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Abstract: The anxiolytic and antidepressant properties of cannabidiol (CBD) have been evaluated
in several studies. However, the molecular mechanisms involved in these actions remain unclear.
A total of 130 male mice were used. CBD’s ability to modulate emotional disturbances (anxiety
and depressive-like behaviors) was evaluated at different doses in wild-type (CD1; 10, 20 and
30 mg/kg; i.p.) and knockout (CB1KO, CB2KO; GPR55KO; 20 mg/kg) mice. Moreover, CBD effects
(20 mg/kg; i.p.) were evaluated in mice previously treated with the CB1r-antagonist SR141716A
(2mg/kg; i.p.). Relative gene expression analyses of Cnr1 and Cnr2, Gpr55 and GABA(A)α2 and
γ2 receptor subunits were performed in the amygdala (AMY) and hippocampus (HIPP) of CD1
mice. CBD (10 and 20 mg/kg) showed anxiolytic and antidepressant actions in CD1 mice, being
more effective at 20 mg/kg. Its administration did not induce anxiolytic actions in CB1KO mice,
contrary to CB2KO and GPR55KO. In all of them, the lack of cannabinoid receptors did not modify the
antidepressant activity of CBD. Interestingly, the administration of the CB1r antagonist SR141716A
blocked the anxiolytic-like activity of CBD. Real-time PCR studies revealed a significant reduction
in Cnr1 and GABA(A)α2 and γ2 gene expression in the HIPP and AMY of CD1 mice treated with
CBD. Opposite changes were observed in the Cnr2. Indeed, Gpr55 was increased in the AMY and
reduced in the HIPP. CB1r appears to play a relevant role in modulating the anxiolytic actions of CBD.
Moreover, this study revealed that CBD also modified the gene expression of GABA(A) subunits α2
and γ2 and CB1r, CB2r and GPR55, in a dose- and brain-region-dependent manner, supporting a
multimodal mechanism of action for CBD.

Keywords: cannabidiol; anxiety; depression; cannabinoid receptor 1; cannabinoid receptor 2;
G-protein-coupled receptor 55; GABA(A) receptor

1. Introduction

Mood disorders are considered one of the most prevalent psychiatric disorders with
a high socioeconomic and health impact. Anxiety and depression are the most common,
with an estimated 280 million people suffering from each [1–6]. The treatment of both
includes complex pharmacological strategies combined with cognitive-behavioral therapies.
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly used antidepressant
drugs, with significant limitations regarding their therapeutic effectiveness. Indeed, up
to 30% of patients with major depression develop treatment resistance to the first-line
selected drugs [7–11]. On the other hand, benzodiazepines, the most commonly prescribed
anxiolytic drugs, are limited because of their high risk of abuse and adverse effects [12,13].
Thus, the therapeutic limitations in treating these disorders highlight the need to develop
new, more effective and safer pharmacological strategies.
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In recent years, the endocannabinoid system (ECS) has attracted interest because
of its implication in the pathophysiology of neuropsychiatric disorders, including mood
disorders [14–19]. Thus, the modulation of this system could be an exciting tool for their
treatment. Cannabidiol (CBD) is one of the main compounds of the Cannabis sativa plant
without properties as a drug of abuse [20]. This drug can interact with more than 65 differ-
ent targets, such as G-protein-coupled receptor 55 (GPR55), vanilloid receptors (TRPV1),
serotonergic receptor 5-HT1A, mu and delta-opioid receptors and peroxisome proliferator-
activated receptor gamma (PPAR-γ) [21–27]. Notably, CBD acts as a non-competitive
allosteric modulator of cannabinoid receptor 1 (CB1r) [21,28] and as an inverse agonist
of cannabinoid receptor 2 (CB2r) [25]. Several clinical and preclinical studies showed
that CBD presents antidepressant, anxiolytic, antipsychotic and neuroprotective actions,
presenting an attractive potential therapeutic strategy for treating mood disorders [29–31].
In this respect, its possible utility in anxiety and depression has been evaluated in several
animal models, with promising results [32–37]. The involvement of 5-HT1A receptors in
CBD’s mechanism of action has been proposed [32,33,36]. Additional studies revealed the
involvement of CB1r in the anxiolytic activity of CBD [38–40].

Cumulative evidence supports the role of cannabinoid receptors (CB1 and CB2) in
regulating the response to stress, anxiety, depression, schizophrenia and in
cognition [41–47]. Interestingly, both cannabinoid receptors are associated with signif-
icant alterations in the expression of anxiolytic-mediated subunits of the GABA(A) recep-
tor [42,48,49] and with the anxiolytic action of benzodiazepines [41,42]. More recently,
additional receptors on which endocannabinoids also act, such as the GRP55 receptor,
have been associated with the regulation of emotional reactivity [50–52] and hippocampal
plasticity [53]. Interestingly, previous studies have demonstrated that CBD modifies the
gene expression of these targets in animal models of PTSD [54], alcohol consumption [55,56]
and spontaneous cannabinoid withdrawal [57], in which CBD showed efficacy.

The present study aimed to characterize the mechanisms by which CBD exhibits its
anxiolytic and antidepressant actions, emphasizing CB1r, CB2r and GPR55. In the first
part, we evaluated dose-response acute CBD effects in wild-type animals (WT) in a battery
of tests for assessing anxiety and coping-like behavior. In the second part, CBD effects
were evaluated in genetically modified mice lacking CB1r (CB1KO), CB2r (CB2KO), and
GPR55 (GPR55KO) exposed to representative behavioral tests for measuring anxiogenic-
and coping-like behaviors. In addition, pharmacological studies using the CB1r-antagonist,
SR141716A, were carried out to further clarify the role of CB1r in CBD effects. Finally, gene
expression studies were conducted to analyze potential changes in Cnr1, Cnr2, Gpr55 and
GABA(A) genes induced by acute CBD administration in WT animals using real-time PCR.

2. Results
2.1. Behavioral Evaluation of CBD Actions in WT Mice

We first wanted to evaluate the acute anxiolytic and antidepressant-like effects of
CBD. For this purpose, we chose well-accepted animal models for assessing anxiety-like
behaviors, using the light-dark box (LDB), the elevated plus maze (EPM) test and novelty
suppressed feeding (NSFT) test, coping behavior, and tail suspension test (TST) in rodents.
These studies were designed to help further characterize the acute effects of CBD in the
modulation of anxiety and depressive-like behaviors in mice.

2.1.1. Light-Dark Box Test (LDB)

Mice treated with CBD at 10 and 20 mg/kg doses spent more time in the lighted box
than vehicle (VEH)-treated mice. Interestingly, these anxiolytic actions were not observed
at a dose of 30 mg/kg (Figure 1A, one-way ANOVA followed by Student–Newman–Keuls
test, F(3,39) = 10.124, p < 0.001) (n = 9–10/group). In addition, no changes were observed
in the number of transitions between groups (Figure 1B, one-way ANOVA followed by
Student–Newman–Keuls test, F(3,39) = 0.421, p = 0.739) (n = 9–10/group).
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Figure 1. Effects of a single administration of cannabidiol (CBD) (10, 20 and 30 mg/kg, i.p.) on anxi-
ety-like behaviors in the light-dark box (A,B) and elevated plus maze (C,D) paradigms. The behav-
ioral evaluation was developed 1 h and 30 min after the administration of CBD (or vehicle (VEH)). 
Columns represent the means and vertical lines ± SEM of (A) the time in the lighted box (s); (B) the 
number of transitions in the light-dark box test; (C) the percentage of time in the open arms (%); and 
(D) the number of transitions in the elevated plus-maze test. * Values from CBD-treated mice that 
were different (p < 0.05) from VEH-treated mice and # values from CBD-20 mg/kg-treated mice that 
were different from CBD-10 mg/kg-treated mice (one-way ANOVA followed by Student–Newman–
Keuls test, p < 0.05). 

2.1.3. Tail Suspension Test (TST) 
Treatment with CBD significantly reduced the immobility time at a dose of 20 

mg/kg. Interestingly, the lower and the higher doses of CBD (10 and 30 mg/kg) did not 
induce any effects (Figure 2, One-way ANOVA followed by Student–Newman–Keuls 
test, F(3,38) = 3.364, p = 0.029) (n = 9–10/group). 

Figure 1. Effects of a single administration of cannabidiol (CBD) (10, 20 and 30 mg/kg, i.p.) on
anxiety-like behaviors in the light-dark box (A,B) and elevated plus maze (C,D) paradigms. The
behavioral evaluation was developed 1 h and 30 min after the administration of CBD (or vehicle
(VEH)). Columns represent the means and vertical lines ± SEM of (A) the time in the lighted box (s);
(B) the number of transitions in the light-dark box test; (C) the percentage of time in the open arms
(%); and (D) the number of transitions in the elevated plus-maze test. * Values from CBD-treated
mice that were different (p < 0.05) from VEH-treated mice and # values from CBD-20 mg/kg-treated
mice that were different from CBD-10 mg/kg-treated mice (one-way ANOVA followed by Student–
Newman–Keuls test, p < 0.05).

2.1.2. Elevated Plus Maze Test (EPM)

CBD exerted an anxiolytic-like effect after a dose of 10 mg/kg, increasing the per-
centage of time spent in the open arms compared to controls. Interestingly, a dose of
20 mg/kg induced a more pronounced anxiolytic action than for CBD-10 mg/kg-treated
mice (Figure 1C, one-way ANOVA followed by Student–Newman–Keuls test,
F(3,38) = 66,908, p < 0.001) (n = 9–10/group). In contrast, no effect was observed at
the highest dose of CBD (30 mg/kg) compared to the VEH group. No differences were
observed in the number of transitions between all four groups (Figure 1D, one-way ANOVA
followed by Student–Newman–Keuls test, F(3,35) = 2.056, p = 0.126) (n = 9–10/group).

2.1.3. Tail Suspension Test (TST)

Treatment with CBD significantly reduced the immobility time at a dose of 20 mg/kg.
Interestingly, the lower and the higher doses of CBD (10 and 30 mg/kg) did not in-
duce any effects (Figure 2, One-way ANOVA followed by Student–Newman–Keuls test,
F(3,38) = 3.364, p = 0.029) (n = 9–10/group).
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(p < 0.05) from VEH-treated group (one-way ANOVA followed by Student–Newman–Keuls test, p 
< 0.05). 
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Figure 2. Effects of a single administration of cannabidiol (CBD) (10, 20 and 30 mg/kg, i.p.) on coping
behaviors in the tail suspension test paradigm. The behavioral evaluation was developed 1 h and
30 min after the administration of CBD (or vehicle (VEH)). Columns represent the means and vertical
lines ± SEM of immobility time (s). * Values from CBD-20 mg/kg-treated mice that were different
(p < 0.05) from VEH-treated group (one-way ANOVA followed by Student–Newman–Keuls test,
p < 0.05).

2.1.4. Novelty Suppressed Feeding Test (NSFT)

Mice showed significantly shorter latency time and increased consumption of food
pellets (mg) with a dose of 10 mg/kg of CBD compared with the control group. The
20 mg/kg intermediate dose revealed major anxiolytic and hedonic actions. In contrast,
the dose of 30 mg/kg did not induce any differences compared with VEH-treated mice
(latency time: Figure 3A, one-way ANOVA followed by Student–Newman–Keuls test,
F(3,36) = 19.411, p < 0.001; Food consumption: Figure 3B, one-way ANOVA followed by
Student–Newman–Keuls test, F(3,37) = 16.840, p < 0.001) (n = 9–10/group).
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Figure 3. Effect of a single administration of cannabidiol (CBD) (10, 20 and 30 mg/kg, i.p.) on anxiety-
like behaviors in the novelty suppressed feeding test. The behavioral evaluation was developed 1 h
and 30 min after the administration of CBD (or vehicle (VEH)). Columns represent the means and
vertical lines ± SEM of (A) latency time (s) and (B) pellet intake (mg). * Values from CBD-treated mice
that were different (p < 0.05) from VEH-treated mice, and # values from 20 mg/kg of CBD-treated
mice that were different from mice treated with the lower dose of CBD (10 mg/kg) (one-way ANOVA
followed by Student–Newman–Keuls test, p < 0.05).

2.2. Effects of CBD on Anxiety and Coping-like Behaviors in Mice Lacking CB1r, CB2r and GPR55

Considering the role of CB1r, CB2r and GPR55 in modulating emotional reactivity,
and that they are proposed targets on which CBD directly or indirectly acts, we aimed
to explore their involvement in the anxiolytic and antidepressant-like effects of CBD. For
this purpose, we evaluated the effects of CBD in the LDB and the TST in mice lacking the
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CB1r (CB1KO), CB2r (CB2KO) and GPR55 (GPR55KO) receptors. These results enable an
improved understanding of the mechanism of action of CBD.

2.2.1. Light-Dark Box (LDB)

Acute CBD (20 mg/kg) administration did not modify anxiety-like behaviors in
CB1KO mice compared to the control group (Figure 4A, two-way ANOVA followed by
Student–Newman–Keuls test: genotype F(1,40) = 263.42, p < 0.001; treatment
F(1,40) = 12.386, p = 0.001; genotype × treatment: F(1,40) = 13.242, p < 0.001)
(n = 10–11). In contrast, in CB2KO and GPR55KO mice an anxiolytic effect was observed
after CBD administration (CB2KO: Figure 4C, two-way ANOVA followed by Student–
Newman–Keuls test: genotype F(1,38) = 180.23, p < 0.001; treatment F(1,40) = 56.126,
p < 0.001; genotype × treatment: F(1,40) = 4.829, p = 0.035) (n = 9–10/group); GPR55KO:
Figure 4E, two-way ANOVA followed by Student–Newman–Keuls test: genotype
F(1,37) = 23.265, p < 0.001; treatment F(1,37) = 53.020, p < 0.001; genotype × treatment:
F(1,37) = 1.555, p = 0.221) (n = 8–10/group).
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Figure 4. Effects of a single administration of cannabidiol (CBD) at a dose of 20 mg/kg (i.p.) on
anxiety-like behaviors in the light-dark box in mice lacking the cannabinoid receptor 1 (CB1KO)
(A,B), lacking the cannabinoid receptor 2 (CB2KO) (C,D), and lacking the G-protein-coupled receptor
55 (GPR55KO) (E,F) mice. The behavioral evaluation was developed 1 h and 30 min after the
administration of CBD (or vehicle (VEH)). Columns represent the means and vertical lines ± SEM of
the time in the lighted box (s) (A,C,E) and the number of transitions (B,D,F). Results from CD1 VEH
and CBD (20 mg/kg) groups have been included for comparative purposes. * Values from groups
that were different from wild-type (WT)-VEH treated mice (two-way ANOVA followed by Student–
Newman–Keuls test, p < 0.05). $ Values from groups that were different from KO-VEH treated mice
(two-way ANOVA followed by Student–Newman–Keuls test, p < 0.05). # Values from groups that
were different from WT-CBD-treated mice (two-way ANOVA followed by Student–Newman–Keuls
test, p < 0.05).

No changes were observed in the number of transitions between CBD- and VEH-
treated mice (CB1KO: Figure 4B, two-way ANOVA followed by Student–Newman–Keuls
test: genotype F(1,40) = 39.216, p < 0.001; treatment F(1,40) = 0.580, p = 0.451; genotype x
treatment F(1,40) = 0.407, p = 0.528) (CB2KO: Figure 4D, two-way ANOVA followed by
Student–Newman–Keuls test: genotype F(1,38) = 6.762, p = 0.014; treatment F(1,38) = 0.899,



Pharmaceuticals 2022, 15, 473 6 of 19

p = 0.349; genotype x treatment F(1,38) = 1.146, p = 0.292) (GPR55KO: Figure 4E, two-way
ANOVA followed by Student–Newman–Keuls test: genotype F(1,37) = 24.433, p < 0.001;
treatment F(1,37) = 0.429, p = 0.517; genotype x treatment F(1,37) = 0.306, p = 0.584).

2.2.2. Tail Suspension Test (TST)

CBD at the dose of 20 mg/kg elicited antidepressant-like effects among all CB1KO,
CB2KO and GPR55KO mice (CB1KO: Figure 5A, two-way ANOVA followed by Student–
Newman–Keuls test: genotype F(1,40) = 9.878, p = 0.003; treatment F(1,40) = 23.176,
p < 0.001; genotype x treatment F(1,40) = 0.390, p = 0.536; n = 10–11) (CB2KO: Figure 5B,
two-way ANOVA followed by Student–Newman–Keuls test: genotype F(1,38) = 22.938,
p < 0.001; treatment F(1,38) = 17.379, p < 0.001; genotype x treatment F(1,38) = 0.278, p = 0.601;
n = 9–10) (GPR55KO: Figure 5C, two-way ANOVA followed by Student–Newman–Keuls
test: genotype F(1,37) = 16.233, p < 0.001; treatment F(1,37) = 14.633, p < 0.001; genotype x
treatment F(1,37) = 0.0389, p = 0.845; n = 8–9).
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Figure 5. Effects of a single administration of cannabidiol (CBD) at 20 mg/kg (i.p.) on coping
behaviors in the tail suspension test in mice lacking the cannabinoid receptor 1 (CB1KO) (A), lacking
the cannabinoid receptor 2 (CB2KO) (B) and lacking the G-protein-coupled receptor 55 (GPR55KO)
(C). The behavioral evaluation was developed 1 h and 30 min after administration of CBD (or
vehicle (VEH)). Columns represent the means and vertical lines ± SEM of immobility time (s).
Results from CD1-VEH and CBD (20 mg/kg) groups have been included for comparative purposes.
* Values from groups that were different from wild-type (WT)-VEH-treated mice (two-way ANOVA
followed by Student–Newman–Keuls test, p < 0.05). $ Values from groups that were different
from KO-VEH treated mice (two-way ANOVA followed by Student–Newman–Keuls test, p < 0.05).
# Values from groups that were different from WT CBD-treated mice (two-way ANOVA followed by
Student–Newman–Keuls test, p < 0.05).

2.3. Effects of CBD in Combination with a Selective CB1r Antagonist on Anxiety-like Behaviors in
WT Mice

Considering that CBD did not show any anxiolytic-like effect in CB1KO mice, we thor-
oughly explored the role of CB1r in CBD properties by administering the CB1r-antagonist
SR141716A before CBD administration in CD1 mice and evaluated its effects in the LBD
test. The results would demonstrate the involvement of CB1r in CBD anxiolytic properties.

The administration of SR141716A did not modify the time spent in the lighted box in
the LDB paradigm. In contrast, CBD showed an anxiolytic action at 20 mg/kg. Interestingly,
this effect was completely blocked when combined with the CB1r-antagonist, inducing
even a mild anxiogenic effect (Figure 6A, two-way ANOVA followed by Student–Newman–
Keuls test, SR: (1,31) F = 22,002, p < 0.001; CBD: (1,31) F = 0.0427, p = 0.838; SR × CBD:
(1,31) F = 10,226, p = 0.003) (n = 8/group). No differences were observed in the number of
transitions between groups (Figure 6B, two-way ANOVA followed by Student–Newman–
Keuls test, SR: F(1,31) = 2.080, p = 0.160; CBD: F(1,31) = 0.382, p = 0.542; SR × CBD: (1,31)
F = 0.308, p = 0.584) (n = 8/group).



Pharmaceuticals 2022, 15, 473 7 of 19Pharmaceuticals 2022, 15, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 6. Effects of a single administration of cannabidiol (CBD) (20 mg/kg, i.p.) in mice pre-treated 
with the cannabinoid receptor 1 (CB1r)-antagonist SR141716A (2 mg/kg, i.p.) on the light-dark box 
test. The behavioral evaluation was developed 2 h after SR141716A (or vehicle) and 1 h and 30 min 
after the administration of CBD (or vehicle (VEH)). Columns represent the means and vertical lines 
± SEM of the time in the lightbox (s) (A) and the number of transitions (B). * Values from CBD-
treated mice that were different (p < 0.05) from vehicle (VEH)-treated mice, and # values from 
SR141716A + CBD-treated mice that were different from VEH + CBD and SR141716A + VEH-treated 
animals (two-way ANOVA followed by Student–Newman–Keuls test, p < 0.05). 

2.4. Gene Expression Studies of Cnr1, Cnr2, Gpr55 and GABA (A)2 and 2 Subunits in Wt 
Mice Treated with CBD 

Additionally, we carried out gene expression studies to identify alterations in key 
targets closely related to emotional reactivity and anxiety, such as Cnr1, Cnr2, Gpr55 and 
the 2 and 2 subunits of GABA(A) receptors in the amygdala (AMY) and hippocampus 
(HIPP) of mice treated with CBD, and two brain corticolimbic regions involved in a broad 
range of behavioral and cognitive functions, including emotional regulation. We chose 
real-time PCR to measure these targets’ relative gene expression. 

2.4.1. Cannabinoid Receptors 
CBD administration induced a dose-dependent decrease in Cnr1 gene expression in 

the AMY at all doses (Figure 7A, one-way ANOVA followed by Student–Newman–Keuls 
test, F(3,35) = 6.699, p < 0.001) (n = 9–10/group). The same effect was observed in the HIPP 
but only at the highest dose of CBD (Figure 7D, one-way ANOVA followed by Student–
Newman–Keuls test, F(3,36) = 4.692, p = 0.008) (n = 9–10/group). This reduction was ac-
companied by an increase in gene expression of Cnr2 (at all 3 doses) in the AMY (Figure 
7B, one-way ANOVA followed by Student–Newman–Keuls test, F(3,34) = 8.910, p < 0.001) 
(n = 9–10/group) and HIPP (at 20 and 30 mg/kg) (Figure 7E, one-way ANOVA followed 
by Student–Newman–Keuls test, F(3,36) = 7.178, p < 0.001) (n = 9–10/group). Gpr55 only 
increased at a dose of 30 mg/kg (Figure 7C, one-way ANOVA followed by Student–New-
man–Keuls test, F(3,35) = 3.521, p = 0.026) (n = 9–10/group) in the AMY, whereas in the 
HIPP, a significant reduction was observed at all doses tested (Figure 7F, one-way 
ANOVA followed by Student–Newman–Keuls test, F(3,36) = 4.948, p = 0.006) (n = 9–
10/group). 

B

VEH SR141716A

Nu
m

be
ro

f
tra

ns
iti

on
s

0

10

20

30

40

50

Ti
m

e 
sp

en
ti

n 
lig

ht
 b

ox
 (s

)

A

VEH SR141716A
0

20
40
60
80

100
120
140
160
180

*
#

VEH
CBD*

Figure 6. Effects of a single administration of cannabidiol (CBD) (20 mg/kg, i.p.) in mice pre-treated
with the cannabinoid receptor 1 (CB1r)-antagonist SR141716A (2 mg/kg, i.p.) on the light-dark box
test. The behavioral evaluation was developed 2 h after SR141716A (or vehicle) and 1 h and 30 min
after the administration of CBD (or vehicle (VEH)). Columns represent the means and vertical lines ±
SEM of the time in the lightbox (s) (A) and the number of transitions (B). * Values from CBD-treated
mice that were different (p < 0.05) from vehicle (VEH)-treated mice, and # values from SR141716A
+ CBD-treated mice that were different from VEH + CBD and SR141716A + VEH-treated animals
(two-way ANOVA followed by Student–Newman–Keuls test, p < 0.05).

2.4. Gene Expression Studies of Cnr1, Cnr2, Gpr55 and GABA (A)α2 and γ2 Subunits in Wt Mice
Treated with CBD

Additionally, we carried out gene expression studies to identify alterations in key
targets closely related to emotional reactivity and anxiety, such as Cnr1, Cnr2, Gpr55 and
the α2 and γ2 subunits of GABA(A) receptors in the amygdala (AMY) and hippocampus
(HIPP) of mice treated with CBD, and two brain corticolimbic regions involved in a broad
range of behavioral and cognitive functions, including emotional regulation. We chose
real-time PCR to measure these targets’ relative gene expression.

2.4.1. Cannabinoid Receptors

CBD administration induced a dose-dependent decrease in Cnr1 gene expression in
the AMY at all doses (Figure 7A, one-way ANOVA followed by Student–Newman–Keuls
test, F(3,35) = 6.699, p < 0.001) (n = 9–10/group). The same effect was observed in the
HIPP but only at the highest dose of CBD (Figure 7D, one-way ANOVA followed by
Student–Newman–Keuls test, F(3,36) = 4.692, p = 0.008) (n = 9–10/group). This reduction
was accompanied by an increase in gene expression of Cnr2 (at all 3 doses) in the AMY
(Figure 7B, one-way ANOVA followed by Student–Newman–Keuls test, F(3,34) = 8.910,
p < 0.001) (n = 9–10/group) and HIPP (at 20 and 30 mg/kg) (Figure 7E, one-way ANOVA
followed by Student–Newman–Keuls test, F(3,36) = 7.178, p < 0.001) (n = 9–10/group).
Gpr55 only increased at a dose of 30 mg/kg (Figure 7C, one-way ANOVA followed by
Student–Newman–Keuls test, F(3,35) = 3.521, p = 0.026) (n = 9–10/group) in the AMY,
whereas in the HIPP, a significant reduction was observed at all doses tested (Figure 7F,
one-way ANOVA followed by Student–Newman–Keuls test, F(3,36) = 4.948, p = 0.006)
(n = 9–10/group).
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from 30 mg/kg of CBD-treated mice that were different from the lower dose of CBD (10 mg/kg) 
treated animals. & Values from 30 mg/kg of CBD-treated mice that were different from the CBD (20 
mg/kg) treated mice (one-way ANOVA followed by Student–Newman–Keuls test, p < 0.05). 
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Figure 7. Effects of a single administration of cannabidiol (CBD) (10, 20 and 30 mg/kg, i.p.) on
the relative gene expression of cannabinoid receptor 1 (Cnr1), cannabinoid receptor 2 (Cnr2) and
G-protein-coupled receptor 55 (GPR55) in the amygdala (AMY) (A–C) and hippocampus (HIPP)
(D–F). Columns represent the means and vertical lines ± SEM of the relative gene expression
(2-∆∆Ct). * Values from CBD-treated mice that were different from vehicle (VEH)-treated mice,
and # values from 30 mg/kg of CBD-treated mice that were different from the lower dose of CBD
(10 mg/kg) treated animals. & Values from 30 mg/kg of CBD-treated mice that were different from
the CBD (20 mg/kg) treated mice (one-way ANOVA followed by Student–Newman–Keuls test,
p < 0.05).

2.4.2. GABA (A) Receptor Subunits

CBD administration at doses of 20 and 30 mg/kg decreased GABA(A)α2 gene expres-
sion in the AMY, this reduction being more pronounced with the highest dose of 30 mg/kg
(Figure 8A, one-way ANOVA followed by Student–Newman–Keuls test, F(3,35) = 7.048,
p < 0.001) (n= 9–10/group). Similarly, in the HIPP, a reduction of GABA(A)α2 was observed
at all doses of CBD tested (Figure 8C, one-way ANOVA followed by Student–Newman–
Keuls test, F(3,36) = 6.759, p < 0.001) (n = 9–10/group). In addition, for GABA(A)γ2 gene a
dose-dependent decrease was observed in both regions, AMY (Figure 8B, one-way ANOVA
followed by Student–Newman–Keuls test, F(3,35) = 6.899, p < 0.001) (n = 9–10/group) and
HIPP (Figure 8D, one-way ANOVA followed by Student–Newman–Keuls test, F(3,36) = 4.460,
p = 0.010) (n = 9–10/group).
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treated animals (one-way ANOVA followed by Student–Newman–Keuls test, p < 0.05). 
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Figure 8. Effects of a single administration of CBD (10, 20 and 30 mg/kg, i.p.) on the relative gene
expression of GABA(A) α2 and γ2 in the amygdala (AMY) (A,C) and hippocampus (HIPP) (B,D).
Columns represent the means and vertical lines ± SEM of the relative gene expression (2-∆∆Ct).
* Values from CBD-treated mice that were different from vehicle (VEH)-treated mice and # values
from CBD (20 or 30 mg/kg)-treated mice that were different from the lower dose of CBD (10 mg/kg)
treated animals (one-way ANOVA followed by Student–Newman–Keuls test, p < 0.05).

3. Discussion

The present study results confirm that CBD may significantly promote anxiolytic- and
antidepressant-like effects in mice in a dose-dependent manner, effects that are mediated,
at least in part, by CB1r. This statement is based on the following observations: (1) Low and
intermediate acute doses of CBD (10 and 20 mg/kg) induced anxiolytic- and antidepressant-
like effects in the behavioral tests assessed in WT mice; (2) Acute CBD administration
(20 mg/kg) failed to induce any anxiolytic-like effects in CB1KO mice, whereas it was
observed in CB2KO and GPR55KO mice; (3) the administration of the CB1r-antagonist,
SR141716A, blocked the anxiolytic action of CBD; (4) CBD presented an antidepressant-
like effect in all the knockout mice used; and (4) the administration of CBD reduced
Cnr1, GABA(A)α2 and GABA(A)γ2 gene expression in the AMY and HIPP, whereas it
increased Cnr2 in both regions. In contrast, Gpr55 gene expression increased in the AMY
but decreased in the HIPP after administration of CBD.

Previous studies have shown that CBD induced anxiolytic- and antidepressant-like
effects following an inverted U-shape curve, being effective at intermediate but not at
very low or high doses [31,58–60]. In agreement with these studies, we found that low
(10 mg/kg) and intermediate doses (20 mg/kg) induced an anxiolytic-like effect, since both
doses increased the exploration time in anxiogenic environments in the LDB and EPM test.
Moreover, CBD at these doses also reduced the latency in the NSFT, increasing the food
intake. The intermediate CBD dose presented a more robust antidepressant-like effect than
the lower dose since it significantly reduced coping behavior, indirectly measured by the
immobility time in the TST.
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In none of the behavioral tests performed, did CBD at the highest dose (30 mg/kg)
show any anxiolytic or antidepressant-like effect, as described previously [61]. How-
ever, opposite results were found in other studies in which the same dose induced an
anxiolytic- [34,62] or antidepressant-like effect [35,36,63,64]. These discrepancies may be
due to differences in methodological procedures, such as different animal species (rats and
mice), strains (Wistar rats, C57Bl6J, ICR), behavioral tests applied, and/or the pattern of
administration (for more details, see [30]).

Despite evidence supporting the anxiolytic and antidepressant properties of CBD
under certain experimental conditions, the complete characterization of the underlying
mechanisms of action is still pending. In this respect, 5-HT1A is one of the main targets
studied among the more than 65 targets on which CBD acts [29,65,66], demonstrating
the involvement of this receptor in its anxiolytic [32,67–70] and antidepressant-like ef-
fects [33,36,40]. Here, we aimed to explore further the implication of additional CBD
proposed targets, such as CB1r, CB2r and GPR55, given the critical role these receptors
play in emotional reactivity, anxiety and mood disorders [14,42,44,48,51,52,71–73]. Stud-
ies on genetically modified mice have provided evidence, since CB1KO [47,74–76] and
CB2KO mice [45,77] showed increased anxiety and depressive-like behaviors. Moreover,
recent studies carried out by our group demonstrated that GPR55KO mice also displayed
anxiogenic-like responses (to be published).

Genetic (CB1KO) and pharmacological (SR141716A) approaches show CB1r as an
undoubtedly active receptor mediating the anxiolytic properties of CBD. Thus, we evalu-
ated the effects of the effective CBD dose (20 mg/kg) in CB1KO, CB2KO and GPR55KO
mice. CBD induced anxiolytic-like effects in CB2KO and GRP55KO but did not affect
CB1KO mice. Moreover, a pharmacological study using the CB1r-antagonist SR141716A
demonstrated that the blockade of CB1r avoids CBD-induced anxiolytic-like effects in
the LBD test. Importantly, SR141716A did not induce any effect when it was given alone.
These results agree with previous studies demonstrating the involvement of CB1r in the
anxiolytic actions of CBD [40,78–81]. However, when evaluating the effects of CBD on
coping behaviors in the tail suspension test in the different knockout mice, the lack of these
receptors did not prevent CBD antidepressant effects. Therefore, based on these results, it
is tempting to speculate that other receptors, such as the 5-HT1A receptor described above,
may be even more critical in understanding the antidepressant action of CBD.

Real-time PCR analyses revealed that acute CBD administration modified gene expres-
sion of Cnr1, Cnr2 and Gpr55 in a dose- and brain-region-dependent manner. AMY and
HIPP analyses showed that CBD downregulated Cnr1 and increased Cnr2 gene expres-
sion dose-dependently, with the most pronounced effects occurring with the highest dose
(30 mg/kg). These results agree with previous studies of our group and others demon-
strating that CBD treatment reduced Cnr1 [56,82] and increased Cnr2 gene expression in
different brain areas [56]. These alterations are compatible with CBD acting as a CB1r-
agonist (directly or indirectly) and as a CB2r -antagonist.

Regarding Gpr55, opposite results were observed in the AMY and HIPP. On the one
hand, CBD significantly upregulated Gpr55 at the highest dose in the AMY. On the other
hand, Gpr55 expression was significantly reduced in the HIPP at all doses tested, with no
differences between them. Similarly, our previous studies revealed that CBD reduced Gpr55
in the NAcc of mice exposed to the oral ethanol self-administration paradigm [56]. The
exact mechanism by which CBD induced these opposite changes in Gpr55 gene expression
between the two brain regions needs to be further explored.

The GABAergic system plays an essential role in the regulation of emotional responses.
It is a crucial therapeutic target for controlling anxiety and mood disorders and the critical
target by which benzodiazepines (BZD) exert their anxiolytic properties [82]. The anxi-
olytic effect of BZD is mediated by GABA(A) receptors containing α2 and γ2 subunits,
with high expression in the limbic system and cortex [83–86]. The pentameric GABA(A)
receptors are formed by the assembly of different subunits containing α1, α2, α3 or α5, in
combination with β and γ2 subunits. Despite less information about the involvement of
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GABA(A) receptors in depression, studies carried out in patients with major depressive
disorder revealed reduced GABA levels, which were normalized after chronic treatment
with antidepressants [83,84]. In addition, heterozygous γ2 [85] and α2 [86] knockout mice
exhibited more vulnerability to developing anxiety and depressive-like behaviors.

Furthermore, a close interaction between cannabinoid receptors and the GABA system
has been demonstrated. Alterations in GABA subunits have been observed in CB1KO
knockout mice [49] and mice overexpressing the CB2r (CB2xP) [42]. Interestingly, these
mice also showed an impaired anxiolytic action of BZD [41,42]. Pharmacological studies
using drugs acting on CB1r and CB2r also showed modified response to stress, anxiety
and behavioral despair, and gene expression of GABA(A) subunits, including α2 and
γ2 [48,74,87,88]. Thus, considering the role of GABA(A) in anxiety and mood disorders
and the crosstalk between GABAergic and cannabinoid systems, we analyzed changes in
GABA(A)α2 and GABA(A)γ2 gene expression in the AMY and HIPP of WT mice treated
with CBD.

Acute administration of CBD downregulated the gene expression of both GABAergic
subunits in the AMY and HIPP at all doses tested. Despite studies of CBD effects in
mice lacking α2 and γ2, it would be of great interest to elucidate the exact role of these
GABA(A) subunits in CBD anxiolytic properties; it is tempting to speculate that CBD
regulates, directly or indirectly, GABA(A) neurotransmission. In line with these findings,
previous studies have revealed that CBD inhibited GABA uptake in rat brain synaptosomes
at 0.1mM [89]. More recently, an electrophysiological study comparing the actions of
CBD and 2-AG on human recombinant GABA(A) receptors expressed on Xenopus oocytes
showed that CBD acts as a positive allosteric modulator at GABA(A) receptors containing
α2 subunits. This study supported the fact that the site of action of CBD is different
from the classic BZD site [90]. Altogether the results obtained suggest that the effects of
CBD on GABAergic neurotransmission may be a potential target for its anxiolytic and
antidepressant properties that deserve to be explored in future studies.

Overall, the gene expression studies undertaken here further support the complex
network through which CBD acts. Behavioral studies revealed that CBD induced anxiolytic-
and antidepressant-like effects in WT mice at low and intermediate doses (10 and 20 mg/kg),
whereas the highest dose (30 mg/kg) did not induce any behavioral effect. Gene expression
studies showed that CBD modified the gene expression of Cnr1, Cnr2 and Gpr55 depending
on the doses and the brain region analyzed. Curiously, the highest dose induced the most
pronounced changes. Consequently, the study’s main limitation is that gene expression
alterations in almost all the targets analyzed were induced by different doses of CBD,
making it difficult to correlate some of these biological alterations with the anxiolytic or
antidepressant-like effects of CBD. Although future studies are necessary to understand the
role of each receptor on CBD actions, based on our results, it is tempting to speculate that the
anxiolytic and antidepressant-like effects of CBD may be due to a multimodal mechanism
involving different key targets and brain regions, as has been proposed recently [91].

In conclusion, the present study demonstrated that acute administration of CBD
produced anxiolytic and antidepressant-like effects in a dose-dependent manner, suggesting
that CB1r is one of the crucial targets involved in its anxiolytic properties. Moreover, this
study revealed that CBD also modified the gene expression of GABA(A) subunits α2 and
γ2 and Cnr1, Cnr2 and Gpr55, in a dose and brain region-dependent manner, indicating
that CBD presents a multimodal mechanism of action (Figure 9).
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4. Materials and Methods
4.1. Animals

A total of 130 mice were used in the present study. Forty Swiss CD1 mice were pur-
chased from Charles River Laboratories (Lodi, Italy) to develop the dose-response study
with CBD. An additional set of 32 CD1 male mice was used to conduct the pharmacologi-
cal study with the CB1 receptor antagonist (SR141716A) and CBD. We used twenty-one
CB1KO [41,92] and nineteen CB2KO mice [43,44] generated in our laboratory. Dr. Andrei
Kolovko kindly provided GPR55KO mice at the Institute of Genomic Medicine. Eighteen
of them, bred at our animal vivarium, were used in the present study (TIGM, Houston, TX,
USA) [92]. All mice were males and between 2–3 months of age. At the beginning of the
experiments, mice were five weeks old and weighed 25–30 g. All animals were maintained
under controlled temperature (23 ± 2 ◦C) and with a light-dark cycle from 0800 to 2000 h,
with free access to food (commercial diet for rodents A04 Panlab, Barcelona, Spain) and
water. All animal care and experimental studies complied with the Spanish Royal Decree
53/2013, the Spanish Law 32/2007, and the European Union Directive of 22 September
2010 (2010/63/UE), regulating the care of experimental animals and were approved by the
Ethics Committee of Miguel Hernández University (ref. UMH.IN.JM.02.17).

4.2. Treatment

CBD was obtained from Jazz Pharmaceuticals (Dublin, Ireland) and dissolved in
ethanol: cremophor: saline (1:1:18) to obtain the required doses of 10, 20 and 30 mg/kg for
wild-type (WT) animals, and the dose of 20 mg/kg for knockout mice (CB1KO, CB2KO
and GPR55KO). The drug was prepared immediately before its intraperitoneal (i.p.) ad-
ministration at a volume of 10 mL/kg of weight (0.3 mL for each mouse). According to its
pharmacokinetic properties, CBD was administered 1h and a half before the behavioral
evaluation [54,93].

The CB1r-antagonist SR141716A was purchased from Sigma-Aldrich (Madrid, Spain)
and dissolved in ethanol, cremophor and saline (1:1:18) to obtain the required dose of
2 mg/kg for its i.p. administration 30 min before CBD administration and 2 h before the
behavioral evaluation. The dose of SR141716A was selected based on previous studies
demonstrating that this dose does not produce any effects by itself [94,95].
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4.3. Behavioral Analyses

Mice were randomly divided into groups and subjected to different experimental
paradigms to evaluate the anxiolytic and antidepressant actions of the acute administration
of CBD. Before every behavioral test, mice were brought to the experimental room in their
home cages and were given 60 min to adapt to the environmental conditions of the testing
room. The same conditions were maintained for all the behavioral tests. Each test was
assessed during the light cycle between 0900 and 1200 h. After each evaluation, mice
were undisturbed for 2 to 3 days to allow pharmacokinetic clearance of CBD [93]. WT
mice were subjected to a wide range of behavioral evaluations, including the light-dark
box (LDB), elevated plus maze (EPM), tail suspension test (TST) and novelty suppressed
feeding test (NSFT). According to the results obtained in these studies, only two (LDB
and TST) were selected to analyze the emotional behavior in knockout animals (CB1KO,
CB2KO and GPR55KO) and CBD’s ability to modulate it. The selective CB1r-antagonist
(SR141716A) was used to further evaluate the implication of CB1r in CBD anxiolytic-like
effects (20 mg/kg) in the LDB paradigm. For this, WT mice were randomly assigned into
four groups: control group (VEH + VEH), CBD group (VEH + CBD), antagonist group
(SR-141716A +VEH) or the combination of both drugs (SR-141716A + CBD). The antagonist
SR141716 was administered 30 min before CBD, and the behavioral evaluation was carried
out 1 h and 30 min after CBD administration.

4.3.1. Light-Dark Box (LDB)

This test uses the natural aversion of rodents to bright areas compared with darker
ones [48,96]. The apparatus consisted of two methacrylate boxes (20 × 20 × 15 cm), one
transparent and one black and opaque, separated by an opaque tunnel (4 cm). Light from a
60 W desk lamp placed 25 cm above the lightbox provided room illumination. Mice were
individually tested in 5 min sessions. At the beginning of the session, mice were placed in
the lightbox facing the tunnel that connects to the dark box. The time spent in the lightbox
and the number of transitions between the two compartments were recorded in this period.
A mouse whose four paws were in the new box was considered to have changed boxes.
The apparatus was cleaned between sessions with ethanol 70%.

4.3.2. Elevated Plus Maze Test (EPM)

The EPM consists of two open arms and two enclosed horizontal perpendicular arms
50 cm above the floor [48,97]. The junction of four arms formed a central squared platform
(5 × 5 cm). The test began with the animal being placed in the center of the apparatus
facing one of the enclosed arms and allowed to explore freely for 5 min. During this period,
the time spent in the open arms (as a percentage of total test time) and the number of
entries from open arms to closed arms (and vice versa) were recorded. An arm entry
was considered an entry of four paws into the arm. The apparatus was cleaned between
sessions with ethanol 70%.

4.3.3. Novelty Suppressed Feeding Test (NSFT)

The NSFT was used to measure anxiety-induced hyponeophagia, which is the inhibi-
tion of ingestion and approach to food pellets when exposed to an anxiety-provoking novel
environment. The testing apparatus consisted of a square, transparent methacrylate cage
40 × 40 × 50 cm, with a food pellet on the white platform in the center of the cage [44,98].
Before the experiment, mice were deprived of food for 24 h, and then each mouse was
placed in the corner of the apparatus. The latency time before the mouse started to eat the
pellet was recorded up to 5 min. Once the mice began to eat, the total amount of pellets was
measured over 5 min. The decrease or increase in the latency time indicates anxiolytic or
anxiogenic actions of different drugs, respectively. The anhedonia was measured by calcu-
lating the food pellet intake (mg), which increased when mice presented more motivation
or ability to experience pleasure.
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4.3.4. Tail Suspension Test (TST)

TST is a widely accepted test to evaluate depressive-like behaviors by measuring the
immobility time [44,99]. Mice were individually suspended by the tail at the edge of a lever
above the tabletop (the distance to the table surface was 35 cm), affixed with the adhesive
tape placed approximately 1–2 cm from the tip of the tail. In this situation, mice develop
escape-orientated behaviors interspersed with temporally increasing bouts of immobility.
The immobility time was measured for 6 min.

4.4. Relative Gene Expression Analyses by Real-Time PCR

Relative gene expression analyses of GABA(A)α2 and γ2 subunits, Cnr1, Cnr2 and
Gpr55 in the AMY and HIPP, were carried out in WT mice to assess changes in these
targets under anxiety or depressive-like conditions and the ability of CBD to modulate
them. Briefly, mice were sacrificed 150 min after the administration of CBD (or vehicle)
and brain samples were removed from the skull and frozen at −80 ◦C. These samples
were used to obtain coronal sections (500 µm) of regions of interest in a cryostat (−10 ◦C)
according to Paxinos and Franklin’s atlas [100]. Brain nuclei of interest were microdissected
following Palkovit’s method as previously modified by our group [101,102]. Total RNA
was extracted from brain micropunches with TRI Reagent (Applied Biosystems, Madrid,
Spain) and reverse transcription was carried out to obtain the complementary DNA (cDNA)
(4374966, High-Capacity cDNA Reverse Transcription Kit with RNase Inhibitor, Applied
Biosystems, Madrid, Spain). To perform the real-time PCR, 6.25 µL of water with DEPC
(diethylpyrocarbonate, RNAase inhibitor), 5 µL of the cDNA, 11.25 µL of the TaqmanTM
Master Mix (4369514, Applied Biosystems, Madrid, Spain), and 1.25 µL of the corresponding
Taqman assay were added in each well (4346907, Applied Biosystems, Madrid, Spain).
Quantitative analyses of the relative expression of GABA(A) α2 (Mm00433435_m1) and
γ2 subunits (Mm00433489_m1), Cnr1 (Mn00432621_s1), Cnr2 (Mm00438286_m1) and
Gpr55 (Mm02621622_s1) genes were performed on the StepOne Sequence Detector System
(Applied Biosystems, Madrid, Spain). All reagents were used following the manufacturer’s
instructions. The reference gene used was 18S rRNA (Mm03928990_g1), and data for each
target was normalized to the endogenous reference gene. The fold change in target gene
expression was calculated using the 2∆∆−Ct method [103].

4.5. Data and Statistical Analysis

Statistical analyses were performed using one-way or two-way analysis of variance
(ANOVA) followed by the Student–Newman–Keuls post hoc test for comparing four groups
affected by the treatment with CBD (and vehicle). Moreover, for the behavioral assay with
the antagonist SR141716A, a two-way analysis of variance (ANOVA) followed by the
Student–Newman–Keuls post hoc test was assessed for comparing four groups affected
by the individual treatment with CBD, SR141716A or its combination. Differences were
considered significant if the probability of error was less than 5%. SigmaPlot 11 software
(Systat Software Inc., Chicago, IL, USA) was used.

5. Conclusions

CBD induced anxiolytic- and antidepressant-like effects in a dose-dependent manner,
the intermediate dose (20 mg/kg) being the one that produced these effects most robustly.
CB1r appears to be an essential key target for CBD anxiolytic properties.

Changes in Cnr1, Cnr2, Gpr55, GABA(A) subunits α2 and γ2 in limbic areas, including
the AMY and HIPP, also suggest that these targets may contribute to CBD effects. Further
studies are necessary to understand the specific role of each target and brain region on CBD
anxiolytic and antidepressant properties.
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