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Abstract: Computer-aided drug discovery techniques reduce the time and the costs needed to
develop novel drugs. Their relevance becomes more and more evident with the needs due to
health emergencies as well as to the diffusion of personalized medicine. Pharmacophore approaches
represent one of the most interesting tools developed, by defining the molecular functional features
needed for the binding of a molecule to a given receptor, and then directing the virtual screening
of large collections of compounds for the selection of optimal candidates. Computational tools
to create the pharmacophore model and to perform virtual screening are available and generated
successful studies. This article describes the procedure of pharmacophore modelling followed by
virtual screening, the most used software, possible limitations of the approach, and some applications
reported in the literature.

Keywords: structure-based pharmacophore modeling; ligand-based pharmacophore modeling;
virtual screening; drug discovery; bioinformatics; computational biology

1. Introduction

Computer-Aided Drug Discovery (CADD) investigates molecular properties to de-
velop novel therapeutic solutions by way of computational tools and data resources. In
its broadest meaning, it includes computational approaches for designing or selecting
compounds as potential candidates before they are synthesized and tested for their bio-
logical activity [1]. Bioinformatics and computational tools offer an in silico approach to
reducing costs and times, i.e., the factors that influence the progress of the research and, in
the specific field of drug development, limit the possibilities of fighting more pathologies.
To date, in vitro screening is expensive and time-consuming, and alternatives are highly
desirable. Virtual Screening (VS) is a CADD method that involves in silico screening of a
library of chemical compounds, to identify those that are most likely to bind to a specific
target [2]. In this way, it is possible to reduce the impact of these limiting factors on drug
discovery, meeting the needs due to health emergencies, as well as the spread of person-
alized medicine. This process can be speeded up using pharmacophore models used as
the query with which compound libraries can be searched to pull out molecules of interest
with desired properties. Indeed, pharmacophore-based methods are widely used tools in
CADD and are of great interest in the chemo-informatics field [2], since they find many
applications in drug discovery projects including not only the virtual screening but also
scaffold hopping, lead optimization, ligand profiling, target identification, multi-target
drug or de novo drug design.

The concept of a pharmacophore was coined in the 19th century when Langley first
suggested that certain drug molecules might act on particular receptors. Only later, with
the discovery of Salvarsan by Paul Elrich, the selectivity of drug–target interactions was
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recognized. Several years of experimentation confirmed its therapeutic effect. This discov-
ery had found support in the statement of Emil Fisher who, following his research, had
defined the concept "Lock & Key" in 1894, according to which a ligand and its receptor fits
like a key with its lock to interact with the on top of each other through a chemical bond [3].

Hence, historically the term “pharmacophore” was used to indicate the functional
or structural capacity of a compound with specific characteristics towards a biological
target [4].

Schueler provided the basis for our modern understanding of a pharmacophore, de-
fined by the International Union of Pure and Applied Chemistry (IUPAC) as "the ensemble
of steric and electronic features that is necessary to ensure the optimal supra-molecular in-
teractions with a specific biological target structure and to trigger (or to block) its biological
response" [3,5,6].

Pharmacophoric modelling is based on the theory that having common chemical
functionalities, and maintaining a similar spatial arrangement, leads to biological activity on
the same target. The chemical characteristics of a molecule capable of creating interactions
with its ligand are represented in the pharmacophoric model as geometric entities such
as spheres, planes and vectors. The most important pharmacophoric feature types are:
hydrogen bond acceptors (HBAs); hydrogen bond donors (HBDs); hydrophobic areas
(H); positively and negatively ionizable groups (PI/NI); aromatic groups (AR); and metal
coordinating areas (Figure 1). Additional size restrictions in the form of a shape or exclusion
volumes (XVOL)—forbidden areas—can be added to represent the size and the shape of
the binding pocket [7].

Figure 1. Pharmacophoric features. Main pharmacophoric feature types are represented by geo-
metric entities and include: 1—hydrogen bond acceptor (HBA), 2—hydrogen bond donor (HBD),
3—negative ionizable (NI), 4—positive ionizable (PI), 5—hydrophobic (H), 6—aromatic (AR),
7—exclusion volume (XVOL).

Since the models themselves do not focus on actual atoms, but on chemical functional-
ities, they are good tools in recognizing similarities between molecules. Pharmacophore
activity is independent of the scaffold, and this explains why similar biological events
can be triggered by chemically divergent molecules. The use of these models as a query
allows performing searches in the large libraries of compounds made available on the
computational platform in order to select molecules of interest for the next vs. or in the
chemo-informatics field [7].
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Pharmacophore models can be generated using two different approaches depending
on the input data employed for model construction, which are, namely, “structure-based”
and “ligand-based” pharmacophore modelling. The structure-based approach uses the
structural information of the target proteins like enzymes or receptors, to identify com-
pounds that can potentially be used as a drug. On the other hand, the ligand-based
approach consists of the development of 3D pharmacophore models and modelling quanti-
tative structure-activity relationship (QSAR) or quantitative structure-property relationship
(QSPR), using only the physicochemical properties of known ligand molecules for drug
development. The choice of the best approach to use depends on several factors such
as data availability, data quality, computational resources and also the intended use of
the generated pharmacophore models. In the following paragraphs, we describe both
strategies and their implementation in virtual screening is provided below to guide the non-
experts on this topic in their application by explaining the basic concepts these methods
are based on.

2. Structure-Based Pharmacophore Modelling

The structure-based approach owns its name to the fact that the three-dimensional
structure of a macromolecule target is the essential prerequisite to obtaining a structure-
based pharmacophore. The 3D structure of a protein provides significant details at the
atomic level that can be very useful for the design or discovery of new drugs. As pre-
viously outlined, a pharmacophore is an abstract picture showing the stereo-electronic
features, which make a ligand bioactive toward a specific target, and this type of informa-
tion can be extracted from the 3D structure of the protein target in its holo or apo form.
Typically, the workflow of the structure-based approach (Figure 2, left side of the flow)
consists of different steps: protein preparation, identification or prediction of ligand binding
site, pharmacophore features generation, and the selection of relevant features for ligand
activity [8,9].

The 3D structure of the target or the ligand–target complex is the required starting
point of this methodology. The RCSB Protein Data Bank (PDB) [www.rcsb.org] (accessed
on 20 May 2022) includes thousands of protein structures at high resolution alone or in
the presence of a bound ligand, mainly solved by X-ray crystallography or NMR spec-
troscopy. In case experimental structural data are lacking, computational techniques such
as homology modelling [10] may be an alternative strategy to retrieve a 3D model and
machine learning-based methods are successfully applied to retrieve protein structures, a
powerful example is ALPHAFOLD2 [11]. Molecular docking is another method to study in
silico the interaction of a known active compound towards a specific receptor and derive
protein-ligand complexes from the most favorable binding poses [12].

A practical tip for those who want to use this approach is to perform a deep analysis
of the quality of input data before using the target structure since it directly influences the
quality of the pharmacophore model. For this reason, the protein structure preparation is
the first step to carry out by evaluating, for instance, the residues’ protonation states, the
position of hydrogen atoms (that are absent in X-ray solved structures), the presence of
non-protein groups which may have or not some functional roles, eventual missing residues
or atoms, the stereochemical and energetic parameters accounting for the general quality
and biological-chemical sense of the investigated target, also in the case of experimentally
solved structures that may contain errors [8].

www.rcsb.org
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Figure 2. Pharmacophore modeling workflow. A pharmacophore model can be generated using
two approaches. In the structure-based approach (on the left side), the structural information of the
macromolecular target, alone or bounded to a ligand, is evaluated for its correctness and used to
analyze the ligand binding sites in order to derive and select ligand complementary characteristics
composing the pharmacophore models. In the ligand-based approach (on the right side), the first
step is the construction of a training set made up of known active ligands structures. From each of
them, conformers are generated and then used to extrapolate common features that are combined
in different pharmacophore models. The resultant models undergo a validation and refinement
procedure to obtain the final models exploitable for practical applications.

Once the target structure is identified and critically evaluated, ligand-binding site
detection is the next crucial step. This can be manually inferred by analyzing the area
including residues suggested to have a key role from experimental data such as site-
directed mutagenesis or X-ray structures of the protein co-crystallized with ligands, but it
also requires time and expert knowledge of the target and ligands. Nowadays this purpose
can be easily and quickly achieved using bioinformatics tools based on different methods
which inspect the protein surface to search for potential ligand-binding sites according to
various properties (evolutionary, geometric, energetic, statistical, or a combination of them),
and which are particularly useful if the ligand information is not available [13]. Examples
of computer programs developed for this purpose are GRID [14] and LUDI [15]. The first
one, as suggested by the name, is a grid-based method that uses different molecules or
functional groups to sample a specific protein region defined with a regular grid to identify
grid points with which they make energetically favorable interactions, thus generating
molecular interaction fields [14]. The second one predicts potential interaction sites using
the knowledge from distributions of non-bonded contacts in experimental structures or
geometric rules [15].
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Since the goal of the structure-based method is to generate a pharmacophore model
from the interactions between an active molecule (the ligand) and its protein target (enzyme
or receptor), the characterization of the ligand-binding site can be used to derive a map of
interaction and to build accordingly one or more pharmacophore hypotheses describing
the type and the spatial arrangement of the chemical features required for a ligand to
interact with the residues of the binding region. Initially, many features are detected with
this approach and therefore only those that are essential for ligand bioactivity should be
selected and incorporated into the final model to have a more reliable and selective phar-
macophore hypothesis [9,16]. This operation can be accomplished in different ways, such
as removing features that do not strongly contribute to the energy binding, identifying the
most conserved interaction if multiple protein–ligands structures exist, preserving residue
with key functions from sequence alignments or variation analysis, and incorporating
spatial constraints from the receptor information [8].

If the structure of a protein–ligand complex is available, the pharmacophore features
generation and selection can be achieved more accurately. The 3D information of the ligand
in its bioactive conformation directs the identification and the spatial disposition of the
pharmacophore features in correspondence with its functional groups directly involved in
the interactions with the target. Moreover, the presence of the receptor allows accounting
for spatial restrictions from the binding site shape through the addition of the exclusion
volumes. In this ideal situation, pharmacophore models of high quality can be obtained.
In case the available structural data do not include a bound ligand, the pharmacophore
modelling depends only on the target structure which can be analyzed to detect all possible
ligands interaction points in the binding sites and, therefore, to compute the complementary
features that a ligand should match to potentially bind the receptor. However, in the absence
of a ligand counterpart, several pharmacophoric features are calculated and approximately
positioned resulting in less accurate models that should be manually refined [3,16,17].

3. Ligand-Based Pharmacophore Modelling

So far, we have mentioned the importance of the availability of the structure for
modelling pharmacophores suitable to accommodate the best interaction features. However,
even if this still represents one of the best strategies for modelling a pharmacophore, often
the target molecule is not available. To overcome this problem, an alternative approach to
structural-based modelling is represented by ligand-based pharmacophore modelling.

The starting point of this strategy is the knowledge of active compounds, which bind
the same protein target with a similar orientation [4] that could allow the extraction of
chemical features in common and, therefore, the pharmacophore construction. Due to
the unknown bioactive conformations of the input compounds, a critical step, before the
extraction of the shared features, is the generation of ligand conformers, so that, from
each set of conformers, at list one should correspond to the bioactive conformation of the
ligand [3].

In more detail, two datasets are necessary to generate a ligand-based pharmacophore,
i.e., a training set and a test set. The training set composition differs according to the
algorithm employed and the data availability, varying from the simplest, composed of
at least two active compounds, to the most complex, for which it is possible to set mul-
tiple compounds with a different activity. The test set, instead, should contain as many
active and inactive structurally different compounds as possible, preferring the inclusion of
experimentally confirmed inactive compounds and compounds judged as active by experi-
mentally proven direct interaction and with suitable activity cutoffs (i.e., low EC50/IC50
and high binding affinity values). In the case of unknown inactive ligands, decoy molecules
could be used [6], which are available from a specific repository such as DUD (Directory of
Useful Decoys) [18] or by generating them by service as DUD-E [19]. In addition to what
could be extrapolated from pertinent literature, the source of molecules to be employed
in the construction of the dataset could be chemical databases such as OpenPHACTS [20],
ChEMBL [21] or Drugbank [22], for compounds with a target-based activity, ChEMBL,



Pharmaceuticals 2022, 15, 646 6 of 16

PubChem Bioassay [23] and Tox21 [24] for research on the inactive molecules. In principle,
all the algorithms appointed to the ligand-based pharmacophore modelling, starting from
the active compounds of the training set, extrapolate from them common chemical func-
tionalities, related for instance to the presence of hydrogen bond donors or acceptors, of a
positively or negatively charged ionizable group, of aromatic ring systems or hydrophobic
areas, and use these features for model design. This step is followed by an improvement
of the pharmacophore model including shape features and spatial constrains which take
care of specific regions occupied by inactive molecules [25]. The pharmacophore models
obtained are ranked by the best ability to fit the active molecules but not the inactive ones.
The best models obtained from this first phase are chosen for the validation and refinement
using the test set. The purpose of this second phase is to evaluate if the generated models
can fit most of the active molecules rejecting the inactive ones, to select only models which
show the major sensitivity and specificity. A summary of the described process is described
in Figure 2 (right side of the flow).

Despite the accuracy of the pharmacophore construction being highly dependent
on the quality of the training set, its final composition is conditioned by the algorithm
used for modelling [7]. In general, ligand-based pharmacophore modelling could be
performed following two main strategies: the common feature pharmacophore and the
QSAR based pharmacophore.

In the common feature approach, generally, an algorithm of alignment is involved, its
purpose is basically to extrapolate and align specific and common features: starting from a
defined feature for each active element the algorithm combines it with the corresponding
features of the other molecules, from this alignment a novel feature, combination of the
previous, is generated; reiterating this procedure for each set of overlapping features a
pharmacophore of shared feature is built. This is for example the case of the espresso
algorithm implemented in LigandScout [26,27], which achieved the pharmacophore mod-
elling by dividing the procedure previously described into six steps exploiting various
algorithms and two alignment methods: the first, based on a combination of shared phar-
macophore feature and the second, based on a merged pharmacophore feature. Finally, the
common features present in all training compounds are included in the common features
models and all features of the aligned compounds are summated in a merged feature
pharmacophore [28]. Another example of similar functionality is given by the HipHop
algorithm provided by DiscoveryStudio [29], which builds several pharmacophore models
starting from identifying the common chemical features arrangement of the training set
structures. Beginning with a few groups of features, which are extended until no more
shared configuration features are found, several models are obtained and ranked based
on the fitness of the training compounds. Models are refined by the HipHop Refinement
algorithm, which adds space restrains imposed by the structures of inactive compounds.

QSAR (Quantitative structure-activity relationships) based pharmacophore is a mathe-
matical model that tries to find statistical correlations between structures and functions,
quantifying the impacts in a biological activity of specific structural modifications in existing
or predicted molecules [30]. Based on the idea that molecules with similar physico-chemical
properties show a similar binding affinity for a protein target, nowadays the QSAR ap-
proach is used in drug discovery to build statistical models derived from these correlations
exploiting for the prediction of the bioavailability, the ADMET profile (toxicity), adsorption,
distribution, metabolism, binding affinity, biological activity and elimination of novel
compounds [31].

There are six classifications of the QSAR approaches, from the 1D to the 6D-QSAR,
according to the different dimensions of the method (Figure 3).
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Figure 3. QSAR classifications. The QSAR approaches are classified from the 1D to the 6D-QSAR
according to the different dimensions of the descriptors implemented in the method.

1D-QSAR takes into account a single physico-chemical property of the ligand, for an
example the pKa value. In the 2D-QSAR, instead, affinity is correlated with structural
patterns, while in the 3D-QSAR with the 3D structure of the ligand and its interactions.
The concept extends as dimension rises: 4D-QSAR incorporates an ensemble of ligand
configurations in 3D-QSAR, 5D-QSAR adds to 4D-QSAR various induced-fit models, 6D-
QSAR implements 5D-QSAR with different solvation models [25].

Pharmacophore Models Validation

Once one or more pharmacophore models have been computed, a validation step
is crucial before their implementation for practical purposes. Pharmacophore validation
could be performed by exploiting several methods, such as the goodness of hit list (GH),
receiver operating characteristic (ROC) curves construction, Fischer’s method, or other
statistical analysis, which relies on screening a test set and decoy set (if needed) to evaluate
the model ability to distinguish active and inactive molecules and provide an estimation of
its quality [9].

Mainly, the quality of a model can be described by four parameters: the sensitivity
(capacity to detect active compounds), the specificity (capacity to exclude the inactive
molecules), the yield of actives (the ratio between true positives and the number of hits)
and the enrichment factor (which relates the yield of actives to the composition of the
screening dataset) [7].

The GH scoring method consists of calculating the percentage of sensitivity, the
percentage of the yield of actives the enrichment factor and the Güner–Henry score, which
gives an evaluation of the efficiency of the screening dataset search and can vary from 0
to 1 where 1 is the value for the ideal model [32]. The ROC curve shows the enrichment
power of a model plotting the sensitivity against 1—specificity (the false positive rate). The
area under this curve (AUC) gives a measure of the pharmacophore’s performance and it
is useful for multiple models evaluation. AUC can vary from 0 to 1, where 1 corresponds
to an ideal case in which all the active compounds are detected at first, 0 to the collection
of the inactive ones at first and 0.5 to random results [33]. Fisher’s randomization test
validation method is instead used to analyze the significance of the statistical correlation
between structure and biological activity [34]. Regression analysis can also be applied to
check for the correlation between the compounds predicted as active and those whose
bioactivity is experimentally confirmed.

In case the validation process reveals low-quality results, manual refinement could be
a way to improve its performance by applying some changes in chemical features’ selection
or definition settings, training or test sets composition or in the pharmacophore building
procedure, but a new model generation with a different approach and algorithm should
not be excluded.

4. Pharmacophore-Based Virtual Screening

Among the strategies for the identification of new bioactive substances, VS techniques
play a prominent role. VS tools are important in drug discovery as they increase the speed
of the bioactive molecule discovery process through computational simulations by selecting
from large libraries the compounds that are most likely to interact with the identified target.
In addition, VS identifies compounds that may be toxic or have unfavorable pharmaco-
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dynamic (for example, potency, affinity, selectivity) and pharmacokinetic (for example,
absorption, metabolism, bioavailability) properties [35].

In this context, pharmacophore models can be successfully applied to filter large
collections of compounds to find the so-called hits, i.e., novel molecules matching the
pharmacophoric features required to be potentially active against a specific target. Since
a pharmacophore does not represent exact chemical groups but chemical functionalities
and their spatial relationships, the retrieved hits usually include structurally different
compounds, making pharmacophores useful tools for scaffold hopping [7].

The pharmacophore-based screening can be performed directly using some of the
software already mentioned for the pharmacophore generation, which allows doing this
on a manually created dataset. Other useful open-access platforms for virtual screening
are Pharmit (http://pharmit.csb.pitt.edu) (accessed on 20 May 2022) and ZINCPharmer
(http://zincpharmer.csb.pitt.edu/) (accessed on 20 May 2022). The first one allows the
user to import a predefined pharmacophore query or elucidate pharmacophore and shape
queries from the receptor and/or ligand structures, and to use it to screen a desired dataset
among a set of provided compounds libraries or a personal one. The results are quickly
computed and classified according to different criteria such as energy minimization [36].
ZINCPharmer is a user-friendly online web server, which, exploiting the Pharmer re-
search technology, allows screening of the purchasable molecules present only in the ZINC
database using a pharmacophore model imported from other tools or directly derived from
ligands or structures [37].

In general, once the model to use has been defined, the first step in virtual screening is
to consult a database that contains a large number of compounds annotated with informa-
tion about the 3D structure, known target, and in some cases the purchasability. Some of
the free databases include the Protein Data Bank (PDB) [38], PubChem [39], ChEMBL [21],
Zinc [40], and Drugbank [22]. Moreover, there are some commercially available databases
such as the MDL Drug Data Report. Usually, due to the presence of a multitude of com-
pounds in these repositories, the strategy adopted by many researchers is to filter the data
by applying different parameters to reduce the computational cost of the pharmacophore
searching. This may be obtained through the exclusion of compounds that are too big for the
ligand pocket, the use of Lipinski’s Rule of Five or standard metrics for lead-likeness, and
removing compounds deemed to be pan-assay interference compounds (PAINS) [35,41].
In addition, a combination of filtering for desired pharmacological and adsorption, dis-
tribution, metabolism, excretion, and toxicological (ADMET) properties is advisable to
be applied early in the virtual screening process [42]. These filters should be considered
suggestions, not mandatory, and they can be applied depending on the specific case. As an
example, the Rule of Five is not an absolute rule, as many drugs go under the “beyond the
rule of five” [43]. To efficiently filter a library of compounds against such criteria, several
online tools have been developed. For example, the commercial software ACD/LogD
Suite (https://www.acdlabs.com/products/percepta-platform/physchem-suite/logd/)
(accessed on 20 May 2022) by Advanced Chemistry Development (ACD/Labs) can be
used to predict ADME-related properties including hydrophobicity, lipophilicity and pKa,
while Pharma Algorithms provided a suite of products via ADME Boxes (the company
joined ACD/Labs and the ADME Suite is now available at https://www.acdlabs.com/
products/percepta-platform/adme-suite/) (accessed on 20 May 2022) that addresses issues
such as solubility, oral bioavailability, absorption and distribution [1]. It is necessary to
underline that in some protocols reported in the literature, the evaluation of toxicity and of
the ADME profile is made only after molecular docking. Therefore, it is in the choice of the
researcher the use of a protocol that adds a preliminary filter, thus reducing the number of
molecules on which to apply further analysis or proceed on a larger number of molecules
to identify potential ligands that, if not usable directly because of their toxicity, could serve
as the basis for the synthesis of new molecules. If the structure information of the target is
available, the retrieved pool of compounds can be further selected by molecular docking
with programs such as DOCK [44] or Autodock (http://autodock.scripps.edu/) (accessed

http://pharmit.csb.pitt.edu
http://zincpharmer.csb.pitt.edu/
https://www.acdlabs.com/products/percepta-platform/physchem-suite/logd/
https://www.acdlabs.com/products/percepta-platform/adme-suite/
https://www.acdlabs.com/products/percepta-platform/adme-suite/
http://autodock.scripps.edu/
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on 20 May 2022) [45], to have a preliminary evaluation of binding affinities and exclude
molecules with very low values, as well as to obtain preliminary protein-ligand complexes.
Molecular docking is a computational process where ligands are moved in 3D space to
find a configuration of the target and ligand that maximizes the scoring function [1]. With
docking, therefore, ligand–target complexes are obtained and can be evaluated more in
depth, by specific methods, to verify if these compounds can be used subsequently for
in vitro experimentation. One of these evaluation methods is the molecular dynamics (MD)
approach. It is the pivotal theoretical approach, which can be utilized to gain molecular
insight into the stability of the binding pose of the screened molecules in the active site [46],
giving a more accurate evaluation of their binding affinity. At the end of the virtual screen-
ing, the selected compounds matching the desired properties and giving the best results
must undergo an in vitro validation process to verify if indeed the results obtained in silico
are reliable. Everything said up to now represents a typical workflow followed in a virtual
screening analysis and it is graphically depicted in Figure 4.

Figure 4. Virtual screening workflow. Basic filters and methods applicable for a virtual screening
process. Scheme of the multistage vs. approach. The application of vs. follows a typical sequence
of processes with a cascade of filters able to narrow down and choose a set of hits with potential
biological activities.

Recently, MD simulations have been used to perform a thorough conformational
search without any help of traditional docking procedures, with accurate all-atom force
field and enhanced sampling techniques, obtaining accurate results for both binding modes
and binding affinities [47,48].

Finally, it is necessary to also mention the free energy calculations used to obtain
protein–ligand binding affinity by MD simulations in conjunction with molecular dock-
ing [49–52].

5. Limitations and Possible Solutions

As shown, pharmacophore modelling is a very useful tool for many applications in
drug discovery or drug design. However, despite its strength, this method is not free of
limitations that have implications in virtual screening increasing the rate of false positives
and/or false negatives, and that should be in mind to find proper solutions, when possible,
and to have a critical view of the results.

As explained in the previous paragraphs the quality of a pharmacophore model
is strictly related to that of the input dataset and the algorithm used for the modelling.
Indeed, the quality of the structures used for pharmacophore building, refinement, and
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validation greatly affect its reliability, and to overcome this limit many authors suggest a
manual inspection of the structures used and of the annotations regarding the biological
data associated with them. For what concerns the choice of the algorithm, it is important
to underline that different algorithms can give different results with no overlap starting
from the same macromolecular target. This could be attributed to the different screening
methodology of the algorithm, but also to the specific screening dataset used among the
several publicly available screening platforms [7]. Therefore, an integration of different
tools is recommended to cover a larger chemical space and obtain different chemotypes.

Moreover, whether the structure-based or the ligand-based approach is used, both
present some intrinsic limitations. In particular, flexibility is the main drawback of the
structure-based strategy. As already explained, a structure-based pharmacophore derives
from the 3D structure of a macromolecule target, ideally complexed with an active com-
pound. A single structure represents a static image reproducing a single binding mode of
a ligand towards its target without taking into account the dynamic nature of the system
due to receptor and ligand conformational flexibility [53]. This lacking information results
in pharmacophore models that may be defective in some features that could be relevant
for the binding of different ligands and, therefore, in retrieving new potential hits. If
experimental structures of the same protein target complexed with different ligands exist, it
is possible to reduce this limit by using them to extract and merge features responsible for
ligands interactions into a more refined model. However, this does not often happen and
an alternative way to handle the flexibility consists in employing computational techniques
such as flexible docking and/or MD simulations of the investigated system. Dynamic
pharmacophores can be computed from protein-ligand MD trajectories and have been
successfully applied in recent studies showing a better performance in the virtual screening
of bioactive compounds compared to the classic rigid approach [54–56]. Nevertheless, this
methodology needs higher computational resources (a problem that is less relevant due to
the increasing availability of computing resources, and in case of application to a small set
of selected ligands) and expert knowledge since it produces many models that should be
averaged or clustered to derive more representative pharmacophores [57].

Another common problem affecting the structure-based approach is the detection of a
high number of unprioritized pharmacophoric features, especially when apo-structures
are the only available starting point. In this case, the derived pharmacophore model
is too restrictive for virtual screening making the identification of structurally different
compounds with similar characteristics difficult [17]. Given this, the reduction of chemical
features is crucial to obtaining a reasonable and usable model. Some strategies to apply for
this purpose have already been discussed, but they depend on available data and an expert
manual intervention is often required.

Regarding the ligand-based method, the major limitation is the absence of receptor
complementary information related to the interaction pattern with the binding pocket
or even just about its shape. By its nature, the ligand-based approach is founded on all
possible chemical features and geometric information inferable from the input compounds
and their flexible alignment. However, more are the chemical features to be taken into
account by the algorithm, more is the time cost of it. Therefore, this approach is limited to
small compounds and simple chemical features by computational/time costs, generating a
less tailored pharmacophore model [27].

A further complication for the ligand-based modelling is the low availability of inactive
compounds, due to the lack in the literature of negative results. The use of a not enough
number of molecules known as inactive for a specific protein target has an impact on the
selectivity and sensitivity of the pharmacophore model obtained [6].

Above the individual deficiencies, another key point to place is that the pharma-
cophore represents a model of the chemical features but other variables that can influence
the binding of active compounds to a specific target, such as chemical solubility, cell
metabolism, membrane permeability, the particular toxicologic effect could not be consid-
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ered or well-integrated on it; this could have a strong impact on the real capacity of the
selected compounds to have a suitable biological effect on the target [7].

In general, even if some of these issues could be addressed by the use of accurate
structures, training and test sets, the validity of the model obtained should be always
compared to the statistical robustness of the input dataset, because no matter how complete
the dataset employed could be, no model can be judged as universal [58].

Because of the things reviewed above, the simultaneous use of both strategies, when it
is allowed, is advantageous since the weaknesses of one can be balanced by the strengths of
the other. Moreover, their combination with multiple approaches at different stages, such
as MD simulation, docking studies and machine learning approaches, could be a valuable
resource to overcome the inherent limitations of the pharmacophore modelling, improving
the chance to have more complete and reliable results.

6. Software for Pharmacophore Modelling

Several articles reported lists of software, databases and online tools for CADD appli-
cations [1,25,59]. Moreover, online services and catalogues provide links to many resources
(see https://www.click2drug.org/ or https://bio.tools/) (accessed on 20 May 2022). In
this paragraph, we report the most used and reliable, in our opinion, and findable at the
time of the writing of this review. Several programs have been developed to perform
the pharmacophore modeling in an automated way using different algorithms, such as
LigandScout, Schrodinger-Maestro, MOE, and Discovery Studio. Among them, Ligand-
Scout [60] is widely used for pharmacophores generation from a protein–ligand complex
and performs a step-by-step ligand topology interpretation including aromatic ring de-
tection, the assignment of functional group patterns, the determination of hybridization
state and bond types, followed by ligand and binding site analysis to automatically de-
tect and classify protein–ligand interactions into hydrogen bonding, ionic, aromatic and
lipophilic contacts according to geometric constraints. The ligand features composing this
set of paired interactions define a pharmacophore model which can be also modified by
removing specific features [60]. The Schrodinger–Maestro suite allows the generation of
e-pharmacophores, energetically-optimized pharmacophores using the Glide XP scoring
function to prioritize protein-ligands interaction sites and shows good speed and perfor-
mance in virtual screening [61]. MOE is an integrated computer-aided molecular design
platform that offers many different services, from drug design to virtual screening and
molecular simulations. Drug design by MOE allows exploiting different methods such
as the structure-based design, the ligand-based design and the fragment-based discov-
ery (www.chemcomp.com/MOE-Molecular_Operating_Environment.htm/) (accessed on
20 May 2022). Another commonly used software is Discovery Studio (BIOVIA, Dassault
Systèmes), which allows deriving structure-based and/or ligand-based pharmacophores.
In the first case, it offers three methods to build pharmacophores: structure-based, fragment-
based or receptor-ligand pharmacophores according to the available structural data. In
absence of a bound ligand, this program implements the Interaction Generation protocol to
create LUDI interaction maps for hydrogen and hydrophobic contacts with the binding
site that can be manually selected or computationally computed. The interaction map
is then converted into pharmacophore models consisting of different combinations of at
least three features complementary to those of residue in the binding pocket in terms of
chemical nature and location, and the resultant models are scored and ranked according
to their target selectivity [62]. For ligand-based pharmacophore generation, besides the
use of the HipHop algorithm, DiscoveryStudio gives also the opportunity to explore the
QSAR approach by the HypoGen algorithm [63]. The purpose of this algorithm is to find
a spatial 3D arrangement of the features shared by the training molecules whose activity
on a specific target has been measured. To do so, it needs as input at least 16 compounds
covering four orders of magnitudes: H-bond donors, H-bond acceptor, aromatic ring,
hydrophobicity. The algorithm works in three phases: the constructive, the subtractive
and the optimization. In the first phase, all the pharmacophoric conformations, which pre-

https://www.click2drug.org/
https://bio.tools/
www.chemcomp.com/MOE-Molecular_Operating_Environment.htm/
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serve at most five default features, are collected and pharmacophores preserving features
shared by all the bioactive training compounds are generated; only pharmacophores fitting
other active molecules are kept. In the second phase, pharmacophores fitting inactive
molecules are removed; in the last, pharmacophore collection is optimized by simulating
annealing algorithm. Only the pharmacophore models showing the highest score are given
as output [7]. Other examples of 3D QSAR programs, which generate predictive models
include PHASE [64], comparative molecular field analysis (CoMFA) [65] and comparative
similarity indices analysis (CoMSIA) [66]. For a more exhaustive list, we remand to Gurung
et colleagues’ review of 2021 [26].

The software tools mentioned above are commercial but there are also academic
programs freely accessible. For instance, Pocket v.2 is a structure-based pharmacophore
program available either on the web (http://www.pkumdl.cn:8080/pocketv2.html) (ac-
cessed on 20 May 2022) or a stand-alone version that uses the Pocket module of LigBuilder
(for de novo structure-based ligand design) to analyze the binding site of the target receptor
by scored grids. The basic required input is the protein 3D structure in PDB format that is
employed to generate pharmacophore models from receptor structures with or without a
bound compound [67].

A user-friendly and freely-available web server, which exploited the common fea-
ture approach for ligand-based modelling, is represented by PharmaGist [68]. The main
window of PharmaGist requires only the uploading of up to 32 input molecules in mol2
format (uploadable in single or in a unique zip file), with bonds angles and length already
corrected and hydrogens atoms explicitly specified, the selection of the number of output
of pharmacophores that will be showed, and an e-mail address where the link to the re-
sults, stored at least for a month, will be sent. Besides this standard research PharmaGist
gives also the possibility to choose some advanced options as: i. the selection of a key
molecule, by this option all the other molecules will be aligned to the compound selected,
otherwise all compounds are selected as key compounds; ii. the minimum number of
features in pharmacophore iii. the feature weighting options, by which it is possible to
modify the weight of some features (aromatic ring, hydrogen bond donor/acceptor, an-
ion/cation and hydrophobic properties) in the scoring function; iv. User-defined features,
by which additional feature types can be defined by a supported feature file format created
by the user. The output consists of several tables: the first gives a summary of the input
molecules’ features and the following summarized the results starting always with the
highest scoring pharmacophore.

For those who are researching an easy to use and free available tool which exploits
the QSAR method without requiring particular informatics skills, or who simply want to
start learning about pharmacophore construction, the web portal 3d-qsar.com (accessed on
20 May 2022) represents a valid opportunity, being a platform hosting several applications
which guide the user along the correct workflow necessary to build a pharmacophore
model. The first is represented by Py-MolEdit which allows the correct compilation and
uploading of the training and the test dataset in any format, giving also the possibility to
draw your molecules. After using that tool, the platform gives the discretionary option
to align your dataset by exploiting the Py-Align tool. At this point is possible to perform
the building of a pharmacophore model with Py-CoMFA, obtained which, can be easily
analyzed by Py-ConfSearch tool that performs a conformational analysis. Py-CoMFA
allows the building and validation of the 3-D QSAR model with the same style as the
original CoMFA software, which seems to reproduce published results with a very good
agreement. The platform also provides the opportunity to make docking simulations (by
Py-Docking), or to use a different QSAR algorithm (Py-ComBinE). An interface to the
Protein Data Bank is also provided (by Py-PDB) [69].

7. Examples and Case Studies

Many examples in the literature present pharmacophore models obtained by QSAR
and common feature pharmacophore approaches. In addition to articles and reviews

http://www.pkumdl.cn:8080/pocketv2.html
3d-qsar.com
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published in the past that report on successful applications in pharmacophore modeling
and virtual screening [70–74], we highlight some specific example of studies.

Schuster and colleagues performed the ligand-based pharmacophore modelling for
selective and nonselective 11β-HSD1 inhibitors. Their pharmacophore models, after a
virtual screening procedure, led to the in vitro validation of 30 compounds among which
seven were found to inhibit more than 70% of the activity of 11β -HSD1 when measured in
cell lysates with IC50 values below 10 µM and without cytotoxicity at concentrations up to
40 µM [75]. Pal and colleagues exploited the 3D-QSAR pharmacophore hypothesis and
found relevant binding features of novel topoisomerase inhibitors [46].

In a recent study, a pharmacophore model based on the experimental structure of
AKT1 protein complexed with an inhibitor has been used for virtual screening on a database
of natural compounds. The most promising compounds obtained by the screening have
been further investigated by toxicity profile and ADMET analyses, together with molecular
docking for better prediction of the potential binding [76]. Experimental studies confirmed
the potential inhibitory role of at least one of the selected compounds [76] and, in addition,
its synergic effect with quercetin to inhibition of cell growth and induce apoptosis [77].

Due to the pandemic, many research teams explored the opportunity to find novel
drugs through time-saving CADD approaches. This is the case of a study oriented to
finding novel inhibitors of TMPRSS2, or type II transmembrane serine protease, a human
protein involved in the activating processes of SARS-CoV-2 [78]. TMPRSS2 is of partic-
ular interest for its involvement also in cancer pathologies. The in silico screening has
been performed by a pharmacophore-based approach, starting from camostat mesylate,
a known inhibitor of serine protease 2, also approved for drug. The authors selected 10
pharmacophoric features of camostat mesylate and selected 2140 compounds from a public
database containing more than 30,000 natural compounds. After a molecular docking
analysis, the 2140 compounds were filtered to 85 candidates with docking scores similar to
or better than the known inhibitor. The computational study has been further extended
to analyze the list of filtered compounds for matching with Lipinski’s rule of five and for
ADMET properties. The study has been cited many times in literature, due to the interest in
the results and the need to verify by experimental approaches the real potential inhibitory
activity of filtered compounds.

8. Future Perspectives

CADD approaches have been successfully developed to improve the ability to discover
new drugs. The increasing computational power of hardware opens the perspective of
many more applications, also by increasing the availability of protein target structures
through deep learning and AI-based prediction tools [79]. The deep learning approaches
have been also recently applied to drug-target interaction [80]. However, the experimental
steps needed to validate the compound activity and safety remain time-consuming and will
always slow down the whole drug discovery process. From this point of view, the pharma-
cophore modelling followed by the virtual screening of databases of approved drugs, in
the drug repurposing perspective, represents the most advanced rational approach, and
the most promising way to find novel therapies.
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