ijbiomac.2014.04.010
http://www.ncbi.nlm.nih.gov/pubmed/24751506
http://doi.org/10.1016/j.jep.2008.09.028
http://doi.org/10.1016/j.jep.2018.09.006
http://www.ncbi.nlm.nih.gov/pubmed/30195059
http://doi.org/10.1186/1752-0509-5-S1-S10
http://doi.org/10.1016/j.jphotobiol.2019.111643
http://doi.org/10.1016/j.intimp.2019.106173
http://doi.org/10.12659/MSM.913116
http://www.ncbi.nlm.nih.gov/pubmed/30376555
http://doi.org/10.3389/fphar.2019.01528
http://doi.org/10.2147/JIR.S275785


Pharmaceuticals 2021, 14, 1128 20 of 20

43. Liu, J.; Yu, J.; Peng, X. Poria cocos Polysaccharides Alleviates Chronic Nonbacterial Prostatitis by Preventing Oxidative Stress,
Regulating Hormone Production, Modifying Gut Microbiota, and Remodeling the DNA Methylome. J. Agric. Food Chem. 2020,
68, 12661–12670. [CrossRef]

44. Wang, Q.S.; Gao, T.; Cui, Y.L.; Gao, L.N.; Jiang, H.L. Comparative studies of paeoniflorin and albiflorin from Paeonia lactiflora on
anti-inflammatory activities. Pharm. Biol. 2014, 52, 1189–1195. [CrossRef] [PubMed]

45. Andy, G.; John, M.; Mirna, S.; Rachita, D.; Michael, K.; Maja, K.; Aseem, S.; Zeljana, B. Controversies in the treatment of
androgenetic alopecia: The history of finasteride. Dermatol. Ther. 2019, 32, e12647. [CrossRef]

46. Duborija-Kovacevic, N.; Jakovljevic, V.; Sabo, A.; Tomic, Z. Anti-nociceptive and anti-inflammatory properties of 5alpha-reductase
inhibitor finasteride in experimental animals. Eur. J. Drug Metab. Pharmacokinet. 2008, 33, 181–186. [CrossRef]

47. Available online: http://tcmspw.com/tcmsp.php (accessed on 4 March 2020).
48. Available online: Https://www.genecards.org/ (accessed on 31 March 2020).
49. Available online: Https://omim.org/ (accessed on 6 May 2020).
50. Available online: Https://www.malacards.org/ (accessed on 20 May 2020).
51. Available online: Https://string-db.org/ (accessed on 4 June 2020).
52. Available online: Http://www.bioconductor.org/ (accessed on 24 June 2020).
53. Zhang, B.; Zhang, R.W.; Yin, X.Q.; Lao, Z.Z.; Zhang, Z.; Wu, Q.G.; Yu, L.W.; Lai, X.P.; Wan, Y.H.; Li, G. Inhibitory activities

of some traditional Chinese herbs against testosterone 5α-reductase and effects of Cacumen platycladi on hair re-growth in
testosterone-treated mice. J. Ethnopharmacol. 2016, 177, 1–9. [CrossRef]

54. Jeong, S.Y.; Im, Y.N.; Youm, J.Y.; Lee, H.K.; Im, S.Y. l-Glutamine Attenuates DSS-Induced Colitis via Induction of MAPK
Phosphatase-1. Nutrients 2018, 10, 288. [CrossRef]

55. Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta
C(T)) Method. Methods 2001, 25, 402–408. [CrossRef]

56. Ellis, J.A.; Sinclair, R.; Harrap, S.B. Androgenetic alopecia: Pathogenesis and potential for therapy. Expert Rev. Mol. Med. 2002, 4,
1–11. [CrossRef] [PubMed]

57. Kim, D.S.; Ko, B.-S.; Ryuk, J.A.; Park, S. Tetragonia tetragonioides Protected against Memory Dysfunction by Elevating Hip-
pocampal Amyloid-β Deposition through Potentiating Insulin Signaling and Altering Gut Microbiome Composition. Int. J. Mol.
Sci. 2020, 21, 2900. [CrossRef] [PubMed]

http://doi.org/10.1021/acs.jafc.0c05943
http://doi.org/10.3109/13880209.2014.880490
http://www.ncbi.nlm.nih.gov/pubmed/24646307
http://doi.org/10.1111/dth.12647
http://doi.org/10.1007/bf03191116
http://tcmspw.com/tcmsp.php
Https://www.genecards.org/
Https://omim.org/
Https://www.malacards.org/
Https://string-db.org/
Http://www.bioconductor.org/
http://doi.org/10.1016/j.jep.2015.11.012
http://doi.org/10.3390/nu10030288
http://doi.org/10.1006/meth.2001.1262
http://doi.org/10.1017/S1462399402005112
http://www.ncbi.nlm.nih.gov/pubmed/14585162
http://doi.org/10.3390/ijms21082900
http://www.ncbi.nlm.nih.gov/pubmed/32326255

	Introduction 
	Results 
	Screening of Active Ingredients in PL and PC and Predictions of Potential Targets for AGA Treatment Using TCMSP 
	Network Topology Diagram of “Active Component-Disease-Target” for PL and PC 
	PPI Network Analysis and GO Enrichment Analysis 
	Contents of Index Compounds in PL and PC, Food and Herbal Intake, Body Weight, and Fat Weight in Mice 
	Hair Growth Status and Clinical Hair Growth Scores 
	Histopathology of Dorsal Skins 
	Serum Testosterone, 17-Estradiol, and Triglyceride Concentrations 
	mRNA Expressions of AGA-Related Genes in Dorsal Skin 
	Phosphorylation of Akt and GSK-3 in the Dorsal Skin 

	Discussion 
	Materials and methods 
	Screening PL and PC Active Ingredients as Potential Medications 
	A Network Topology Map of PL and PC Bioactive Ingredient Targets and AGA Targets 
	Protein–Protein Interaction (PPI) Network Construction and Gene Ontology (GO) Enrichment Analysis 
	Preparation of PL and PC Water Extracts and Analysis of Their Index Compounds 
	Experimental Animal Model 
	Experimental Design 
	Assess the Degree of Hair Growth in AGA Mice 
	Blood and Tissue Collection and Serum Analysis 
	Histopathological Analysis 
	Relative mRNA Expressions of pro-Inflammatory Cytokines, Nuclear Receptors, and Wnt Signaling-Related Genes in Skin Tissues 
	Western Blot 
	Statistical Analysis 

	References

