
����������
�������

Citation: Murugan, N.A.; Podobas,

A.; Vitali, E.; Gadioli, D.; Palermo, G.;

Markidis, S. A Review on Parallel

Virtual Screening Softwares for

High-Performance Computers.

Pharmaceuticals 2022, 15, 63.

https://doi.org/10.3390/ph15010063

Academic Editor: Osvaldo Andrade

Santos-Filho

Received: 21 November 2021

Accepted: 28 December 2021

Published: 4 January 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceuticals

Article

A Review on Parallel Virtual Screening Softwares for
High-Performance Computers

Natarajan Arul Murugan 1,*,† , Artur Podobas 1, Davide Gadioli 2, Emanuele Vitali 2, Gianluca Palermo 2

and Stefano Markidis 1,*

1 Department of Computer Science, School of Electrical Engineering and Computer Science,
KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; podobas@kth.se

2 Dipartimento di Elettronica, Infomazione e Bioingegneria, Politecnico di Milano, 20133 Milano, Italy;
davide.gadioli@polimi.it (D.G.); emanuele.vitali@polimi.it (E.V.); gianluca.palermo@polimi.it (G.P.)

* Correspondence: arul.murugan@iiitd.ac.in or murugan@kth.se (N.A.M.); markidis@kth.se (S.M.)
† Present address: Department of Computational Biology, Indraprastha Institute of Information Technology

(IIIT-Delhi), New Delhi 110020, India.

Abstract: Drug discovery is the most expensive, time-demanding, and challenging project in biophar-
maceutical companies which aims at the identification and optimization of lead compounds from
large-sized chemical libraries. The lead compounds should have high-affinity binding and specificity
for a target associated with a disease, and, in addition, they should have favorable pharmacody-
namic and pharmacokinetic properties (grouped as ADMET properties). Overall, drug discovery
is a multivariable optimization and can be carried out in supercomputers using a reliable scoring
function which is a measure of binding affinity or inhibition potential of the drug-like compound.
The major problem is that the number of compounds in the chemical spaces is huge, making the
computational drug discovery very demanding. However, it is cheaper and less time-consuming
when compared to experimental high-throughput screening. As the problem is to find the most stable
(global) minima for numerous protein–ligand complexes (on the order of 106 to 1012), the parallel
implementation of in silico virtual screening can be exploited to ensure drug discovery in afford-
able time. In this review, we discuss such implementations of parallelization algorithms in virtual
screening programs. The nature of different scoring functions and search algorithms are discussed,
together with a performance analysis of several docking softwares ported on high-performance
computing architectures.

Keywords: computational drug discovery; virtual screening; molecular docking; chemical space;
parallelization; high-performance computers and accelerators

1. Introduction

Drug discovery is one of the most highly challenging, time-consuming and expensive
projects in the healthcare sector. The usual time involved in bringing a drug from basic
research to market is 12–16 years, and the cost associated is about 2.5 billion dollars [1–4].
To meet one of the EU Sustainable Development Goals [5] aimed at the good health and
wellbeing for everyone, drugs should be made available to common people at an affordable
price, and the current protocols in drug development need to be redesigned to make the
discovery process economically sustainable. One of the most promising techniques to
accelerate the drug discovery process, and to make it more cost-effective, is to perform in
silico virtual screening, and to exploit the computational power of large high-performance
computing (HPC) systems.

One of the major contributing factors to the cost and time associated with the discovery
is that it has been reported [6,7] that only one in 10,000 compounds subjected to research
and development (R&D) turns out to be successful. The drug discovery involves various
steps such as target discovery, lead identification, lead optimization, ADMET (absorption,
distribution, metabolism, excretion, toxicity) properties optimization, and clinical trials [8].
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Once a valid target is known for a disease, compounds from different chemical libraries are
subjected to high-throughput screening against this target. If the number of compounds
used for screening can be narrowed down to a few hundred, the cost and time associated
with a drug discovery process can be drastically reduced. Using computational approaches,
many of the steps involved in the drug discovery projects can be made to be cost-effective
and less time-consuming. For example, in the case of protein tyrosine phosphatase-1B [9],
the experimental high-throughput screening of a chemical library with 400,000 compounds
yielded a success rate of 0.021% in identifying the ligands that can inhibit the enzyme with
IC50 values less than 100 µM. However, with the use of a preliminary screening phase using
a computational approach, the success rate turned out to be 34.8% starting from a chemical
library of 235,000 compounds.

To summarize, the experimental high-throughput screening is not suitable to deal with
modern chemical spaces as they are composed of up to billions of molecules. To solve this
problem, it is common to use computational approaches on HPC systems. In this review,
we highlight various currently available implementations of virtual screening softwares
suitable for high-performance computers. Below, we provide general introduction to virtual
screening (VS) problems and discuss the possibilities for the parallelization so that it can be
effectively implemented for computing facilities offered by HPCs.

The paper is organized as follows. Section 2 introduces the computational VS with
details on scoring functions and search algorithms. Section 2.2 presents details on the major
breakthroughs obtained in VS and Section 3 presents the main parallelization techniques
used in VS and why they target HP systems. In Section 4, we provide an overview about
the implementations of different VS softwares. Finally, we discuss the opportunities offered
by reconfigurable architectures such as FPGAs.

2. The In Silico Virtual Screening Problem

In general, the computational approaches for molecular docking have two main
components: sampling and scoring. Sampling refers to generation of various conformations
and orientations for the ligand within a target binding site (defined usually by a grid box).
Scoring refers to evaluating the binding/docking energies for various configurations of the
ligand within the binding site. The most stable configuration of the ligand is referred to as
binding pose. The VS protocol where molecular dockings are carried out for all the ligands
from a chemical library includes a third component referred to as ranking, where different
ligands are ranked with respect to their binding potential. Overall, the VS identifies the
ligand with the topmost binding affinity (which is based on the docking energies of different
ligands) for a given biomolecular target. In addition, the most stable binding mode/pose
for each of the ligands within the binding site is found (which is based on the relative
docking energies of different configurations of the same ligand). Figure 1 shows the general
workflow of computer-aided drug discovery where the VS approach is used to identify
lead compounds. It shows the steps involved in the binding pose identification of ligands
within the binding site, and the ranking of different ligands is subsequently carried out to
identify the lead compounds. Most of the VS schemes do not include the flexibility for the
target protein, and only the sampling over translational, rotational, and torsional degrees
of freedom of ligand is accounted for.
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Figure 1. Workflow for computer-aided drug discovery where the lead compounds are identified
using VS. It shows that the various configurations of the ligands within binding sites are generated us-
ing sampling, which is scored using a scoring function to identify the most stable binding mode/pose.
The docking energies of the most stable configurations of all the ligands are used in ranking them
to identify a list of lead compounds which are taken for further experimental validation. As the
sampling and scoring need to be performed for all the ligands in the chemical library, these steps are
shown within a loop.

2.1. Scoring Functions

The reliability and accuracy of the scoring functions used for screening compounds
are the most important parameters that dictate the success rate of the computational
screening approaches. The scoring functions are mostly defined to be proportional to the
binding affinity of the ligand towards a target. The scoring functions are often classified as
physics-based, knowledge-based, and empirical.

(i) Physics-based (also referred to as force-field based) scoring functions are based on
the binding free energies which are the sum of various interactions between protein–
ligand subsystems such as van der Waals, electrostatic, hydrogen bonding, solvation
energy, and entropic contributions.

(ii) The knowledge-based scoring functions are based on the available protein–ligand com-
plex structural data from which the distributions of different atom–atom pairwise
contacts are estimated. The frequency of appearance of different pairwise contacts
are used to compute potential mean force which is used for ranking protein–ligand
complexes.

(iii) Finally, the empirical scoring functions, as the name implies, are based on empirical fit-
ting of binding affinity data to potential functions whose weights are computed using
a reference test system. Modern scoring functions mainly fall into this class, including
the machine learning-based approaches built based on the available information on
the protein–ligand 3D structures and inhibition/dissociation constants [10].

As discussed above, there are different scoring functions developed, and this section
mainly focuses on implementations available in open-source softwares such as Dock [11],
Autodock4.0 [12,13], Autodock Vina [14,15], and Gnina [16]. The docking energy defined
to rank protein–ligand complexes (s f ) in Autodock4.0 is classified as physics-based and
is defined as the sum of van der Waals, electrostatic, hydrogen bonding, and desolvation
energy, as shown in Equation (1).

s f = Wvdw ∑
i,j
(

Aij

r12
ij

−
Bij

r6
ij
) + WHB ∑

i,j
(

Cij

r12
ij
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In addition, the entropic contribution which is proportional to number of rotatable
bonds is also added to the docking energy. In the equation, rij refers to the distance between
the two atoms, i and j, centered on protein and ligand subsystems. Similarly, qi and qj
refer to charges on these atoms. Aij and Bij are the coefficients of the potential energy
functions describing van der Waals interaction. Cij and Dij are the coefficients of the
potential energy functions describing hydrogen bonding interaction. The terms Si and Vi
refer to the solvation parameter and fragmental volume of atom i, respectively.

Because the protein–ligand complexes are considered to be in an aqueous environment,
the binding free energies need to account for this, and solvation energy adds the binding
free energy differences due to vacuum to aqueous-like environments. In particular, the last
term in the equation accounts for this solvation effect (refer to Equation (1)).

In general, the entropic contributions can be due to translational, rotational, and
torsional degrees of freedom. However, the docking energies implemented in the afore-
mentioned molecular docking softwares only account for the contributions due to torsional
degrees of freedom. The contributions due to other degrees of freedom are assumed to be
negligible in ranking different ligands. It is worth noting that certain free energy calculation
tools such as MMPBSA.py estimate the entropic contributions due to all degrees of freedom
based on normal mode analysis [17]. The entropic contributions due to torsional degrees
of freedoms in molecular docking softwares are oversimplified and they are estimated
from the number of rotatable bonds (each bond contributes with 0.2–0.5 kcal/mol) [18]. In
the case of Autodock Vina, the scoring function can be majorly classified as empirical in
nature and it is a sum of various distance-dependent pairwise interactions [14]. It includes
terms for describing steric, hydrophobic, and hydrogen bond interactions. The values for
different parameters and weights for different terms of potential functions were obtained
from nonlinear regression of the PDBbind 2007 dataset. In other words, the empirical
scoring functions can have the same mathematical expression as in Equation (1), but the
weights/coefficients for different types of interactions are obtained from fitting to exper-
imental binding potentials. The knowledge-based scoring functions [19] (s f kb) have the
following form:

s fkb =
L

∑
i

R

∑
j
−kBTln[g(rij)] (2)

Here, the summation runs over the ligand and receptor atoms, and g(rij) refers to the rel-
ative probability distribution of distances of a specific types of protein–ligand atom pairs in
the docked complex structure when compared to reference experimental complex structure.

Recently, deep learning networks have been proposed to provide scoring functions.
For instance, Gnina uses convolutional neural network (CNN)-based scoring function to
rank the protein–ligand complexes [16]. The neural networks were trained using three-
dimensional protein–ligand complex structures from the PDBbind database. In particular,
the dataset contained two sets of poses for the ligands within the binding site. The group of
positive poses had root mean square deviation (RMSD) value below 2 Å, when compared
to the crystallographic poses, while the rest were considered as a group of negative poses.
Here, RMSD is the root mean square deviation in atomic positions in the predicted pose
when compared to reference pose, as in the crystal structure. The positive and negative
poses were generated using the experimental protein–ligand three-dimensional structures
by adopting a random conformation generation algorithm. The CNN model was trained
using the 4D grid (which was constructed using the protein–ligand coordinates within the
grid box and atom types) to classify the poses.
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2.2. Search Algorithms

The search algorithms aim at finding the protein–ligand structure corresponding to the
global minimum in a potential energy surface. However, this is a very challenging problem
and many search algorithms end up in a local minima. Therefore, molecular docking
software uses several techniques, such as deterministic search [20], genetic algorithm,
Monte Carlo with simulated annealing [21], particle swarm optimization [22], or Broyden–
Fletcher–Goldfarb–Shanno (BFGS) [14]. Deterministic approaches apply techniques such
as gradient descent, and they focus on a reproducible sequence of pose evaluations. Monte
Carlo algorithms generate numerous poses by using random values for translational,
rotational, and torsional degrees of freedom of the ligand. In Monte Carlo-simulated
annealing, the heating step allows the system to escape from the local minimum (during
which it can sample high-energy regions of the potential energy surface). In genetic
algorithms, each pose is defined by a vector of genes that correspond to translational,
rotational, and torsional degrees of freedom. By varying these values in the genes, new
poses can be generated. The fitness function aims at finding the minimum energy of
the pose.

2.3. Validation of Molecular Docking Approaches

As discussed above, molecular docking approaches employ different types of scoring
functions, and before implementation they were validated rigorously against available
experimental data. In particular, two properties obtained from molecular docking can be
considered in general for benchmarking:

(i) RMSD computed for the predicted binding pose against the crystallographic pose
obtained experimentally.

(ii) Binding free energies/docking energies which are proportional to experimental inhi-
bition/dissociation constants.

The RMSD in the above list is computed from the experimental and predicted protein–
ligand complex structures and provides an estimate of how well the molecular docking
software is capable of producing the most stable binding mode and binding pose of the
ligand within the target biomolecule. An RMSD value of <2 Å is considered as a threshold
value for the correct prediction of complex structures [23].

A benchmark study using Autodock4.0 and Autodock Vina on the complex structures
(190 in number) from PDBbind showed that the latter could predict structures within
the threshold value (i.e., <2 Å) for about 78% complexes while the former one achieved
42% [14]. A recent study compared the performance of Autodock4.0 and Autodock Vina
in discriminating the active compounds and decoys using a dataset of 102 protein tar-
gets, 22,432 active compounds, and 1,380,513 decoy molecules [24], The study showed
that Autodock4.0 was better in discriminating actives and decoys in the targets having
hydrophobic binding sites, while the Autodock Vina’s performance was better for those
targets having binding sites with polar and charged residues [24]. There are other studies
reported in the literature which compared the performance of various molecular docking
softwares such as AutoDock, DOCK, FlexX, GOLD, and ICM, and the ICM turned out to be
the superior performer, with structures predicted for 93% complexes within the acceptable
accuracy [23].

The other set of quantities used for benchmarking the molecular docking approaches
are the inhibition constants, dissociation constants, IC50 and pIC50, which are available from
experimental binding assay studies. All these quantities refer to the binding potential or
inhibiting potential of ligands to a specific biomolecular target. The dissociation constants
and binding free energies are related to each other through the following equation:

∆G = RTlnKd (3)
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where R is the gas constant (equal to 1.987 cal K−1 mol−1) and T refers to temperature
(set to 298.15 K). Thanks to this equation, the computed docking energies can be directly
validated using the experimental binding assay results.

2.4. Computational Cost Associated with Virtual Screening

In a computational drug discovery project, high-affinity lead compounds against
a target biomolecule (can be an enzyme, membrane protein, DNA, RNA, Quadruplex,
membrane, or fibril aggregates) are identified using a reliable scoring function. One can
identify lead compounds for a target from various chemical spaces. The popular chemical
spaces are ZINC, Cambridge, Chemspider, ChEMBL, Pubchem, Pubmed, DrugBank, TCM,
IMPPAT, and GDB13-17. Refer to Table 1 for a list of different chemical libraries with their
properties [25]. The estimate for the size of chemical space for carbon-based compounds
with molecular mass <500 daltons is 1060, which clearly indicates that there are limitless
possibilities for designing a therapeutic compound. As can be seen, even the use of the top
supercomputers with exascale computing speed (which can perform 1018 floating point
operations per second running the high-performance Linpack benchmark) for screening
these compounds will take a universal lifetime. Therefore, it is reasonable to use certain
filters to reduce the number of compounds before subjecting to screening. Recently, a
filtering procedure based on Bayesian optimization algorithm, referred to as MolPAL, was
used to identify the top 50% compounds by developing a model with data of explicit
screening of less than 5% compounds of the chemical space [26].

Otherwise, it is reasonable to use other chemical libraries having compounds that
are easy to synthesize and having favourable pharmacokinetic (ADMET) properties. The
chemical library with the largest number of compounds is GDB17, which contains 166 bil-
lion organic molecules made of just 17 atoms of C, O, N, S and halogens [27]. Most of the
drug discovery applications use the DrugBank database, Enamine database, ZINC15, [28],
and Cambridge, and the number of compounds in these chemical libraries are listed in
Table 1. As can be seen, the compounds range from tens of thousands to billions, and the
computational cost associated with screening is enormous, which requires use of the HPCs
and accelerators.

To demonstrate the computational demand associated with virtual screening, we
describe an application below. In the case of the AmpC target, Lyu et al. docked 99 million
molecules. For each compound, 4000 orientations on average were generated. Further,
for each orientation, about 280 conformations were generated [29]. Therefore, for each
ligand, 1.1 M docking energy calculations were carried out, and given that the number
of compounds considered were 99 M, a total of 1013 of such calculations were carried out.
This will be further increased in the flexible receptor docking where the sampling over
side-chain conformations of residues needs to be accounted for [29]. As can be seen, the
computational demand is really huge with such virtual screening applications, and so it is
inevitable to develop parallel algorithms and to use HPCs to accomplish such screenings
within affordable time.

Table 1. Top chemical spaces available for VS.

Chemical Library NO of Compounds Features

Virtual compounds 1060 Molecular mass ≤ 500 daltons
GDB17 [25] 166 B 17 heavy atoms of type C, O, N, S and halogens
REAL DB (Enamine) [30] 1.95 B Synthesizeable compounds M ≤ 500, Slogd ≤ 5, HB ≤ 10, HB ≤ 5

rotatable bond ≤ 10, and TPS ≤ 140
ZINC15 [28] 980 M Synthesizable, available in ready-to-dock format
Pubchem [31] 90 M Literature-derived bioactive compounds
Chemspider [32] 63 M Curated database with chemical structure and physicochemical properties
ChEMBL [33] 2 M Manually-curated drug-like bioactive molecules
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3. Milestones in Virtual Screening

The first virtual screening using 3D structures of chemical compounds was carried out
in 1990 against the target, dopamine D2 agonists based on which agonist with pKi 6.8 was
successfully found [34]. A similar search against other targets, such as alpha-amylase, ther-
molysin, and HIV-I protease, yielded inhibitors with significant inhibition potential [34,35].
The top compounds obtained from screening were found to be potential inhibitors, and with
further optimization of the lead compounds, the inhibition potential increased considerably.
With the use of more accurate scoring functions and large-sized chemical libraries and
powerful computers, the computer-aided drug discovery can become a potential route to
narrow down the search space before subjecting to experimental high-throughput screening.
Thanks to the currently available Petaflop/s computing facilities, one can screen a billion
compounds in a day. The latest record on the high-speed virtual screening is reported by
Jens Claser et al. [36], where the authors screened a billion compounds within 21 h.

The number of compounds screened against various targets keeps increasing with
time. As the chance for a compound with better binding affinity increases with size of the
chemical library, such screening procedures result in identifying highly potent compounds.
We here list a few example cases (refer to Table 2): The screening study by J. Lyu et al. [29]
yielded an active compound (339204163), which had 20 times more potency than the known
inhibitors for AmpC target. The most potent inhibitor for the same target was designed
by the same research group by optimizing the lead compound (the end compound was
referred to as 549719643). Similarly, 10-fold more potent agonists (465129598, 270269326,
and 464771011) were identified for the D4 receptor [29]. The most potent compound
with 180 pM binding affinity, 621433144, for the same target has been identified by the
same group. Using the multistage docking workflow, referred to as Virtual Flow for
Virtual Screening (VFVS) (where different docking softwares such as Quickvina2, Smina
vinardo, and Autodock Vina were used in sequence), the inhibitors for KEAP1 target were
recently identified from the chemical space of 1.4 billion compounds (made of Enamine Real
database and ZINC15) [37]. The first round of scoring was carried out using Quickvina2,
while the rescoring was carried out for the top 3 million compounds using Smina vinardo
and Autodock Vina. An inhibitor, iKEAP1 with dissociation constant 114 nM, was identified
which is shown to interrupt the interaction between the KEAP1 and transcription factor
NRF2 [37].

Thanks to parallel implementations of molecular docking software, not only has the
number of compounds used for screening increased drastically, but the time required to
accomplish the high-throughput screening has also reduced considerably. The inhibitors
for the targets Purine Nucleoside Phosphorylase and Heat Shock Protein 90 were iden-
tified from the REAL enamine database (1.4 B compounds) using CPU-enabled Orion
software [38]. The recent screening of compounds from Enamine database against the
enzyme targets from SARS-CoV-2 was carried out in 21 h instead of 43 days with the use
of parallel implementation of Autodock4.0 (referred to as Autodock-GPU) on the Summit
supercomputer [39,40]. Currently, the largest experiment ever run was achieved using the
EXSCALATE platform based on LIGEN software. It virtual-screened a library of 71.6 B
compounds against 15 docking sites of 12 viral proteins of SARS-CoV-2. The experiment
was carried out on the CINECA-Marconi100 and ENI-HPC5 supercomputers, and it lasted
60 h [41], performing more than 1 trillion docking evaluations overall. A list of megadock-
ing and gigadocking screening calculations on large-sized chemical libraries is presented in
Table 2.
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Table 2. Topmost mega or gigadocking applications reported in the literature.

NO Year Target No of Compounds Docking Tool

1 2019 enzyme AmpC 99 M Dock3.7
2 2019 D4 dopamine receptor 138 M Dock3.7
3 2019 Purine Nucleoside Phosphorylase 1.43 B Orion
4 2019 Heat Shock Protein 90 1.43 B Orion
5 2020 KEAP1 1.4 B Quickvina2
6 2021 Mpro 1.37 B Autodock-GPU
7 2021 12 SARS-CoV-2 Proteins 71.6 B LiGen

4. High-Performance Computing

Molecular docking for a single chemical compound involves sampling and scoring.
This refers to sampling over the configurational phase space for the compound in the target
binding site and computing the scoring functions for each of these configurations generated.
In the case of virtual screening, compounds from a chemical library are ranked against
a single target with respect to their binding affinities, and this additional component
is referred to as ranking (refer to Figure 1). As discussed in the previous section, this
is computationally very demanding and can highly benefit from the use of the parallel
algorithms which can run on high-performance computers with different (shared memory
and/or distributed) architectures [42,43]. Nowadays, the massively parallel computing
units, referred as graphical processing units (GPUs) and field programmable gate arrays
(FPGAs), are accessible to research groups or even individuals, and with the development
of parallel virtual screening software, drug discovery projects can be offloaded to such
groups, making the drug discovery economically sustainable. Below, we highlight the
opportunities for the parallelization of VS protocol.

4.1. Parallelization Strategies of Virtual Screening for High-Performance Computers

As we discussed above, the virtual screening involves three key steps:

(i) Sampling over configurational phase space of ligands within the binding site.
(ii) Estimating the scoring function for each of the configurations of the chemical com-

pound within the target binding site to identify the most stable binding mode/pose.
(iii) Ranking of compounds with respect to their relative binding potentials.

Each of these key steps can be parallelized, as the computations can be carried
out independently.

The estimate of scoring function for each binding mode/pose within the protein
binding site involves the computation of docking energies or binding free energies or any
other empirical potentials. We need to find the most stable binding mode for each of the
ligands in the target binding site (which corresponds to a global minimum in the protein–
ligand potential energy surface). Therefore, for each ligand, millions of configurations (each
configuration is a point in the ligand configurational phase space) are generated and the
scoring functions are estimated for these structures. As discussed above, the configurations
can be generated by changing the translational, rotational, or torsional degrees of freedom.
These changes can be performed with a deterministic methodology or by using random-
driven approaches such as Monte Carlo simulations or genetic algorithms. The estimate of
energies for each of these configurations can be carried out independently; these can be
distributed to different computing units.

In the virtual screening, the aforementioned procedure is repeated for all the ligands
in the chemical library, and even this can be carried out independently, and so can be
distributed to different computing units. Finally, even the calculation of the energy of a
single conformation can be parallelized, as it needs to estimate the interactions of all the
ligand–protein atoms couples. Overall, the parallelization of the virtual screening approach
can be implemented in the following three steps, as we also show in Figure 2.

(i) Low-level parallelization (LLP): Parallelizing the energy calculation.
(ii) Mid-level parallelization (MLP): Parallelizing the conformer evaluations and scoring.
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(iii) High-level parallelization (HLP): Parallelizing the ligands evaluations on different
computing units.

These three different levels have different efficiencies, as the amount of data transfer
between the computing units is very different and may become a strong overhead. More-
over, it is also possible to combine more of these strategies in a single application to address
different level of parallelism available (such as, for example, HLP for multi-node and MLP
for multi-core architectures). The low-level parallelism approach is, however, usually not
appealing, since the computed docking energies for different docking poses need to be
compared, and this involves frequent data transfer between different computing units. The
docking energy calculation involves summation over the pairwise interactions of the atoms
centered on protein and ligand subsystems. In case of flexible targets, the intramolecular
energies also need to be computed, which is obtained from a double summation over the
number of atoms in the target. The non-bonded interaction calculation (sum of electrostatic
and van der Waals) is the most time-consuming part of the energy calculation (by 80%) [42].
Stone et al. showed a 100-times speed-up for the non-bonded energy calculation using
GPUs, while Harvey et al. showed 200-times increased performance [44,45]. A more sophis-
ticated algorithm which effectively distributed the tasks to CPUs and GPUs for computing
non-bonded interactions was developed by Gine’s D. Guerrero et al. [46]. In this case, each
atom of the receptor was assigned to a single thread in GPUs, which handle computing its
interaction with all the ligand atoms [46]. Each thread was provided with necessary ligand
and receptor atom coordinates and charges. The speed-up due to this algorithm was up to
280 times.

The parallelization of scoring function calculation is the most problematic approach,
as it requires to sum all the atom contributions that are evaluated by different compute
units (see Figure 2). This introduces frequent small data transfers that may be limiting the
scaling behavior For this reason, the other two techniques are the most used in parallelizing
VS software. Indeed, computing the energy for different configurations of the ligand can
be carried out independently. Similarly, finding the global minimum structure for each of
the ligands as well can be carried out independently. Each molecular docking step involves
generation of millions of configurations, and the scoring functions for all the conformers
can be calculated independently by assigning the tasks to different computing units. The
energies for conformers can be gathered and checked for the least energy configuration
corresponding to global minimum in the protein–ligand free energy surface.

Figure 2. Various parallelization opportunities in virtual screening. The terms nlig, nconf, nlig_atoms,
and nprot_atoms refer to number of ligands in a chemical library, number of configurations (specific
to each ligand and dictated by number of rotatable bonds), number of ligand atoms, and number of
protein atoms, respectively.

4.2. HPCs and Accelerator Technology as Problem Solvers

Parallel computing architectures can be classified based on the memory availability to
computing units:

(i) In the shared memory architectures, a set of processors use the same memory segment.
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(ii) In the case of distributed memory architectures, each computing unit has its own memory.

In general, a high-performance computing environment is usually made of both
architectures where the shared-memory multi-core CPUs are connected through high-
performance network connections. The memory in different nodes are local and are
available to those cores within the specific node. The parallel execution of tasks in a shared
memory architecture can be achieved by compiler directives such as OpenMP pragmas or
libraries such as pthreads.

On the other hand, the parallel implementation of tasks in distributed memory archi-
tectures requires to handle the communication manually, using libraries such as Message
Passing Interface (MPI) between different nodes of the machine.

As most of the supercomputers have both shared memory behavior (on a single node)
and distributed memory behavior, as they are multi-node machines, it is easy to see the
usage of both programming libraries for parallelizing the VS. In addition to multiple CPUs,
recent HPCs also are integrated with accelerators such as graphical processing units, which
have their own memory unit. The programming languages for CPU+GPU supercomputers
are CUDA, OpenACC, and OpenCL. To use the accelerators, it is mandatory to move the
data between the host and the device memory, which means that the developer needs to
copy the data on the device before performing the computation and the result from the
device after the computation is done. In addition, the tasks distribution to GPU cores and
synchronization of the task execution in CPU and GPUs are achieved.

In virtual screening, the docking of different ligands can be carried out independently
from each other. The procedure can be effectively parallelized on supercomputers with
thousands of multiprocessor nodes, as well as in multi-CPU+GPU computers. As discussed
above, there are different possibilities for running the virtual screening in HPCs. The
molecular docking procedure for each ligand can be parallelized by distributing the docking
energy calculations for different conformers of the ligand in a target binding site. In this case,
the receptor coordinates and ligand coordinates and their charges need to be provided to
all computing units (i.e., server nodes or GPU cards). In the second scenario, the molecular
docking workload for different ligands is distributed to different computing units. In this
case, the receptor coordinates and charges should be made available to all the computing
units, while the ligand coordinates can be made available to the specific computing unit
handling this specific ligand. The main disadvantage in this way of distributing tasks is
that the ligands can have different sizes and so a rank assigned with the smaller sized
ligand completes the task and waits until the molecular docking procedure is completed
for all the ligands in different ranks to accept the tasks of second-round screening. This
way, the computing time in this specific node is wasted. Thus, it is usually recommended
to sort the ligands in terms of their size, and then the distribution of ligands can be carried
out from the list. In this way, all the ranks will have more-or-less equivalent-sized tasks,
and the wall time in different ranks is efficiently used. The next section provides an
overview of the different software targeting HPC systems, also highlighting the type of
parallelization employed.

5. Current Implementation of VS Available for Workstations, Accelerators, and HPCs

Currently, there are many parallel implementations for performing virtual screening
in multicore machines, clusters, and accelerators. As discussed above, different strategies
were adopted for parallel virtual screening. Only a few virtual screening softwares, such as
Flexscreen, use the parallel implementation of docking energy calculation. The remaining
perform the parallelization by distributing the conformational sampling/scoring or the
ligands ranking segments over different computing units.

Table 3 shows a comparison of the analyzed software under some key features. As we
can notice, most of the available softwares have the possibility to scale on multiple nodes,
thus are able to exploit the whole HPC machine. All of them are able to fully utilize a
node, while only a few have the support for the GPU acceleration. Moreover, as we already
anticipated, all of them use an MLP (parallel conformational search) or HLP (parallel ligand
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evaluations) or both strategies to parallelize the computation, while none of them uses a
low-level parallelism (parallel energy evaluations).

We now analyze, one by one, more in detail, these softwares: we focus on their per-
formance in massively parallel architectures and accelerators when compared to CPU
implementation. Wherever possible, the accuracy of the docking results (in terms of re-
producing the experimental protein–ligand complex structure and experimental inhibition
constants) will be discussed.

Table 3. Different parallel virtual screening softwares and important features.

Software Parallelization Segment Programming Language Scoring Function Minimization Multi Thread Multi Node GPU

Dock 5,6 Conformational search C++, C, Fortran77, MPI Physics-based and hybrid Monte Carlo Yes Yes No

DOVIS2.0 Ligand screening C++, Perl, Python Physics-based Monte Carlo&GA Yes Yes No

Autodock Vina Conformational search C++, OpenMP Hybrid Monte Carlo Yes No No
VSDocker Ligand screening C++, Perl, Python Physics-based Monte Carlo&GA Yes Yes No

MPAD4 Ligand screening, Conformational search C++, MPI, OpenMP Physics-based Lamarckian GA Yes Yes No
VinaLC Ligand screening, Conformational search C++, MPI, OpenMP Hybrid Monte Carlo Yes Yes No
VinaMPI Ligand screening, Conformational search C++, MPI, OpenMP Hybrid Monte Carlo Yes Yes No
Ligen Docker-HT Ligand screening, Conformational search C++, MPI, CUDA Empirical Deterministic Yes Yes Yes
GeauxDock Ligand screening, Conformational search C++, OpenMP, CUDA Physics- and knowledge-based Monte Carlo Yes Yes Yes
POAP Ligand screening bash Same as parent docking software Same as parent Docking software Yes Yes No
GNINA Conformational search C++ Empirical and CNN ML Monte Carlo Yes Yes Yes
Autodock-GPU Ligand screening C++ and OpenCL Physics-based MC/ LGA Yes No Yes

5.1. Dock5,6

Dock5 and 6 [47,48] are the parallel implementations of virtual screening program
written in C++ with MPI libraries. They are based on the original version referred to as
Dock1, which was developed by Kuntz and coworkers [11]. The Dock1 used a geometric
shape-matching approach for identifying the lead compounds for a given protein target.
The subsequent versions adopted physics-based scoring functions for ranking and had
improvement over the thoroughness of sampling and accounted for the ligand flexibility.
The recent version allowed using multiple scoring functions where the solvation ener-
gies are computed using different implicit models, such as Zou GB/SA [49], Hawkins
GB/SA [50], PB/SA [51], and generalized solvent models as implemented in Amber16.
The benchmarking study to evaluate the performance of recent Dock6 (V6.7) used SB2012
dataset [52] which is a collection of crystallographic structures for about 1043 receptor–
ligand complexes. It was able to reproduce the crystallographic poses in this dataset to an
extent of 73.3% (i.e., RMSD between the experimental and predicted binding poses was
<2 Å), which is due to reduction in the sampling failure of previous Dock versions. There
is also a report in the literature on the offloading of Dock6 to CPU+GPU architectures using
CUDA [53]. Only the ranking using amber scoring was offloaded to GPU architectures. In
this offloading, the coordinates, gradients, and velocities are copied to host (CPU) memory
to device (GPU) memory and the results are copied back from GPU to CPU memory. As
the GPU could only handle single-precision numbers, the original data in double-precision
were converted to single-precision numbers before transfer. Overall, the study reported
about a 6.5-speedup for the amber scoring in Dock6 in GPU (NVIDIA GeForce 9800 GT)
when compared to AMD dual-core CPU [53].

5.2. DOVIS2.0 VSDocker2.0

Both these parallel VS softwares use Autodock4.0 as docking engine. The former one
has been developed for the multi-CPU systems with Linux operating system (OS), while
the latter one is for parallel computer system running with MS Windows OS. DOVIS2.0 [54]
uses multithreading, SSH, and batch system for parallelization, while C++ library, Perl, and
Python are used for ligand format conversion, virtual screening workflow, and receptor
grid files preparation, respectively. Instead of preparing the receptor grid files for each
ligand, the program reuses them, and so the I/O file operation is reduced drastically. As
the program employs dynamic job controlling, the load balancing due to different size
of the ligands is effectively handled. Once the docking of block of ligands assigned to
a CPU is completed, the results are written to project directory. Subsequently, the CPU
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requests for newer assignment for screening. This way, the CPUs are continuously in action
until all the ligands are ranked and the results are written to shared directory. During
a virtual screening for 2.3 M ligands from ZINC database on 256 CPUs, the DOVIS2.0
achieved a ranking speed of 670 ligands/CPU/day. The VSDocker program is developed
to carry parallel virtual screening in both multiprocessor computing clusters and work
stations running MS windows OS. The program is written in C++ and parallel library
mpi.h [55]. In this VS implementation, the receptor map file generation and analysis of
docking results for different ligands are carried out sequentially while the docking of
different ligands are carried out in parallel. The performance of VSDocker has been tested
using a chemical library of 86,775 ligands from ZINC database against a target made of
145 amino acids. The speed-up was comparable to that of DOVIS2.0, which is similar to
VSDocker in implementation, but is suited for Linux running computer clusters.

5.3. Autodock Vina

Autodock4.0 is the most widely used molecular docking software based on physics-
based scored function, but the original version is sequential in nature. However, the
Autodock Vina, which is also from the same developers at Scripps Institute, can use multiple
cores simultaneously for carrying out the docking. The calculations can be executed with
single-threaded or multithreading options. The implementation uses C++ with Boost thread
libraries. In the multithreading version, mutiple Monte Carlo simulations are initiated
with different random number seed to explore different areas of conformational space
of the ligand within the binding site. In a benchmarking study, for the same protein–
ligand complex, the Autodock Vina [14] with single thread ran 62 times faster than the
Autodock4.0. Further, running Autodock Vina with multithreading option in eight CPU
machines yielded a 7.3-times-faster (when compared to single-threaded option) completion
of molecular docking. The performance of single-threaded Autodock Vina compared
to Autodock should be attributed to the difference in the computational cost of scoring
functions. The more than 7-times speed-up with multithreading option in an eight-core
machine shows that the molecular docking calculation scales well with the number of
cores. Autodock Vina relies on OpenMP for distributing tasks to different threads and so
is suitable for workstations with multiple cores. However, for the supercomputers with
distributed memory, this version of Autodock Vina is not suitable, and rather more robust
programs that allow the data transfer and communication between different nodes need
to be used. It is also worth mentioning that there are updated versions of Autodock Vina,
namely, Qvina 1 and Qvina 2, which showed some speedup due to the improvement in
local search algorithm. SMINA [56] is a fork of Autodock Vina with a number of additional
features such as user-specified scoring function, creating grid box for docking based on
the coordinates of ligand bound to target, improved minimization, feasibility to include
residues for flexible docking, and possibility to print more than 20 poses. In terms of
speed-up in HPCs, this did not contribute to any improvement.

5.4. MPAD4

MPAD4 [57] is a parallel implementation of Autodock4.0, and the important features
when compared to parent code are listed as follows: (i) It uses MPI to distribute docking jobs
across the cluster; (ii) The grid maps generated for receptor are reused for all the docking
calculations while in the default version, and these files are generated for each ligand
docking with the target receptor and loaded into memory and released at the completion
of docking. In MPAD4, The maps are loaded into memory of the node at the beginning of
tasks and are used for all remaining docking calculations. This greatly reduces I/O usage,
contributing to speed-up in the performance; (iii) The OpenMP is used for the node-level
parallelization in executing the LGA for finding the global minimum. Overall, it allows
system-level and node-level parallelization. The performance analysis of MPI version
and MPI+OpenMP version can be studied by setting OMP to 1 and 4, respectively. The
computers used for the initial performance analysis were IBM Blue gene/P and shared-
memory 32-core POWER7 p755 server. The dataset used for performance analysis was
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HIV protease target and 9000 compounds from a druglike subset of ZINC8 database
(which has 34,481 ligands in total). The performance analysis in Blue gene/P with 2048
(8192) node (core) showed that grid map reuse has reduced single-threaded execution
time by 17.5%. Multithreaded execution of the code yielded 25% improvement in the
overall performance. The execution of the code on nodes ranging from 512–4096 showed
near-linear scaling behavior for symmetric multiprocessing (SMP) mode (OMP = 4). In
particular, for 16,384 core system, the speed gained was 92% compared to that of the ideal
case. The virtual node (VN) mode (OMP = 1) with the grid map “reuse” option showed,
however, 72% speed-up when compared to the ideal case. The gain in the performance
of SMP mode should be attributed to multithreading. The node utilization can be further
improved with the use of preordering ligands with decreasing number of torsional angles.

5.5. VinaLC

VinaLC [58] is an Autodock Vina extension to use MPI library for parallelization in
large supercomputers. This implementation is very similar to VinaMPI (which is described
below) and uses MPI and multithreading hybrid scheme for parallelization across nodes
and within node, respectively. The computational cost of each docking calculation depends
on the size of the ligand, receptors, and the grid box. If the calculations are distributed
on all MPI processes due to this uneven size of the input systems, there can be MPI load
imbalance where the processes are waiting for other processes to complete the task. This
load imbalance is tackled effectively by the master–slave MPI scheme where the master
process handles the inputs, and outputs job allocation to the slave processes. The tasks in
the master slaves are handled by three loops: (i) the first loop is over each combination
of receptor–target ligand which assigns docking task to a free slave; (ii) The second loop
collects the docking results from slave processes and the new tasks are assigned in case of
unfinished calculations; (iii) The third loop frees the slave processes. In the slave processes,
an infinite whole loop is initiated which ends when the “job finished” signal is received
from the master. The ideal slave processes are identified from the MPI_ANY_source tag
and docking tasks are assigned upon the completion of previous task. In this way, the
computing resources available in different processes are utilized efficiently. To make the
communication effective, all the inputs needed for a single docking calculation are sent by
single MPI_Send call. Therefore, coordinates of the receptor and ligand and grids (which
are computed on the fly in the master process) are sent to the slave process. The outputs
from the slave processes are collected by the master process into a few files instead of
generating file for each ligands (which will generate a million or billion files depending
upon the size of the chemical library). The benchmarking study was carried out using the
two datasets, namely ZINC and DUD (directory of useful decoys). The target was chosen
as Thermus thermophilus gyrase B ATP-binding domain. The benchmarking calculations
were carried out on HPC machines at Lawrence Livermore National Laboratory, and the
number of cores used were in the range 600–15,408. The study showed that the average
CPU time per docking was closer to ideal average CPU time. The VinaLC was shown to
scale well up to 15 K cores. The percentage of I/O activity was reported to be negligible
when compared to the total computing time. For aforementioned target using 15 K cores,
VinaLC could screen about one million compounds from Zinc15 database in 1.4 h. This can
be extrapolated to 17 million compounds per day which suggests the suitability of VinaLC
for the most time-taking mega- or gigadocking screening applications.

5.6. VINAMPI

VinaMPI is another implementation of Autodock Vina for distributed computing
architectures [59]. It is written in C and for communication between the nodes, it uses
MPI libraries. In order to avoid poor scaling behavior of the parent-child (or master-
slave) distribution scheme in massively parallel supercomputers, this implementation uses
all-worker scheme. It is worth recalling that rather VinaLC used Master-slave scheme
for distributing tasks. In this code, each worker (or each MPI rank) deals with its own
protein-ligand complex and within each rank the computation (related to search of global
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minimum) is carried out using multithreading. Due to this reason it is also suitable for
the virtual screening for more than one targets. Further the computations are sorted
out in terms of complexity so that the work loads at a given round of screening can
be distributed equivalently. The computational complexity is measured based on the
number of rotatable bonds and size of the ligands which is used to sort the tasks in the
beginning of the screening. As a benchmark, the dockings were carried out for targets
namely ACE (angiotensin-converting enzyme), ER AGONIST (estrogen receptor agonist),
VEGFR2 (vascular endothelial growth factor receptor kinase), and PARP (poly(ADP-ribose)
polymerase) with a chemical library of 98,164 compounds (comprised of ligands and
decoys). Running this screening in a 516 cores supercomputer costed about 103 s [59]. It is
expected that the same implementation in a supercomputer with 0.3 M cores can be used
to screen 250 M compounds in 24 h.

5.7. LiGen Docker-HT

LiGen [60] is a VS software that leverages CPU and GPU to perform the required
computation. Several versions of the tool have been developed, starting from a CPU-only
application [20,60,61], then the main kernels have been ported to the GPU by [62] using
OpenACC. Finally, it has been optimized using CUDA for the GPU kernels and this last
version has been used to perform a large VS experiment in the search of a therapeutic
cure for COVID-19 screening 71.6 B compounds against 15 binding sites from 12 Sars-
Cov2 viral proteins on two supercomputers, accounting for 81PFlops [41]. LiGen uses
deterministic algorithms to generate the different conformers of a ligand, and an empirical
scoring function to select the best molecule. The Docker-HT application is the version of
LiGen that is designed targeting a large VS campaign, and it is able to leverage multi-node,
multi-core, and heterogeneous systems. In particular, it uses MPI to perform the multi-node
communication, which is limited as much as possible by the algorithm to avoid large
communication overheads [63]. Indeed, the amount of data that needs to be processed by
every node is divided beforehand, and it may create load-balancing issues as there is no
mechanism to rebalance it during the execution of the application. On the single node,
it leverages the C++ thread library. Finally, it uses CUDA to support GPU acceleration.
Within each node, the program uses pipeline parallelism and work-stealing to process
the ligands.

5.8. Geauxdock

This is a parallel implementation of virtual screening available for multicore CPU, GPU,
and Xeon Phi-computers. The software uses a common code for front-end computations
in all these computers [64]. However, the back-end codes have one version for CPU and
Xeon Phi architectures, and another for GPU. The code for CPU and Xeon Phi architectures
written in C++, OpenMP and IntelSIMD pragmas. The GPU version is written in C++
and CUDA. The program uses the Monte Carlo approach for conformational search and
for identifying the global minimum of the protein–ligand complex. The scoring function
is based on physics-based energy terms combined with statistical and knowledge-based
potentials. The performance of the code has been tested in multi-core CPUs and massively
parallel architectures, namely Xeon Phi and NVIDIA GPUs. The testing using CCDC/Astex
dataset showed a 1.9-times increase in performance for Xeon Phi when compared to 10-core
Xeon CPU. Further, on the GeForce GTX 980 GPU accelerator, the performance was 3.5 times
higher when compared to the CPU version.

5.9. POAP

Poap is a GNU parallel-based multithreaded pipeline for preprocessing ligands, for
virtual screening, and for postprocessing the docking results [65]. It also allows the mini-
mal use of memory through optimized dynamic file-handling protocol. It has also been
optimized in a way that erroneous ligand input does not affect the workflow. It can be
integrated with any of other sequential or multithreaded molecular docking softwares, such
as Autodock4.0, Autodock Vina, or AutodockZn. In the case of Autodock-based virtual



Pharmaceuticals 2022, 15, 63 15 of 22

screening, the map files are generated for each ligand in the datasets. In the case of POAP,
the map files are directed to a common hub directory and so occupancy of space due to
redundant atom types in ligands is overcome. The number of threads to be used should be
mentioned when the Autodock Vina is used as a docking software. In the case of Autodock
and AutodockZn, the number of parallel jobs to be executed (which can be equal to the
number of CPU threads) should be defined by the user. The performance of POAP has
been tested using the virtual screening for the targets namely Human ROCK I, HTH-type
transcriptional regulator, Polyketide synthase, and PqsA (Anthranilate-coenzyme A ligase)
using the ligands from the chemical library, DrugBank. Since POAP does not have any
serial code, the speed-up (theoretical estimate) is directly proportional to the number of
processors used. The performance analysis of Autodock in a T5510 DELL workstation with
Intel Xeon(R) CPU E5-2620V2, 2.10 GHz clock speed (12 Cores, 24 threads) with 62.9 GB
RAM showed a 12.4-times speed-up when compared to serial mode (the number of parallel
jobs specified is 24). Similarly, the Autodock Vina showed 2.4-times speed when compared
to default mode (which is already multithreaded) and here, the number of jobs was set
to three.

5.10. GNINA

GNINA is a fork of SMINA [56] and Autodock Vina [16]. When compared to the
hybrid scoring function employed in Autdock Vina, it provides options to use various
built-in scoring functions (such as Vina, Vinardo) along with user-customized scoring
functions. More importantly, it provides a machine learning-based scoring function to rank
the complexes. The default scoring function (called “none” option) is the same as used in
Vina or Smina, while the rescoring (called “rescoring” option) allows the topmost ligand
poses to be ranked using machine learning-based scoring functions.

In particular, this scoring function is based on convolutional neural networks trained
using 3D protein–ligand complex structures (as reported in PDBBind or BindingDB) and cor-
responding experimental inhibition constants. They were trained to reproduce binding pose
and the binding affinity. There are multiple machine learning functions (namely, crossdock_
default2018, dense, general_default2018, redock_default2018, and default2017) provided by
GNINA, and these have been developed using different datasets. The CNN-based scoring
function outperforms the scoring function implemented in Vina in reproducing the binding
poses. The RMSDs for the predicted poses in the unseen examples are below 2 Å in as
many cases as 56%. Further, the binding prediction of poses within this cutoff improves to
79% if the redocking is performed.

When compared to Autodock Vina, the grid box center can be provided with the
help of a ligand file. For the conformational search, GNINA uses Monte Carlo sampling
scheme. The sampling is carried out over the ligand translational, rotational, and torsional
degrees of freedom. In the case of flexible docking, the sampling is also carried out over the
residue side-chain conformations. Unlike Smina, GNINA performs computing in single-
precision (32 bit) which allows the possibility of offloading the CNN scoring tasks to GPUs.
Even though GNINA can be used in massively parallel supercomputers and HPCs with
accelerators, there is no performance analysis or profiling when compared to other docking
softwares reported in the literature.

5.11. AUTODOCK-GPU

Autodock4.0 is one of the most widely used molecular docking softwares, but it is a
serial code which runs on a single thread so cannot be effectively used in high-performance
computing environments with multiple CPUs and GPUs. Autodock-GPU [66] is the version
of Autodock developed for multiple node parallel computers with GPU accelerators.
It is worth recalling that the above discussed MPAD4 was developed for multi-CPU
architectures. This program has been developed using the application programming
interface, OpenCL, as it allows portability to hybrid platforms with CPUs and GPUs. When
compared to Autodock4.0, the local search algorithm uses derivatives of energies with
respect to translations, rotations, and torsions (this implementation of gradient-based local
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search is referred to as ADADELTA). In the case of CPU+GPU architectures, the workflow
consists of a sequence of host and device functions. In analogy to biological gene, the state
of the protein–ligand complex is represented by a sequence of variables. In the case of
a rigid docking (where the protein framework is treated as a rigid body), the variables
represent positions, orientations, and conformation of the ligand. The number of variables
are 6+Nrot, where Nrot is the number of rotatable bonds. The docking is aimed at finding
the genotype which corresponds to the global minimum in the protein–ligand potential
energy surface and the ranking is dictated by the scoring function.

The performance of Autodock-GPU has been tested using the diverse data set of
140 protein–ligand complexes from Astex Diversity Set [67], CASF-2013 [68], and protein
databank. The reference docking calculations were performed using the single-threaded
Autodock4.2.6. The speedup performance was dependent on the minimization algorithm
used for the local search (whether Solis–Wets or ADADELTA), GPU type, and the type of
protein used in the docking. With the use of Solis–Wets local search algorithm, the speed-up
was 30 to 350 times in GPUs, with the M2000 showing the least performance and with
TITAN V showing the best. However, with the use of ADADELTA local search, the speed-
up was only 2 to 80 times improved, which has to be attributed to the computationally
expensive calculation of gradients and difficulties associated with the parallelization of this
local minimization step. In general, TITAN V cards showed 10 times higher speed-up when
compared to M2000 versions. The performance analysis in multiple-core CPUs showed a
similar trend where for the Solis–Wets search, the speed-up was in the range 5 to 33 times
(the number of cores employed 8–36), while for the ADADELTA local search the speed-up
was 2–20 times better.

5.12. Other VS Tools

The focus of this review was mostly about the open-source parallel VS softwares
which are summarized in Table 3 along with some important features. The details about
the year they were introduced and source URL pages are listed in Table 4. Many of these
softwares such as GeauxDock, Autodock-GPU, and GNINA, were introduced in recent
years and so their capacity in the lead compounds identification from huge chemical
libraries needs to be validated extensively. Meanwhile, many already existing virtual
screening softwares have contributed to successful lead compound identification and
lead optimization over the years. In particular, the softwares such as FlexX, DOCK (the
sequential version of above discussed Dock6), SLIDE, Fred (OpenEye), GOLD, LigandFit,
PRO_LEADS, ICM, GLIDE, LUDI, and QXP are worth mentioning [69]. Among these,
LigandFit and QXP employ Monte Carlo for sampling, while SLIDE and Fred employ
conformational ensembles approach. GOLD, ICM, and GLIDE, respectively, adopt genetic
algorithm, pseudo-Brownian sampling/local minimization, and exhaustive search for
sampling. Finally, Dock and FlexX use incremental build approach for identifying the
most stable binding mode/pose for the ligand. There are other VS softwares, such as
RosettaDock [70], Surflex [71], and LIDAEUS [72], which are not discussed here as the
review focuses on those with parallellism capability. It is also worth mentioning Spark-
VS [73] software, which uses Google’s MapReduce to run parallel virtual screening in
distributed cloud resources. The parallel efficiency of Spark-VS against a chemical library of
2.2 M compounds is reported to be 87% when compared to a public cloud environment [73].
This opens up another possibility of using cloud computing resources for parallel virtual
screening without a need to buy our own HPCs and accelerators.
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Table 4. Timeline for different parallel virtual screening software and source URLs (with accessed
dates in bracket).

No Year Parallel VS Source

1 2006 Dock5&6 http://dock.docking.org/ (1 August 2021)
2 2008 DOVIS2.0 http://www.bioanalysis.org/downloads/DOVIS-2.0.1-installer.tar.gz (15 December 2021)
3 2009 Autodock Vina http://vina.scripps.edu/ (1 August 2021)
4 2010 VSDocker http://www.bio.nnov.ru/projects/vsdocker2/ (15 December 2021)
5 2011 MPAD4 http//autodock.scripps.edu/downloads/multilevel-parallel-autodock4.2 (15 August 2021)
6 2013 vinaMPI https://github.com/mokarrom/mpi-vina (1 June 2021)
7 2013 vinaLC https://github.com/XiaohuaZhangLLNL/VinaLC (10 June 2021)
8 2016 GeauxDock http://www.brylinski.org/geauxdock (20 June 2021)
9 2018 POAP https://github.com/inpacdb/POAP (21 June 2021)
10 2021 Autodock-GPU https://github.com/ccsb-scripps/AutoDock-GPU (10 September 2021)
11 2021 GNINA https://github.com/gnina/gnina (1 November 2021)

6. Emerging Reconfigurable Architectures for Molecular Docking

In prior sections, we have focused exclusively on reviewing methods of virtual screen-
ing and molecular docking that target modern central processing unit (CPU) and graphics
processing unit (GPU) solutions (refer to Figure 3). At the same time, we know that
Moore’s law (transistor scaling) is terminating, which could motivate (or even necessitate)
the search for alternative computing platforms that can continue the performance trend
that molecular docking has come to rely upon. Among the many (so-called) post-Moore
technologies [74], reconfigurable architectures are perhaps the most noticeable, partially
because they are readily available today. A reconfigurable architecture, such as a field-
programmable gate array (FPGA) or coarse-grained reconfigurable array (CGRAs) [75] is a
system which aspires to retain some of the silicon plasticity that is lost when manufacturing
an application-specific integrated circuit (ASIC). In turn, users can leverage reconfigurable
systems to perfectly match the hardware to the application, which in turn can lead to
improvement in performance and reduction in energy costs. For example, the expensive
von Neumann bottleneck associated with the decoding of instructions in CPUs can be
virtually eliminated. Traditionally, reconfigurable architectures such as FPGAs have been
programmed using complex, low-level hardware description languages (HDLs) such as
VHDL or Verilog. This, in turn, has limited exposure of using these devices to specialized
hardware and is thus out of reach for typical HPC users. However, with the increase in
maturity of high-level synthesis (HLS) [76] tools in the past decade, today, programmers
can describe their hardware in abstract languages such as C/C++ and directive-driven
models (e.g., OpenCL [77] or OpenMP [78]) and automatically translate the code down to
specialized hardware. Modern HLS has, in turn, facilitated the accelerated use and research
of FPGAs in other HPC applications such as computational fluid dynamics, neuroscience,
and molecular docking.

Figure 3. A conceptual picture of different processors and accelerators, showing (a) CPUs, which are
latency-focused architectures with few processing units and large (and deep) memory hierarchies,
(b) a GPU, which is a throughput-focused architecture with more processing units (contra CPUs) and
a shallower memory hierarchy, and (c) FPGAs, which offer much more parallelism compared to both
CPUs and GPUs, with finer control over individual unit types (here shown in different controls), but
is harder to use.

Pechan et al. [79] evaluated and compared the use of FPGAs against both GPU and
CPU solutions of the popular Autodock software. They created a custom RTL-based three-
stage FPGA accelerator that computes the performance-critical sections of the Autodock
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http://www.bio.nnov.ru/projects/vsdocker2/
http//autodock.scripps.edu/downloads/multilevel-parallel-autodock4.2
https://github.com/mokarrom/mpi-vina
https://github.com/XiaohuaZhangLLNL/VinaLC
http://www.brylinski.org/geauxdock
https://github.com/inpacdb/POAP
https://github.com/ccsb-scripps/AutoDock-GPU
https://github.com/gnina/gnina
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algorithm. More specifically, the custom accelerator has four modules capable of exploiting
MLP (see Section 4.1), while LLP is exploited inside each module (through pipelining); the
accelerator relies on other methods to exploit HLP. They compared their solution against a
custom (CUDA-based) GPU solution (GT220 and GTX260) and a CPU (Intel Xeon 3.2 GHz)
version on the 1hvr and 2cpp protein pairs (from the Protein Data Bank). The overall
results showed that FPGAs outperformed the CPUs for both use-cases independent of the
number of dockings that were used. The GPU, however, had a clear advantage when a
large number of dockings were executed, and the FPGA was only preferable when a few
number of docking runs were executed. Recent work by Solis-Vasquez et al. [80,81] focused
particularly on using OpenCL HLS tools to create custom accelerators that target FPGAs.
Aside from disseminating their design process, they also vary several different architec-
tural properties in their accelerator. For example, they consider both floating-point and
fixed-point representation for various phases of the computation, which demonstrates an
advantage that FPGAs can provide over more general-purpose approaches. The accelerator
runs at a fairly high frequency (between 172 MHz and 215 MHz) on a Intel Arria 10, and
consumes a varying amount of resources (subject to their design-space exploration). They
compare their accelerator against the single-threaded Autodock software on five protein
targets, and show that they reach between 1.73× and 2.77× speed up.

Today, there is a remarkably small number of published work that leverages FP-
GAs in the Autodock software (for surveys using FPGAs on other molecular algorithms,
see [82,83]). Even more surprising is that (to the authors’ knowledge) CGRAs have been
largely unexplored in this domain. With both FPGAs and CGRAs emerging as performance
(and, more importantly, greener) alternatives to traditional CPUs and GPUs, we believe
that these systems will come to play a much larger role in molecular docking and virtual
screening in the future than they have so far.

7. The Advent of Quantum Computing for Molecular Docking

With the advent of publicly available quantum computers via cloud computing, such
as the IBM, Righetti, Google, and D-Wave quantum systems [84], quantum computing is
becoming a promising approach to support and accelerate molecular docking computations.

A study of a molecular docking implementation on a photonic quantum computer
was presented in [85]. The authors used a Gaussian boson sampler (GBS) which is a
special model of photonic quantum computer where the computation is realized via the
interference of identical photons that are passing through a circuit or a network of beam
splitters and phase shifters. In this work, the binding interaction graph between ligands and
receptor is used to generate the ligand orientations within the protein pocket. A simplified
pharmacophore representation is used, limiting the graph size from all-molecular model
of the ligand and receptor to a set of points having large influence on the interactions, i.e.,
negative/positive-charged atoms, hydrogen bond donor/acceptor atoms, hydrophobic
characteristics, and aromatic ring positions. The docking problem has been formalized by
mapping it to the identification of large clusters in a weighted graph. The GBS device was
used to search for the largest cliques while considering the graph weights. The method
shows very good results compared to solving the same problem in a classical way; however,
it cannot be used alone in a virtual screening process unless to pair it with classical data
postprocessing techniques (scoring) thus generating a hybrid-quantum approach.

The usage of quantum annealers to understand the capabilities of these devices to
improve the quality and the throughput of molecular docking methods is presented in [86].
In particular, the paper focused on a specific phase of the molecular docking, consisting
of ligand manipulation in terms of its rotatable bonds. The authors propose a quantum
annealing approach to molecular docking by formulating it as a high-order unconstrained
binary optimization (HUBO), which was possible to solve on the latest D-Wave annealing
hardware (2000Q and Advantage). The work demonstrated how a lot of simplifications
have to be taken into consideration during the problem formulation and embedding phase,
even with small molecules. The results show that despite that the current hardware is
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not yet mature to solve the molecular docking problem on real-life scales, there is a clear
positive trend in that direction.

8. Conclusions

The parallel implementation virtual screening algorithms in massively parallel comput-
ers with multiple CPUs and/or GPUs have the high potential to speed up the exploration
of gigantic chemical spaces (having compounds in the range 109 to 1012) in real time. In a
serial version of virtual screening software, it may take many years of CPU hours for such
tasks. The current regard for gigantic docking is the screening of billions of compounds
from ZINC15 and Enamine databases with the use of Autodock GPU in Summit HPC
computers in less than a day. The parallel implementations and reliable scoring functions
will increase the success rates in the lead compounds identification for drug discovery. This
makes the drug discovery less time-consuming and economically sustainable. Further, as
the chemical spaces are really huge, the drugs with entirely different scaffold geometry
can be identified. The speed-up of the virtual screening software is found to be dependent
on the number of factors: energy minimization algorithm, scoring function, biomolecular
target, and computer architecture. More elaborate studies will allow us to develop highly
optimized virtual screening software in the future. The implementation of VS for FPGAs
and quantum computing is still in its infancy, and a dedicated research is needed for
adopting such architectures for drug discovery projects.
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