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Abstract: Molecular imaging offers the possibility to investigate biological and biochemical processes
non-invasively and to obtain information on both anatomy and dysfunctions. Based on the data
obtained, a fundamental understanding of various disease processes can be derived and treatment
strategies can be planned. In this context, methods that combine several modalities in one probe
are increasingly being used. Due to the comparably high sensitivity and provided complementary
information, the combination of nuclear and optical probes has taken on a special significance. In this
review article, dual-labelled systems for bimodal nuclear and optical imaging based on both modular
ligands and nanomaterials are discussed. Particular attention is paid to radiometal-labelled molecules
for single-photon emission computed tomography (SPECT) and positron emission tomography (PET)
and metal complexes combined with fluorescent dyes for optical imaging. The clinical potential of
such probes, especially for fluorescence-guided surgery, is assessed.

Keywords: molecular imaging; positron emission tomography; single-photon emission computed
tomography; near-infrared fluorescence

1. Introduction

Over the past 20 years, molecular imaging has proved a valuable technique for vi-
sualisation and characterisation of pathophysiological processes in general but especially
in the field of cancer research [1–5]. Nuclear techniques such as single photon emission
computed tomography (SPECT) and positron emission tomography (PET) play a special
role here because they have an extremely high sensitivity (the nanomolar and even the
picomolar level), an almost unlimited penetration depth in biological tissues and they
provide quantitative data on the pharmacokinetic properties of radiolabelled drugs [6–10].
PET has advantages over SPECT, particularly with regard to spatial resolution and quan-
tification. This is due to the different distribution of the emitting photons. In SPECT,
the gamma quanta are distributed statistically and in a rather disorderly way, whereas
PET uses the defined collinear emission and detection of two 511 keV gamma photons,
which are formed during the annihilation process of electrons and positrons (Figure 1).
Commonly used gamma-emitting radionuclides for SPECT are 99mTc, 111In and 123I, while
for PET mostly the positron-emitting radionuclides 18F, 64Cu, 68Ga, 89Zr and 124I are
applied. For radiolabelling of longer circulating objects such as natural antibodies or
nanomaterials, radionuclides with a rather longer half-life are used to follow the pharma-
cokinetic properties over several days. Increasingly, theranostic radionuclides like lutetium-
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177 (SPECT and β-emitter) as well theranostic pairs like scandium-44 (PET)/scandium-
47 (β-emitter), copper-64 (PET)/copper-67 (β-emitter), strontium-83 (PET)/strontium-89
(β-emitter), yttrium-86 (PET)/yttrium-90 (β-emitter), iodine-124 (PET)/iodine-131
(β-emitter) and terbium-152 (PET)/terbium-161 (β-emitter), which allow both monitor-
ing and treatment, are being used or are under discussion [11]. In total, more than 300
radionuclides are available for use in medicine, biology, chemistry and other fields [12].
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Figure 1. Depiction of PET and SPECT imaging.

This review also focusses on optical imaging (OI) in the context of fluorescence, phos-
phorescence or luminescence spectroscopy. Optical imaging has about one order of magni-
tude lower sensitivity to nuclear techniques with superior resolution in the micro-meter
range (Figure 2A) [13–15]. However, it suffers from the drawback of limited penetration
depth, which means that application in the clinic can be limited. This limitation has been
overcome to some degree by continual improvements of fibre-optic endoscopic probes,
thus allowing higher image penetrating depths. However, the real advancement has been
continual development of near-infrared (NIR) probes, further detailed below, which has
allowed the depth of study to be increased from ~0.5 mm (400 nm) to up to detection
of several centimetres at the excitation wavelengths greater than 1500 nm. This is due
to two phenomena: (i) tissue penetration is wavelength dependent; thus, the greater the
wavelength, the deeper the penetration and (ii) water, which is prevalent in tissues, absorbs
IR light which has the effect of greater depth and greater contrast (Figure 2B) [16].
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Figure 2. (A) The molecular sensitivity and spatial resolution of imaging processes of relevance to this
review, * sensitivity not well characterised. Data obtained from [17–19]. (B) Schematic of penetration
depth at varying wavelengths.

Dyes that are excited by NIR irradiation are classified as NIR-I (650–900 nm range),
NIR-IIa (1000–1400 nm) and NIR-IIb (1500–1700 nm) probes. Indocyanine green and
methylene blue are two small molecule NIR-I dyes that are approved for use in the clinic.
These dyes, while readily excreted, are non-specific; furthermore, as NIR-I dyes they suffer
from the typical photon scattering and poor photon absorption. The BODIPY scaffold
(Figure 3) can be further functionalised to increase absorption and emission wavelength.
The second near-infrared (NIR-II) window, comprised of probes containing inorganic or
organic fluorophores, are superior due to the lower light scattering, the higher maximum
permissible exposure that can be used and the greater image penetrating depth. The
chemical structures of NIR dyes that are typically used for modular ligand and nanoscale
systems, as well as the chemical structures relevant to fluorescence molecular imaging
described in the subsequent sections, are reproduced in Figure 3. The synthesis of molecules
containing donor–acceptor–donor (D-A-D) has allowed organic molecules to emit in the
NIR-II window; however, the synthesis of these molecules is often challenging and as such
it has not been widely performed for in vivo imaging. There are a number of good, recent
reviews summarising NIR-I and NIR-II dyes [13,20–24] and we refer the reader to them for
a more comprehensive understanding of their design and use. The recent developments of
NIR-II metal-based luminescent complexes are the focus of this section and thus detailed
below. Inorganic NIR-II fluorophores such as carbon nanotubes or AuNP are outside the
scope of this review.
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Figure 3. Representative examples of (a) Common NIR-I dyes, (b) NIR-II dyes that are based
on the donor–acceptor–donor design, Q8PNap [25] and BPST [26], (c) Alternate NIR-II dyes:
Hydro-1080 [27], BTC1070 [28] and NJ1060 [29] and (d) Additional fluorophores, not previously
noted, that are relevant to Sections 3 and 4.
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The nuclear and optical dual-labelled imaging agents reported so far are mainly based
on the combination of radiolabelled compounds that use the radionuclides fluorine-18,
copper-64, gallium-68, zirconium-89, technetium-99 m and indium-111 and organic dyes.
Such dual modality probes are summarised in a series of reviews documenting the rapid
development of this exciting field [30–37]. The two recent reviews look at the use of these
samples from a clinical perspective [37] and discuss the multiple modification possibilities
through the use of different conjugation strategies [30]. In the latter review, an extensive
compilation of nuclear and fluorescence imaging molecular and nanoscale tools with a
discussion of the pros and cons for special biological applications can be found.

The pharmacokinetic requirements of dual-labelled imaging agents in vivo are de-
pendent on the mode of delivery as well as the timeframe between the administration
and imaging test. Furthermore, the type of chelators, dye molecules and target modules,
as well as their chemical linkage, will make these properties vary and so comprehensive
pre-clinical studies are needed for further developments. Some of the examples discussed
below utilise ligands or fluorophores that have been approved for use in the clinic. How-
ever, a comprehensive understanding of the agent’s absorption, distribution, metabolism
and excretion (ADME) properties, as well as toxicity, is naturally needed before phase III
trials can commence.

In our review, we focus in particular on novel molecular systems for clinical use in
cancer medicine, with an emphasis on new modular ligands and nanoscale systems.

2. Fluorescence Imaging for Biomedical Applications
2.1. NIR Metal Complex Imaging Agents

It is only recently, with the key advances discussed below, that NIR metal complexes
for whole body imaging can be achieved, rather than using cell imaging alone. The findings
below are highlights of the field with a focus on the use of NIR metal complexes in whole
body imaging studies and the key findings that have accumulated in the discovery of such
complexes, rather than the broader area of time-resolved lanthanide imaging.

2.1.1. Lanthanide-Based Molecules

The fascinating and unique optical properties of lanthanide(III) complexes have in-
trigued scientists for decades and their potential use as bioprobes was noted as early as
the 1970s [38]. Their photoluminescent properties are a consequence of their [Xe]4fn elec-
tronic configuration, with the 4f–4f transitions resulting in spectra in the visible to NIR
region. However, lanthanide ions themselves are weakly absorbing due to their small molar
absorption coefficients (<10 M−1·cm−1), which is a consequence of Laporte forbidden 4f
transitions [39]. At the same time, the resulting long-lived luminescence, due to the Laporte
forbidden 4f–4f transition of metal electrons, is a highly attractive property, to obtain it
the “antenna effect”, first coined by Weissman in 1942, needs to be exploited [40]. In this
case, a highly absorbing ligand, often organic in nature, and whose triplet energy state is at
the appropriate level for transfer to the lanthanide excited state by intermolecular energy
transfer, needs to be covalently attached or close in space to the receiving lanthanide(III)
ion [41]. Typically this is accomplished by functionalisation of the multidentate ligand, to
which the lanthanide(III) ion is complexed, with the appropriate antenna moiety. Ligands
with negatively charged or neutral oxygen and nitrogen donor atoms give highly stable
complexes; see Figure 10 for the chemical structures of representative chelators. DOTA and
DO3A, or their derivatives, result in the most stable complexes (log K = 23–25) [42,43].

To date, the luminescent imaging in vitro of terbium(III) and europium(III) complexes
has been well explored; however, lanthanide(III) based emitters in the NIR are more
scarce [44,45]. The incorporation of ligands that absorb in the NIR region, as well as the
two-photon (2P) absorption, have allowed lanthanide(III) complexes to be used for optical
imaging [46]. The next section will highlight recent key findings in this area.

The 8-coordinate cationic [YbL]+ complex (Figure 4A) was utilised for 2P-imaging of
living cells, with excitation wavelength 800 nm. This, the first reported YbIII 2P-luminescent
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probe, was the result of a decade of research in which the antenna, chelate and potential for
2P-bioimaging were optimised. In addition to the inclusion of the 2P-antenna, the cationic
complex over a neutral one ensured that cell internalisation occurred readily [47].
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Following this report, a number of YbIII porphyrinate complexes (Yb-4, Yb-2 and
Yb-cis/trans-3, Figure 4B) were disclosed for 1P- and 2P-imaging [48–50]. The porphyri-
nates typically have intense bands at approximately 620 nm, suitable for YbIII excitation,
and large extinction coefficients. The first report (2018) noted that substitution of meso-
phenyl groups can modify Yb-NIR emission. Use of the deuterated Kläui ligand allowed
β-fluorinated and non β-fluorinated complexes to be compared. Complex Yb-4 gave
the most favourable properties and was further investigated for NIR imaging (excitation
620 nm; emission 935 nm; quantum yield 10%). Due to the long luminescent lifetimes
of YbIII complexes, in vitro confocal time-resolved fluorescence lifetime imaging (FLIM)
allowed for the removal of cell autofluorescence. In this ground-breaking work, the authors
note that porphyrinoid ligands are exciting prospective candidates for NIR molecular
probes [50]. In two follow up reports, the authors extend this concept and utilise the molec-
ular probes for in vivo NIR-II imaging. The probes investigated have quantum yields of
about 10% in water and probe Yb-2, a water-soluble carboxylate, was further investigated
due to its highest resolution and signal-to-background ratio properties. When excited at
532 nm, detection of the NIR-II luminescence signals at a depth of 8 mm in a tissue sample
could be observed. In vivo NIR-II fluorescence imaging showed the potential for this
probe to be used for bioimaging [48]. The modification of the porphyrinoid Yb-3 resulted
in regioisomers with differing properties; the cis isomer was suitable for NIR-II imaging
whereas the trans isomer, upon irradiation, produced singlet oxygen [49].

In a very recent report (2021), the photophysical properties of a range of lanthanide-
based carbazole-containing porphyrinoid complexes (Figure 4B, Ln-L, Ln = Gd, Yb and Er)
have been further modified and examined in vitro and in vivo. As above, the coordinating
ligand, a carbazole-based porphyrinoid, was chosen due to an intense absorption band
at 630 nm and a large extinction coefficient. The complexes were investigated for their
potential usage as photothermal therapeutics as well as NIR imaging agents. The lanthanide
complexes exhibited a NIR absorption at 706 nm with the YbIII complex yielding the most
encouraging results in vitro. For the encapsulation of the YbIII complex in mesoporous
silica nanoparticles after intravenous injection, the in vivo studies confirmed that the
photoirradiation of the tumour using a NIR laser (690 nm), with temperature monitoring,
could be used to monitor tumour progress [51].
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A number of pyclen-based ligands have been explored in the development of a family
of lanthanide-based luminescent probes (Figure 5). The findings build on previous work
within the group and others, where the photophysical different chelates and lanthanide ions
were investigated for bioimaging applications. In this report, the lanthanide complexes, in
all cases, have a coordination number of 9, thereby resulting in hydration numbers (q) of
0 or below 1. The lanthanide complexes, [EuL4a], [SmL4a], [YbL4b], [TbL4c], [DyL4c] and
[EuL4a’] (Figure 5), can be excited between 300 and 400 nm. Depending on the lanthanide
complex, they can also undergo 2P-excitation (excitation between 700 and 900 nm), which
is more valuable for in vivo bioimaging applications. The results from the in vitro cellular
studies are shown in Figure 5. Further studies with [EuL4a] in zebrafish embryos, which
was shown to be non-toxic, and 2P-excitation resulted in a high-resolution image. The
authors highlight the potential of these lanthanide-based luminescent probes for imaging
thick tissue and subsequent diagnosis of disease [52]. The 161Tb and 177Lu complexes
of these ligands are thermodynamically stable and kinetically inert. Thus, such ligand
complexes have the potential for radionuclide therapy as well as imaging [53].
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Figure 5. (A) Chemical structures of lanthanide-based probes containing pyclen ligands. (B) Left:
2P imaging of paraformaldehyde-fixed T24-cells: [EuL4a], [SmL4a] (λex = 750 nm), [YbL4b]
(λex = 800 nm), [TbL4c] and [DyL4c] (λex = 720 nm). Middle: transmitted light DIC images. Right:
merged images. Reprinted (adapted) with permission from Ref. [52]. Copyright 2020 American
Chemical Society.

Recently, in the development of lanthanide-based nanocomposites for cancer therapy,
a nanocomposite composed of DOTA as the chelate and camptothecin as the toxic payload
(cycLN-ss-CPT, Ln = GdIII or YbIII, Figure 6) has been utilised [54]. In this study, the LnIII

ratio was controlled via precise chemical synthesis of the GdIII and YbIII complexes, and
upon formation of the micellar LnNP and excitation at 330 nm, the typical YbIII emission
spectrum was observed. Incubation of the Gd/YbNPs in HeLa cells confirmed, via NIR
optical imaging, that such nanocomposites could be used to monitor uptake. GdIII was
included for in vivo MR imaging.
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Figure 6. (A) Chemical structure of cycLN-ss-CPT. (B) NIR imaging of YbNPs in HeLa cells; CPT
emission λex 370 nm and λem 400–450 nm; Yb(III) emission λex 380 nm and λem 900–1700 nm.
Reprinted (adapted) with permission from Ref. [54]. Copyright 2021 American Chemical Society.

Ligand complexes of EuIII and TbIII alone are not able to be used for in vivo optical
imaging, as the efficient energy transfer to these lanthanide ions typically requires external
excitation in the region of 250−350 nm. Recently, it was communicated that careful design
of the complexes can allow for in situ excitation via Cerenkov radiation (CR) (Figure 7).
In this example, the administration of radiofluorine (Na18F) with the lanthanide complex
allowed for optical and multiplex imaging concurrently [55].
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2.1.2. Non-Lanthanide-Based Molecules

Luminescent iridium complexes, due their excellent photo-stability and high quantum
yields, have been utilised as intracellular sensors especially for detection of oxygen, reactive
oxygen species (ROS) and other endogenous species [56]. A number of recent NIR-emitting
iridium complexes that can be used for in vivo imaging are reproduced in Figure 8. The
iridium(III) cyanine complex nanoparticles IrCy-NPs allowed NIR absorption and singlet
oxygen generation upon irradiation at 808 nm [57]. The iridium(III) complex-derived
polymeric micelle PolyIrLa (the conjugated iridium(III) complex with UNCPs) allowed
photodynamic therapy and chemotherapy to occur (NIR irradiation at 980 nm) [58]. The
iridium(III) complex IrDAD, containing a donor–acceptor–donor (D-A-D) moiety, allowed
for the formulation of a nanoparticulate system (IrDAD-NPs) that can be used for NIR-dual
imaging and phototherapy. Tissue penetration was observed and NIR irradiation (808 nm)
resulted in the formation of ROS and heat [59].

Typically, ruthenium(III) complexes emit in the visible region and as a result until
recently have not been used for imaging studies. The Ru(II) polypyridyl complex, HL-
PEG2K (Figure 9), constructed using the D-A-D strategy of an organic NIR-II fluorophore
H4–PEG-Glu [60], allowed NIR-II imaging and chemo-photothermal therapy to occur
simultaneously. Interestingly, in vivo studies revealed that HL-PEG2K, when compared to
cisplatin, had lower toxicity and better activity [61].
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Section 3 describes the use of optical dyes as part of the multifunctional ligand sys-
tems for nuclear and optical dual imaging and Section 4 outlines their incorporation in
nanoscale systems.

3. Modular Ligand Systems

Multimodal imaging based on nuclear and fluorescence probes allows for synergy of
these modalities. The goals are improved non-invasive visualisation and quantification
of the underlying processes (occurring at the molecular level), tumour localisation and
the possibility of image-guided surgery. For these purposes, it is necessary to design
sophisticated bimodal imaging probes that satisfy the demands of more than one imaging
modality within a small molecule or a nanoscale system (vide infra).

Frequently, low molecular weight compounds are involved in the design of probes
for bimodal imaging. These compounds enable the assembly of moieties suitable for the
desired imaging channels. Such moieties include fluorescent dyes for optical imaging,
leaving groups suitable to introduce PET/SPECT radionuclides or bifunctional chelator
agents (BFCAs) for labelling with radiometals. In particular, there is a need for molecules
that allow the simple introduction of fluorophores, radionuclides and targeting modules at
the same time.

In recent years, several multimodal imaging ligands have been studied. Thus, the
library of options for the development of suitable dual tools, whilst comprehensive, is still
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expanding. Some of the most representative systems, which include multifunctional organic
systems, frequently used bifunctional chelating agents (BFCAs) and newly developed
modular ligand systems, are discussed below (Figure 10).
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3.1. Organic-Based Systems

Organic modular systems use suitable leaving groups or isotope exchange for the
introduction of non-metallic radionuclides (18F, 11C, 123I, 124I, etc.) using covalent chemical
bonds. Furthermore, these systems have additional functional groups that allow the
incorporation of fluorescence labels and targeting vector molecules. Some recently reported
examples are presented below.

The frequently used PET radionuclide 18F has been studied extensively for the radiola-
belling of organic dyes. BODIPY [62–64], rhodamines [65], xanthene derivatives [66] and
cyanines [67] are among the most common radiofluorinated fluorophores. These dyes can
be tailored with diverse leaving groups (or undergo isotopic exchange) for the introduction
of radioisotopes such as 18F. This strategy has been exploited to achieve improved radio-
chemical yields, easier synthesis and more effective purification methods. In this context,
in 2019, Kim et al. reported an 18F-labelled BODIPY dye, suitable for PET/Optical imag-
ing [64]. The radiofluorination proceeded through an isotopic exchange (19F-18F), mediated
by the Lewis acid SnCl4. Quantitative radiochemical yield (RCY) and high molar activity
were achieved. More importantly, the radiofluorinated dye showed favourable pharma-
cokinetics and allowed for the simultaneous application of PET and optical imaging (OI) of
the brain. More recently, the group Kopka et al. studied radiolabelled silicon-rhodamines
(SiRs) [68]. The yielded SiRs display distinctive near-infrared (NIR) optical properties, large
quantum yields and high photo-stability. Furthermore, the boronic acid (leaving moiety)
enabled the introduction of 18F and 123I (using SiRs as a common precursor). Radiolabelling
with high molecular activities was achieved using copper-mediated radiofluorination
and copper-mediated radioiodination, respectively. These radiofluorinated molecules are
suitable for co-localisation experiments (assessed by fluorescence confocal microscopy).
Overall, the developed ligand structure allows for the simultaneous application of PET or
SPECT and NIR imaging. Radiofluorinated dye molecules often have a lipophilic character
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and thus are especially beneficial for clinical applications in imaging of the brain but also
of the heart.

3.2. Metal-Based Systems

Metal-based systems use BFCAs for the stable binding of metallic radionuclides. Of
particular importance in the design of BFCAs is the high complex stability and kinetic
inertness as well as the use of appropriate functional groups for direct or linker-mediated
conjugation with fluorescent dyes and/or biomolecules. In recent years, various BFCAs
have been developed for SPECT/OI and PET/OI, using common SPECT (111In, 99mTc) and
PET (64Cu, 68Ga, 89Zr) radionuclides.

One of the first examples of targeted SPECT/OI imaging was presented by Wang et al.,
who described a dual-labelled agent for imaging the interleukin-11 receptor (IL-11Rα) [69].
The dual-labelled probe consisted of a peptide (targeting IL-11Rα) conjugated to 111In-DTPA
and the fluorophore IR-783. The conjugate allowed for the clear visualisation of the ligand-
antigen interaction in tumour-bearing mice. This report has served as a basis for further
research of imaging IL-11Rα-expressing lesions with further fluorophores, such as Cy7 [70].
Very recently, a dual-labelled prostate-specific membrane antigen (PSMA)-targeted probe
was developed using the dye IRDye800CW for NIR imaging and SPECT with 111In-DOTA
or 99mTc-MAG3 (mercaptoacetylglycylglycylglycine). The high-affinity ligand, consisting
of naphthylalanine, aminomethyl benzoic, glutamic and nicotinic acid, allowed for efficient
in vivo imaging of PSMA-expressing tumours (Figure 11). The pharmacokinetic properties
of the dual samples can be adjusted both by the choice of ligand and by the conjugation
chemistry used.

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 11 of 28 
 

 

achieved using copper-mediated radiofluorination and copper-mediated radioiodination, re-

spectively. These radiofluorinated molecules are suitable for co-localisation experiments (as-

sessed by fluorescence confocal microscopy). Overall, the developed ligand structure allows 

for the simultaneous application of PET or SPECT and NIR imaging. Radiofluorinated dye 

molecules often have a lipophilic character and thus are especially beneficial for clinical appli-

cations in imaging of the brain but also of the heart. 

3.2. Metal-Based Systems 

Metal-based systems use BFCAs for the stable binding of metallic radionuclides. Of 

particular importance in the design of BFCAs is the high complex stability and kinetic 

inertness as well as the use of appropriate functional groups for direct or linker-mediated 

conjugation with fluorescent dyes and/or biomolecules. In recent years, various BFCAs 

have been developed for SPECT/OI and PET/OI, using common SPECT (111In, 99mTc) and 

PET (64Cu, 68Ga, 89Zr) radionuclides. 

One of the first examples of targeted SPECT/OI imaging was presented by Wang et al., 

who described a dual-labelled agent for imaging the interleukin-11 receptor (IL-11Rα) [69]. 

The dual-labelled probe consisted of a peptide (targeting IL-11Rα) conjugated to 111In-DTPA 

and the fluorophore IR-783. The conjugate allowed for the clear visualisation of the ligand-

antigen interaction in tumour-bearing mice. This report has served as a basis for further re-

search of imaging IL-11Rα-expressing lesions with further fluorophores, such as Cy7 [70]. 

Very recently, a dual-labelled prostate-specific membrane antigen (PSMA)-targeted probe 

was developed using the dye IRDye800CW for NIR imaging and SPECT with 111In-DOTA or 
99mTc-MAG3 (mercaptoacetylglycylglycylglycine). The high-affinity ligand, consisting of 

naphthylalanine, aminomethyl benzoic, glutamic and nicotinic acid, allowed for efficient in 

vivo imaging of PSMA-expressing tumours (Figure 11). The pharmacokinetic properties of 

the dual samples can be adjusted both by the choice of ligand and by the conjugation chemis-

try used. 

 

Figure 11. The ligands visualise PSMA-positive tumours using µSPECT/CT and fluorescence imag-
ing. The panels display (A) µSPECT/CT scans, (B) Fluorescence images of mice with LS174T-PSMA
(right) and wild-type LS174T (left) tumours after intravenous injection of 111In (10 MBq/mouse) or
99mTc-labelled (15 MBq/mouse) ligands. Reprinted with permission from Ref. [71]. Copyright 2022
American Chemical Society.
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Since the first report in 2011, the potential of heterobimetallic 99mTc/Re complexes for
bimodal SPECT/fluorescence imaging has been studied [72]. Pyridyl triazole scaffolds [73],
imidazole derivatives [74] and porphyrin [75] have been involved in heterobimetallic coor-
dination. Recently, Day et al. reported a tracer combining the naphtalimide fluorophore and
a picolylamine chelator [76]. Around 55% RCY was achieved after fac-[99mTc (CO)3(H2O)3]+

radiolabelling. The complexes showed high stability in human serum. Additionally, the
rhenium(I) complexes proved to be suitable for confocal fluorescence microscopy, showing
extracellular and mitochondrial uptake. However, SPECT/CT imaging revealed fast clear-
ance (via biliary and renal pathways) and almost no uptake at the site of interest. Thus,
further modifications are necessary for future imaging applications.

Dual PET/OI probes are becoming increasingly important because they allow for
better spatial resolution and quantification compared to SPECT/OI. Due to the favourable
nuclear physical properties and steady availability, the generator nuclide 68Ga is predes-
tined for use in nuclear medicine [9]. Various chelators for gallium are suitable for multiple
functionalisation. Exemplarily, dual imaging probes based on DOTA-IRDye800CW have
been developed for 68Ga-labelling, showing that the fluorophore has no influence on the ra-
diolabelling efficiency [77]. The promising results encouraged the study of similar systems
based on 68Ga-NOTA [78]. In 2018, the first-in-human-PET imaging and fluorescence-
guided surgery using a 68Ga-NOTA-IRDye800CW-bombesin were performed [79]. The
novel dual probe revealed high accuracy and a strong correlation between PET and flu-
orescence imaging (Figure 12). This made it possible to clearly distinguish the diseased
region from the healthy tissue and allowed for safe resection of glioblastoma tumours
using image-guided surgery. There are other interesting chelator systems for 68Ga in de-
velopment. Thus, Wang et al. developed an H2hox ligand with two 8-hydroxyquinoline
moieties for 68Ga complexation, showing remarkable features such as: (i) easy synthesis,
(ii) quantitative radiochemical yield within 5 min at room temperature and physiological
pH, (iii) > 99% radiochemical purity without purification and (iv) enhanced fluorescence
upon increasing gallium concentration, suitable for imaging [80].

Another study related to the use of 68Ga in dual-imaging probes was reported by
Baranski et al. in 2018 [81]. The low molecular weight agent 68Ga-Glu-urea-Lys-HBED-CC
was conjugated with four different fluorophores: fluorescein isothiocyanate (FITC), Alexa
488, IRDye800CW and DyLight800. All the conjugates showed high 68Ga complexation
efficacy (RCY > 99%), indicating that the addition of the fluorophore does not affect the
coordination properties of the chelator HBED. Additionally, the conjugates showed specific
cell internalisation in confocal microscopy studies. Because of their NIR fluorophores, the
conjugates with IRDye800CW and DyLight800 are promising for translation to the clinical
area. Furthermore, the 68Ga-Glu-urea-Lys-HBED-CC-IRDye800CW conjugate was optimal
for PSMA-specific tumour visualisation. It showed tumour enrichment and fast background
clearance. Additionally, it was successfully applied for fluorescence-guided surgery in
mice and pigs. This dual-imaging probe represents a promising tool for preoperative,
intraoperative and postoperative detection of prostate cancer lesions. Very recently, a first-
in-human-study has been reported for a patient with high-risk prostatic carcinoma [82]. The
hybrid molecule PSMA-914 (68Ga-Glu-urea-Lys-(HE)3-HBED-CC-IRDye800CW) derived
from PSMA-11 demonstrated its potential to accurately detect PSMA-expressing lesions
before and during surgery. After 1 h post-injection, high retention of the conjugate in the
tumour area was detected.

Currently, there are a number of other emerging multifunctional chelator systems
with both macrocyclic and pre-organised acyclic structures, which are suitable for the
development of targeted dual probes in nuclear medicine and optical imaging [83]. This
means that chelator systems for further interesting PET radionuclides are also available,
such as 44Sc, 64Cu and 89Zr.
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Figure 12. Dual-modal imaging for glioblastoma resection using 68Ga-NOTA-IRDye800CW-bombesin.
The glioblastoma tumour is visible by MRI after gadolinium injection. (A) Uptake in the tumour
area was observed by PET/MRI, (F) The NIRF assessment displayed the fluorescent tumour ((B):
scale bar 5 mm). (C) Displays the fluorescent residual tumour tissue, and (H) the histological staining
(scale bar 50 µm). Several antigen-expressing cells were found in the tissue after gastrin-releasing
peptide staining ((G): scale bar 20 µm). After resection, no residual fluorescence was detected
in the tumour’s cavity. (D) Moreover, the tissue along the cavity was confirmed to be normal
(I) and few antigen-expressing cells were found on it (J). The post-operative analysis shows total
removal of the malignancy (E). Reprinted with permission from Ref. [79]. Copyright 2018 Ivyspring
International Publisher.

One of the emerging radionuclides starting to be used in nuclear medicine is 64Cu [9].
In the development of modular dual-labelled probes, combinations of macrocyclic chelators
and organic dyes dominate. Although DOTA is admittedly not the ideal chelator for
CuII, it is still the most widely used for dual-labelled probes with antibodies [84–87] and
peptides [88–90]. Due to the higher stability of CuII complexes and especially the higher
kinetic inertness, sarcophagins [91] and TACN [92] ligands are more suitable here. In
2014, Brand et al. reported a dual imaging probe based on sarcophagine-sulfo-Cy5 [93].
The probe was synthesised following a one-pot reaction protocol. Using carboxylic acid
and amino groups of the sarcophagine cage, the ligand was equipped with a sulfo-Cy5
fluorescent tag and an exendin-4 based targeted vector for the glucagon-like peptide 1
receptor (GLP-1R). This bimodal imaging probe exhibited good performance in vivo and
ex vivo for tumour imaging in mice.

TACN ligands with pyridine pendant arms form very stable CuII complexes with fast
complex formation kinetics under physiological conditions [92,94]. A pyridine-bearing
TACN building block with an azide group can easily be incorporated via click chemistry to
a conjugate consisting of the NIR label sulfo-Cy5 and an epidermal growth factor receptor
(EGFR)-targeting peptide [95]. This strategy allows for the development of targeted bimodal
imaging probes based on PET (64Cu) and fluorescence imaging.

Due to the more favourable complex formation kinetics compared to macrocyclic
ligands, open-chain chelators for CuII are gaining in importance. These include pyridine-
containing bispidine (3,7-diazabicyclo [3.3.1]nonane) ligands that are very rigid, optimally
pre-organised and complementary to CuII. They form CuII complexes of high thermody-
namic stability and kinetic inertness very quickly under physiological conditions [96]. For
more than 10 years, the potential of bispidine ligands for use in nuclear medicine has been
known [97,98]. The ligand structure allows for a wide range of variations, so biological
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vector molecules and fluorescence tags can also be introduced [99]. However, up until
today, there is only one example of bispidines used for dual imaging [100]. The reported
BODIPY-bispidine probe (radiolabelled under mild conditions) displayed highly stable
64Cu complexes. Despite the impact on the optical properties after 64CuII coordination,
the decay isotopes 64NiII and 64ZnII restored the quenched fluorescence. A 64Cu-labelled
DTPA derivative with a carbo-cyanine dye (LS479, Figure 3) as a fluorescence label shows
similar behaviour [101]. In addition, the C9 position of the bispidine scaffold allows for
the addition of further functionalities without affecting the coordination properties. This
feature can be used for the introduction of fluorescent labels and bioconjugation of target-
ing vectors [99]. Overall, the bispidine ligand system provides an ideal platform for the
development of targeted dual imaging agents based on 64Cu. By increasing the denticity of
bispidines, however, other interesting radionuclides for imaging and therapy such as 111In,
177Lu and 213Bi can also be included [102,103].

Concerning 89Zr complexes, which are particularly suitable for the study of longer
biochemical processes, deferoxamine B (DFO) is the most used chelator and, until now,
the only one studied for bimodal imaging systems. This ligand has been combined with
fluorophores such as BODIPY [104], Cy5.5 [105], Cy5 [106] and more recently with IRDye
800CW [107]. Although these probes show quantitative labelling with 89Zr, it is known that
the in vivo stability is not optimal. There are a number of DFO-based ligands, which exhibit
increased stability. Among them is DFO* with additional donor groups. Comparative
studies of DFO* with the gold standard DFO point to DFO* as a more suitable ligand for
89Zr. DFO* and its derivatives display superior stability and performance in vivo [108,109].
However, further improvements are needed, especially for solubility enhancement in the
aqueous medium. So far, there have been no studies on other bimodal imaging probes
based on other DFO ligands.

3.3. Mixed Ligand Systems

In recent years, the groups of Comba and Orvig have developed new classes of ligands
by combining classical complexing agents such as pyridine, picolinate, glycinate, oxinate
and phosphinate, leading to mixed ligand systems such as glycinate-oxinate, picolinate-
phosphinate, oxinate-pyridine, picolinate-pyridine and bispidine-picolinate. Regarding
the latter, octadentate bispidine-picolinate ligands (bispa-type) have been reported as
suitable ligands for stable binding of the radiometal ions 111InIII, 177LuIII and 225AcIII [110].
H4octox forms very stable complexes with 111InIII and exhibits enhanced fluorescence
upon the complexation of YIII, LuIII and LaIII [111]. This ligand could thus be useful for
non-radioactive fluorescent stability and cell studies as well as bimodal imaging. H2pyhox
combines pyridine and oxine donor groups, resulting in an efficient chelator for 64CuII and
111InIII. Furthermore, H2pyhox proved to be suitable for 225AcIII [112]. Smaller radiometal
ions such as 44ScIII, 68GaIII and 111InIII are efficiently complexed with H3glyox, a ligand
containing glycine and oxine donor groups [113]. This ligand shows interesting fluorescence
properties after the addition of metal ions and is thus a promising system for nuclear/optical
imaging [114]. H6dappa is a phosphinate-bearing picolinic acid-based chelating ligand for
binding the radiometal ions 111InIII and 177LuIII that has additional carboxylic acid groups
for simultaneous introduction of fluorescence labels and targeting vectors [115]. H4pypa
is a nonadentate ligand suitable for stable binding of radiometal ions such as 111InIII and
177LuIII [116], 44ScIII [117] and 89ZrIV [118]. The central pyridine unit can be used in a
simple way via an ether linker group to introduce targeting molecules/modules and/or
fluorescence labels [117].

With the mixed ligand systems, a wide range is available for the development of cus-
tomised dual imaging agents with improved complexation and pharmacokinetic properties
and there are multiple possibilities for the introduction of targeting molecules/modules.
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4. Nanoscale Systems

Nanoscale structures are categorised into nanocomposites, nanoassemblies, nanoporous
and nanocrystalline materials and thus embrace organic and inorganic particles [6,119–123].
They differ in size, chemical composition, structure and dimension, which leads to unique
properties rendering them of interest for a myriad of applications, especially in oncology.
Benefitting from their large surface area to volume ratio and intrinsic properties, they
serve as platforms to embed a plethora of nuclear, photoacoustic, magnetic or fluores-
cent modalities [120]. Many innovative nanoprobes for bi-, tri or multimodal imaging
have been studied in recent decades and these are summarised elsewhere [30,36,120,124].
Great expectations are placed on these agents as they fulfil the multimodality imaging
concept that achieves a more accurate diagnosis by applying just one compound. The
latest advances of organic and inorganic nanoscale systems being used for nuclear and
optical imaging are of relevance for this review. Either the nanoscale structures can be
directly labelled or the intrinsic properties of the nanoparticles itself exhibit fluorescence
for FLI, single-photon emission for SPECT or positron emission for PET. Specific targeting
can be achieved by covalently attaching peptides, oligosaccharides, oligonucleotides, an-
tibodies or immunoconjugates (e.g., for antibody based (bispecific antibodies) or cellular
based immunotherapies with chimeric antigen receptor (CAR) T cells) [125–127]. Larger
nanoscale systems (sub 100 nm), especially polymer-based nanostructures, tend to be pas-
sively accumulated in the tumour tissue through the enhanced permeability and retention
effect (EPR) [128]. Besides the size, the pharmacokinetic and thus the in vivo behaviour is
likewise influenced by the surface charge and shape of the nanoscale system. Crucially, the
size requirement of inorganic nanoprobes was validated over the years and a value of less
than 10 nm is required for them to be cleared by the renal pathway. The under-estimated
impact of the protein corona formed on the surface of charged nanoscale systems influences
the biodistribution, circulation and metabolism pattern [129]. Hence, the design has to be
balanced carefully.

4.1. Organic Nanoscale Systems

Organic nanoscale systems such as liposomes [130], endosomes [131], nanocolloids [132],
micelles [133] or nanocrystalline materials [106] are ideal candidates to act as drug delivery
systems. However, multimodal imaging techniques are needed to track distribution in
real time and quantify the accumulation of these systems in vivo. Luo et al. used common
drug-loaded porphyrin-phospholipid (PoP) liposomes [134] (Figure 13). PoP itself exhibits
fluorescence and is capable of chelating copper-64 used for PET. The liposomes are less
than 100 nm with an excitation and emission wavelength of 675/720 nm. PET and NIR
fluorescence imaging in female BALB/c mice bearing orthotopic 4T1 mammary tumours
revealed a high accumulation in the liver, spleen and tumour tissue after 24 h. Tumour
accumulation is attributed through the EPR effect. The quantification and reliability of FLI
pinpoints the drawbacks using this single method alone. Due to the limited penetration
depth of even near infrared light, in vivo fluorescence images gain limited information. The
highest fluorescence intensity was observed in the tumour region, while PET biodistribution
studies revealed the highest accumulation in the liver. The differences of the fluorescence
signal can be explained by the various optical properties of organs and tissues.

Novel messenger vesicles which contain functional proteins and RNAs including mi-
croRNAs and mRNAs are receiving growing interest for clinical applications [135]. Those
so called exosomes are considered to be non-immunogenic and non-toxic, exhibiting high
stability [136]. Jung et al. monitored the biodistribution and accumulation pattern of exo-
somes derived from breast (murine mammary carcinoma 4T1 cell line) cancer cells in female
Balb/c nu/nu mice [131]. They were functionalised with 1,4,7-triazacyclononane-triacetic
acid (NOTA) to chelate the positron emitters gallium-68 and copper-64 and conjugated to
the NIR infrared dye C7, exhibiting a size of approximately 100 nm. PET images revealed
accumulation in the lymph nodes, liver and lung via lymphatic or hematogenous routes.
In vivo fluorescence images visualised the exosomes in the brachial lymph nodes only,
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whereas PET images localised them also in the axillary ones. However, quantifying the
fluorescence signals of ex vivo organs gave similar results to PET images.
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Another bimodal nanoscale drug delivery system has been reported by Sarparanta et al. [106].
Cellulose nanocrystals (CNC) were functionalised to the chelators desferrioxamine B (DFO)
or NOTA (to chelate zirconium-89 or copper-64) and the fluorescent dye Cy5. The modified
CNCs exhibit diameters of less than 8 nm with an average length of 90 nm. The in vivo
and ex vivo studies were examined in orthotopic 4T1 allograft-bearing mice, a tumour
model of human stage IV breast cancer. The PET images clearly showed accumulation of
[64Cu]Cu-NOTA-CNC-Cy5 and [86Zr]Zr-DFO-CNC-Cy5 in the liver, lung, bone and spleen.
Low tumour uptake was evaluated for both materials, indicating no passive targeting
through the EPR effect. Ex vivo OI images or biodistribution based on fluorescence label
showed similar accumulation pattern of the compounds seen by in vivo PET imaging.

Dual-labelled dendritic polyglycerols (dPG) were equipped with camelid single-domain
antibodies (sdAbs) to target the human epidermal growth factor receptor (EGFR) [137]. The
dendritic polyglycerols were functionalised with a copper-64 chelator (triazacyclononane
derivative) as well as with a fluorescent dye (Cy7, λex/em = 750/780 nm). The hydrophobic
diameter of the decorated dPG was < 8 nm. PET and OI imaging were performed in
A431 tumour-bearing NMRI nu/nu mice. The PET biodistribution profile points to renal
clearance and thus to a predominant renal excretion route. However, a certain accumulation
of activity was found in the liver. The authors consider the non-specific binding of 64CuII to
polyglycerol backbone as a possible reason. Tumour accumulation was low but higher in
comparison to their non-targeting dPG derivatives after 24 h. Results obtained by in vivo
and ex vivo OI revealed also preferred renal clearance with increased fluorescence intensity
found in the kidney cortex but only minimal liver accumulation. Interestingly, the tumour
uptake peaked between 24 and 48 h, which might explain the lower uptake seen in the PET
image after 24 h.

One engineering approach to design organic nanoprobes with precise surface chem-
istry was reported by Onzen et al. [138]. Short π-conjugated oligomers self-assemble to
fluorescent small molecule-based nanoparticles (SMNPs). The building blocks consisted of
two fluorene units connected by a benzothiadiazole linker. Both ends contain gallic acid
either decorated with alkyl or with polyethylenglycol chains exhibiting amphiphilic char-
acter. In addition, trans-cyclooctene functionalities (25%) and inert methyl (75%) groups
were introduced at the periphery of the ethylene glycol chain. The SMNPs exhibited
a hydrodynamic diameter of about 90 nm and the excitation and emission wavelength
were 430 and 510–650 nm. To monitor the in vivo behaviour of such organic spherical
nanoparticles, an 111In-labelled tetrazine-functionalised DOTA derivative reacted with the
trans-cyclooctene unit of the oligomers in an inverse-electron-demand Diels–Alder reaction.
The PET biodistribution data in nude Balb/c mice revealed significant accumulation in
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the liver and spleen within 70 h, with a peak at 4 h. The results demonstrated that the
elimination is taking place by macrophages located in the Kupffer cells (liver) and red
pulps (spleen). Due to the autofluorescence signal from the liver, in vivo imaging was not
possible. Emission spectra could only be measured in blood samples.

4.2. Inorganic Nanoscale Systems

A plethora of inorganic-based nanoparticles such as silica [139–141], silicon [142,143], metal-
based [144] and upconverting nanoparticles [145,146] as well as quantum dots [140,141,147]
were used for PET/SPECT and optical imaging. Depending on the inorganic material,
composition, size and shape, the fluorescence profile and quantum yield can vary. Semi-
conductor quantum dots (QDs) were considered as ideal inorganic-based alternatives to
organic dyes due to their intense and narrow emission profile, higher quantum yield and
their excellent photo-stability [148]. Unfortunately, they are also considered as toxic materi-
als due to their composition of cadmium. Strategies have been designed to minimise the
cytotoxicity. Cadmium telluride quantum dots were grafted on the surface of mesopourous
silica (MCM-41) and radiolabelled with gallium-68 without the use of chelators [140]. The
nanocomposites exhibit a size of 50 nm and were mainly accumulated in the liver, lung
and kidney.

A smart quantum dot protected nanosystem was design by Shi et al. [141]. They pre-
pared hollow mesopourous silica NPs and incorporated the commercially available QD705
(λex/em = 605/700 nm) in the cavity of the HMSNs. A chimeric human/murine anti-CD105
antibody (TRC105) was grafted onto the surface of the yolk/shell-structured nanosystem
which targets the membrane glycoprotein receptor CD105. It plays an important role in
tumour angiogenesis, growth and metastasis. NOTA chelators (complexation of 64Cu) were
decorated on the surface and the NPs showed a size of about 70 nm. PET images and
biodistribution studies in 4T1 tumour-bearing mice revealed significant liver and spleen
uptake after 24 h but also an enhanced tumour uptake in comparison to the non-targeted
and blocking group. The optical imaging confirmed the results.

Intrinsically labelled zirconium-89 silica nanotags functionalised with near infrared
fluorescent dyes (CF680-R, λex/em = 680/700 nm) were coated with protamine and heparine
to enable labelling to CAR T cells [139]. The dual-labelled nanotag gives the possibility of
long-term tracking of the in vivo behaviour of such immune cells and collects information
about tissue distribution by PET/FLI up to one week after adoptive cell transfer. The silica
nanoparticles had a mean hydrodynamic diameter of about 120 nm. The direct CAR T
cell labelling study broadcast the high silica NP loading efficiency and effective tumour
uptake and demonstrated the feasibility of using these nanotags as cargos to selectively
deliver drugs. Besides the application of silica NPs in medicine, silicon nanoparticles are
also considered as powerful ultrasmall and non-toxic agents.

De Cola and Stephan et al. showed vividly the enormous potential of Si NPs being
used as imaging agents [142,143]. In a first study, they evaluated the in vivo behaviour of
Si NPs decorated with [64Cu]Cu-NOTA derivatives and NIR fluorescence dyes (Kodak-
XS-679, λex/em = 680/700 nm) [142]. In vivo imaging revealed a fast renal clearance and a
significant accumulation in the liver, although a mean diameter of less than 5 nm was shown.
The authors attributed this phenomenon to the difference in charge and thus the formation
of the protein corona, which was not observed for neutral charged NPs. The same authors
investigated the biodistribution and in vivo behaviour of dual-labelled citrate-stabilised Si
NPs (<3 nm) to design neutral charged particles [143]. The NPs were functionalised with
NOTA and a near infrared dye (IRDye800CW, λex/em = 792/775 nm), enabling PET and
OI imaging (Figure 14). It is worth noting that after the functionalisation of the dye to the
Si NPs, a hypochromic shift (IR800- Si NPs, λex/em = 611/753 nm) was observed, which
might have been due to the presence of protonated amines. In vivo investigation by PET
and OI demonstrated encouraging pharmacokinetic properties, showing quick clearance
via the kidneys, no toxicity, no accumulation in organs or tissues and high stability even
after excretion from the organism.
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Another class of FDA-approved ultrasmall nanoparticles are AGuIX® (<5 nm) where
DOTAGA-Gd complexes are covalently bound on a polysiloxane matrix. Denat et al.
decorated these attractive nanoparticles with NODAGA chelators (complexation of 64Cu
and 68Ga) and Cy7 chromophores (IR783, λex/em = 792/815 nm), enabling PET/MRI/OI
trimodal imaging [149]. After functionalisation, the size of the AGuIX-NODAGA-IR753
nanoparticles increased to a mean value of about 12 nm. The in vivo evaluation in NMRI
TSA tumour-bearing mice revealed excretion via the renal and hepatic pathway since
significant accumulation was observed in the kidney, liver and spleen after 24 h. The
authors associate the elevated uptake with the increase in the hydrodynamic diameter
(>10 nm) and the application of heptamethine cyanine dyes, which has been reported to
show higher hepatic uptake [150]. The OI images showed, in contrast to PET-MRI, strong
fluorescence signal in the intestine and stomach and low contrast in the liver and kidney.
Self-quenching effects of AGuIX-NODAGA-IR753 occurred due to the high accumulated
concentrations in certain organs and tissues. The more dye absorbed in an organ or tissue,
the lower the fluorescence signal is.

It is worth noting that besides the combination of fluorescence imaging with PET,
Cerenkov luminescence imaging (CLI) has drawn attention in image-guided surgery, es-
pecially in combination with clinically approved radiopharmaceuticals. Cerenkov lumi-
nescence is generated due the decay processes of charged particles of sufficient energy
(β-emitting nuclides). The limited application due to penetration depth and low light
yield hinders further intraoperative clinical application. To extend the Cerenkov lumines-
cence properties and enhance the signal intensity, radiolabelled NPs were considered as
signal intensity enhancers and converters to achieve longer wavelength and thus deeper
tissue penetration. In an exemplary study, EuIII-doped gadolinium oxide NPs coated with
polyvinyl alcohol (PVA) for better biocompatibility were combined with 18F (β+-emitter)
as an excitation source [151]. The authors demonstrated that the optical signal intensity is
dependent on several factors including size/mass of NPs, surface modification, excitation
distance and amount of radioactivity. Nonetheless, they proved the use of in vivo tumour
NIRF imaging with high contrast and lower tissue-autofluorescence. Moreover, the intra-
operative image-guided surgery successfully localised tumours and tumour boundaries.

5. Conclusions and Future Perspectives

It is clear that rapid advancements in the quest to find new optical imaging agents is
occurring; the number of reports of new organic fluorophores and metal-based NIR imaging
agents—that can be excited at higher wavelengths and that have large extinction coefficients
and quantum yields and low or negligible autofluorescence properties—is increasing. This
advancement is primarily due to the synthesis of organic molecules containing donor–
acceptor–donor (D-A-D) moieties, enabling them to absorb in the NIR window and, in the
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case of lanthanide(III)-based imaging agents, when designed appropriately 2P-excitation
(between 700 and 900 nm) allows for in vivo microscopy. However, it is worth noting that
translation into a clinical setting is not trouble free, with further research of these imaging
agents as well as translational/clinical research and regulatory affairs required in order for
them to reach their potential as highly active theranostic agents. The approval process for
diagnostic tracers is very similar to that observed in traditional drug discovery, that is, after
their discovery and testing, pre-clinical trials followed by government approval is required.

Metal complexes that have been labelled with both a fluorophore and radionuclide
is an exciting area that is in its infancy. Within this area is the ability for the ligand
to be labelled with a non-radionuclide lanthanide(III) ion, for 2P-excitation, or with a
radionuclide for radionuclide scanning. Co-dosed, it is expected that these two imaging
agents, due to almost identical properties, would locate to the same site of action and thus
dual imaging with increased spatial resolution could be accomplished.

An alternate area is dual imaging probes that contain both fluorophores and radionu-
clides. There has been rapid development in this field in recent years. This includes
small molecule probes, new modular and nanoscale systems with improved detection and
pharmacokinetic properties. Especially in the last 5–10 years, a number of new BFCAs
with improved complexation properties have been developed that can be used for classical
radiometals such as technetium-99m and indium-111. They also provide access to emerging
radiometals such as scandium-44, copper-64, gallium-68, zirconium-89 and lutetium-177. A
number of new conjugation strategies are available that allow for the introduction of target-
ing modules under mild conditions. These include methods of bioorthogonal chemistry,
such as the Staudinger–Bertozzi ligation, the strain-promoted alkyne-azide cycloaddition
and the inverse electron demand Diels–Alder reaction. Furthermore, enzyme-mediated
conjugation strategies are increasingly used to achieve a defined functionalisation of, for
example, proteins (antibodies and their fragments) and nucleic acids. This provides a wide
range of new tools for personalised medicine and precision surgery.

Whilst in its infancy, novel imaging agents comprised of nanoscale systems are being
approved for use in the clinic [152]. The approval of imaging agents containing nanoscale
systems does have its challenges, with reproducibility of the manufactured systems be-
ing critical [153–156]. In response to this, the FDA has released a number of guidance
documents to provide information to academics and industry on the development, manu-
facturing and use of some products that contain nanomaterials [157]. The powerfulness of
science is always evolving, and the chemistry, analytical systems for physio-chemical char-
acterisation and policies are being created to allow for the safe use of novel dual-labelled
nanoscale systems.

Image-guided surgery, including robot-assisted surgery, is particularly attractive for
improving prospects of curing, especially in the field of oncology. Fluorescence-guided
surgery is the logical evolution of radio-guided surgery, because it allows for detailed real-
time visualisation, enabling surgical removal of all diseased tissue during an operation [158–160].
However, the sole use of optical imaging, especially in humans, is limited to regions close
to the surface due to the rather low penetration depth of the light radiation. For this reason,
dual-labelled probes (nuclear and fluorescence) are increasingly used for deeper regions.
This makes it possible to detect the diseased regions externally by means of nuclear imaging
and subsequently to clearly distinguish the stained diseased tissue from the healthy area
internally. Prominent examples of the use of such hybrid probes can be found in the
fields of sentinel lymph node biopsy [161–167], prostate cancer [168,169], neuroendocrine
tumours [170] and breast [171] and kidney cancer [172].

Cerenkov emission is a method that does not require additional fluorophores and is
under discussion for clinical application [173–175]. However, depending on the Cerenkov
intensity of the radionuclides used, the signal intensity is three to four orders of magnitude
lower compared to fluorescence-emitting probes [176]. In order to keep the radiation dose
for patients and clinical staff low, the activity concentration of the radionuclides applied
must be kept as low as possible. This limits the application possibilities, especially for
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Cerenkov-emitting nuclides. For a clinical application of Cerenkov imaging, the detection
sensitivity must be significantly increased.

In terms of image-guided surgery, dual-labelled (nuclear and fluorescence) probes will
dominate this exciting field in the coming years and open up new fields of application. Here,
methods of artificial intelligence will also increasingly be incorporated [177]. With regard
to clinical application, various challenges have to be overcome. This concerns, for example,
the production of ready-to-use kits that have sufficient long-term stability. The translation
of suitable dual-labelled imaging probes into clinical routine requires regulatory approval
and, in turn, manufacturing under the conditions of good manufacturing practice (GMP).
Overall, this is a challenging and exciting field that requires intensive multidisciplinary
collaboration between experts in different fields and will undoubtedly lead to new products
that enable improved non-invasive imaging with more sophisticated treatment options.
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