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Abstract: On the basis of the mice pressure ulcers (PU) model, the protective effect and potential
mechanism of sodium Danshensu (SDSS) cream against PU were investigated. The mice were
randomly divided into three groups: the negative control group (cream without 0.5 g SDSS), the SDSS
group (cream containing 0.5 g SDSS), and the positive group (0.5 g Hirudoid®). After 7 and 14 days
of ointment application, the wound-healing rate of the SDSS and positive groups was significantly
higher than that of the control group (p < 0.05). The results of hematoxylin–eosin staining also
indicated that SDSS has the potential to promote the healing of PU. In addition, the serum IL-6, IL-1β,
TNF-α, and MDA levels decreased significantly (p < 0.01) after 14 days of SDSS treatment, while the
SOD, CAT, and GSH-Px activities increased significantly (p < 0.01). In addition, SDSS cream was
able to significantly increase the expression of Nrf2, HO-1, GCLM, NQO1, NF-κB p65, NF-κB p50,
IKKα, and IKKβ while decreasing the expression of Keap1 and IκBαin the Nrf2/HO-1 and NF-κB
pathways. Our research will provide a foundation for the future clinical prevention and treatment of
PU with SDSS cream.

Keywords: pressure ulcers; sodium Danshensu cream; ischemia/reperfusion injury; Nrf2/HO-1
pathway; NF-κB pathway

1. Introduction

Pressure ulcers (PU), also known as pressure injuries or pressure sores, are one of the
five major factors that adversely affect patients’ quality of life and are also one of the most
expensive complications [1,2]. Numerous critical and persistent diseases are associated with
PU [3,4]. In countries with a high standard of living, such as the United States, Germany,
and Australia, the prevalence of PU ranges from 7 to 14% [5,6]. In developing nations
with a median income, such as Brazil and Indonesia, the prevalence of PU ranges from 8%
to 66% [7,8]. However, the occurrence of PU has serious consequences for patients, their
families, and the medical staff involved, and it increases the workload of caregivers and
nursing staff. In addition, the incidence of PU increases the length of patients’ hospital
stays and their medical expenses [9]. According to research, the annual cost of treating PU
is very high in many countries, including the United States, which spends $17.8 billion
annually on PU treatment [10]. Therefore, the appropriate and effective prevention and
treatment of PU is a crucial concern for both patients and medical staff.

Ischemia/reperfusion (I/R) injury refers to the pathological process that exacer-
bates tissue and organ injury when blood flow is restored after a prolonged period of
ischemia [11,12]. Several tissues and organs of the body are susceptible to I/R injury,
including the liver, brain, myocardium, kidney, gastrointestinal tract, and skin [13–16].
Consequently, how to prevent and treat I/R injury in ischemic tissues or organs has become
a current hot topic. It is believed that the mechanism of I/R injury is mainly associated
with energy deficiency, excessive release of oxygen free radicals, excessive activation of
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leukocytes, calcium overload, activation of inflammatory cytokines, apoptosis, etc. [17–19].
Oxygen free radicals and inflammatory responses are among the research hotspots [20–22].
In addition, the Nrf2/HO-1 and NF-κB pathways are two of the most commonly used
pathways to explain oxygen free radicals and inflammatory responses [23,24]. For example,
Morsy et al. [23] discovered that paeonol could attenuate hepatic I/R injury by modulating
the Nrf2/HO-1 and TLR4/MYD88/NF-kappa B pathways. Wang et al. [24] found that
curcumin could protect against hepatic I/R injury through inhibiting the TLR4/NF-kappa
B pathway.

Danshen (Radix Salviae Miltiorrhizae) is one of the most commonly used traditional
Chinese medicines [25,26]. Danshensu (DSS) is a water-soluble active ingredient in Dan
Shen, but it is inherently unstable [27]. As the sodium salt of DSS, sodium Danshensu (SDSS)
possesses stable properties as well as high absorption and utilization [28,29]. Recently,
SDSS has been utilized to reduce I/R injuries in a variety of tissues [30–32]. By inhibiting
apoptosis, Guo et al. [30] demonstrated that SDSS has a neuroprotective effect against
cerebral I/R injury in rats. Gao et al. [31] demonstrated that SDSS can reduce cerebral I/R
injury by targeting the AKT1 protein. In previous research, we discovered that SDSS has a
protective effect in promoting the healing of stage 2 pressure injury wounds in rats subjected
to I/R injury [32]. In our previous studies, SDSS was administered intraperitoneally, which
undoubtedly increased the pain of patients, and its molecular mechanism to promote
wound healing has not been thoroughly investigated. In this study, SDSS cream was first
prepared, and its effect on promoting the healing of PU in the model of stage 2 PU in mice
was observed. In addition, the Nrf2/HO-1 and NF-κB pathways were selected to evaluate
the potential protective mechanism against PU. Our findings will serve as a theoretical and
experimental foundation for the clinical prevention and treatment of PU with SDSS.

2. Results and Discussion
2.1. Establishment and Evaluation of PU in Mice

Long-term compression of tissues, resulting in tissue ischemia and deformation, causes
PU [33,34]. When the pressure on ischemic tissue is relieved, reperfusion of the ischemic
tissue blood results in I/R damage [35,36]. In clinical practice, the repeated I/R cycle
is considered to be the primary factor leading to the formation of PU as well as one of
the most important early PU mechanisms [37,38]. In the current study, murine PU was
created using a pair of sterile circular magnets (Figure 1A), and after two I/R cycles, all
mice developed two ulcers (Figure 1B). As shown in Figure 1B, the back skin of the mice
developed edema or superficial ulceration, where the epidermis or dermis of the skin
was broken, and symmetrical wounds were formed, indicating that the early model of
PU in mice (stage 2) was successfully constructed. In addition, H&E staining was used
to observe pathological changes in both normal and stress-injured mouse skin in order to
validate the success of the modeling. After two I/R cycles, compared to the normal murine
skin (Figure 1C), the epidermis on the left side of the incision edge of the murine PU skin
disappeared, and there was a small amount of exudation on the dermis, indicating that the
PU model (phase 2) was successfully constructed (Figure 1D).

2.2. Determination of the Rate of Wound Healing

As shown in Figure 2, after 3 days of treatment, there was no statistically significant
difference (p > 0.05) in the rate of wound healing between the groups. After 7 and 14 days
of treatment, the wound-healing rates of the SDSS and positive groups were significantly
higher than those of the control group (p < 0.05), with no significant difference between
the SDSS and positive groups (p > 0.05). These findings suggested that SDSS cream could
promote the healing of PU in mice.

2.3. Histopathological Changes in Mice Skin

In the control group, no epidermal cells formed at the PU site of the skin after 3 days
of intervention (Figure 3). In the dermis, there were numerous inflammatory cells and
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necrotic tissue; in the dermis, collagen fibers formed; and in the subcutaneous tissues, there
were numerous inflammatory cells. At the edge of the PU in the SDSS group, epidermal
cells began to form, and the blood scab began to fall off. Few inflammatory cells were
present in the dermis and collagen fibers. In addition, numerous regenerated hair follicles
and roots were visible along with fibroblasts and small blood vessels. In the positive group,
no epidermal cells formed at the PU site of mice skin; however, inflammatory cells and
necrotic tissue remained visible in the dermis, and collagen fibers formed in the dermis.
It was possible to see regenerated hair follicles and blood vessels as well as numerous
inflammatory cells in the subcutaneous tissues.
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Figure 1. Establishment of PU in mice (n = 3). (A) A pair of sterile circular magnets was used to
establish the PU in mice. (B) All mice developed two ulcers after two I/R cycles. (C) The H&E
staining of normal skin of mice (200×). (D) The H&E staining of PU model skin of mice (200×).
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Figure 2. The wound-healing rate of mice (n = 5). * p < 0.05 in comparison to the control group.

In the control group, after 7 days of intervention (Figure 3), there were more inflam-
matory cells and collagen fibers in the dermis, and there was no formation of epidermal
cells at the PU site of mice skin. There were visible signs of regenerating hair follicles and
small blood vessels. At the site of PU in the SDSS group, the epidermal cells of the second
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to the third layer were observed. Few inflammatory cells were observed in the dermis, but
there were numerous collagen fibers, fibroblasts, and small blood vessels. The formation of
sebaceous glands, hair follicles, and sweat gland ducts was observed. In the positive group,
two to three layers of epidermal cells began to form at the site of the PU. In the dermis,
there were few inflammatory cells, but numerous collagen fibers, fibroblasts, sebaceous
glands, and hair follicles formed. Visible were the vertical trichome muscle and sweat
gland ducts.
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After 14 days of intervention (Figure 3), the first and second layers of epidermal cells
were visible at the PU site of mice skin in the control group. In the dermis, there were few
inflammatory cells. There were numerous collagen fibers, fibroblasts, small blood vessels,
sebaceous glands, and hair follicles, as well as sweat gland ducts. The basal layer, spinous
layer, granular layer, transparent layer, and thin cuticle layer were slightly less prevalent in
the SDSS group compared to the positive group at the PU site of mice skin. In the dermis,
there were numerous collagen fibers, fibroblasts, and small blood vessels. In addition, there
were more sebaceous cells, hair follicle openings in the epidermis, and visible sweat glands
and sweat gland ducts. In the positive group, the epidermal cells at the site of the PU
formed the basal layer, spinous layer, granular layer, and hyaline layer, and a thin cuticle
was visible. In the dermis, there were numerous collagen fibers, fibroblasts, and small
blood vessels. There were more sebaceous cells, hair follicle openings in the epidermis, and
visible sweat glands and sweat gland ducts. Consistent with our previous studies [32], the
above results indicated that SDSS could effectively promote wound healing in skin PU.

2.4. Determination of Serum Inflammatory Factors

IL-1β is one of the most common proinflammatory cytokines, and as an initial factor
regulating inflammation, it is considered as the most classical inflammatory regulator [39].
As a multifunctional inflammatory factor, IL-1β is crucial for fever, wound healing, in-
flammatory stimulation, hematopoiesis, immune response, and other physiological re-
sponses [40]. IL-6 can activate acute response proteins, play a proinflammatory role, affect
the growth of fibroblasts and endothelial cells, and activate the local and systemic defense
mechanisms of the host [41]. TNF-α can activate lymphocytes and neutrophils, stimulate
vascular endothelial cells to regulate cell metabolism in vivo, and induce tissue cytokine
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release [42]. In this study, the serum levels of IL-1β, IL-6, and TNF-α were measured to as-
sess the reparative effect of SDSS cream. As shown in Figure 4, after 3 days of intervention,
the serum concentrations of IL-1β, IL-6, and TNF-α were lower in the SDSS and positive
groups compared to the control group, but this difference was not statistically significant
(p > 0.05). After 7 and 14 days of intervention, the serum levels of IL-1β, IL-6, and TNF-α in
the SDSS and positive groups were significantly lower than in the control group (p < 0.05).
Zhang et al. [32] demonstrated that SDSS can effectively reduce the TNF-α levels in stage
2 pressure injury wounds in rat models of I/R injury, which is consistent with our findings.
Our findings revealed that SDSS reduced the levels of IL-1β, IL-6, and TNF-α, thereby
accelerating the healing of PU in mice.
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2.5. Determination of Antioxidant Indices and MDA Levels

Free radicals contribute significantly to I/R damage [43,44]. The components of free
radicals are reactive oxygen species (ROS) and nitroxide radicals (RNS) [45]. Under normal
conditions, endogenous free radical scavengers eliminate ROS, thereby rendering endoge-
nous free radicals non-toxic to cells. However, when tissues, organs, and cells experience
ischemia and hypoxia, the equilibrium between ROS clearance and ROS production is
disrupted [46,47]. When blood and oxygen are restored, an abundance of reactive oxygen
species (ROS) is produced and rapidly accumulated [47]. A large number of oxygen free
radicals can cause a lipid peroxidation reaction with unsaturated fatty acids in biofilms,
leading to their degradation and an increase in the permeability of the cell membrane
and organelle membrane, thereby causing damage to the structure and function of the
cell [48]. Aside from that, MDA is a secondary metabolite of lipid peroxidation in the
cell membrane that can indicate the level of ROS activity in the cell membrane [49]. As
shown in Figure 5, the SOD activities of the SDSS and positive groups were significantly
higher than those of the control group after 3 days of intervention (p < 0.05). The CAT and
GSH-Px activities were greater, and the MDA levels were lower compared to the control
group, but these differences were not statistically significant (p > 0.05). After 14 days of
intervention, the serum SOD, CAT, and GSH-Px activities in the SDSS and positive groups
were significantly increased (p < 0.01), whereas the MDA levels were significantly decreased



Pharmaceuticals 2022, 15, 1548 6 of 12

(p < 0.05), indicating that SDSS cream could effectively increase the antioxidant enzymes
and decrease the lipid peroxidation to promote the healing of PU in mice.
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2.6. Effect of SDSS on the Protein Expressions of the Nrf2/HO-1 Pathway

The Nrf2/HO-1 pathway is a multi-organ protective chain responsible for regulating
various stress environments [50,51]. Activation of the Nrf2/HO-1 pathway is one of the
main mechanisms of cellular defense against oxidative stress, enhancing the coupling reac-
tion and the expression of related antioxidant enzymes (such as SOD, GSH-Px, etc.) [52,53].
Prior studies [50,51] have demonstrated that the Nrf2/HO-1 pathway plays a crucial role in
the regulation of PU. The protein expression levels associated with the Nrf2/HO-1 pathway
were investigated in this study. As shown in Figure 6, after 3, 7, and 14 days of inter-
vention, the protein expression levels of Keap1 decreased significantly, while the protein
expression levels of Nrf2, HO-1, NQO1, and GCLM increased significantly in the SDSS and
positive groups relative to the control (p < 0.05 or p < 0.01). These results suggested that the
protective mechanism of SDSS may be related to its activation of the Nrf2/HO-1 pathway.

2.7. Effect of SDSS on the Protein Expressions of the NF-κB Pathway

In addition, the NF-κB pathway plays a crucial role in the regulation of PU [50,54]. In
response to a variety of mechanical stresses, cytokines, or chemical signals, NF-κB protein
expression is increased, resulting in the phosphorylation of IB kinase and subsequent
degradation of IκBα protein. With the degradation of IκBα protein, NF-κB dissociates from
the NF-κB-IκBα complex and translocates to the nucleus, initiating the transcription of
factors associated with a variety of biological events, such as inflammatory factors [55].
As shown in Figure 7, after 7 and 14 days of intervention, the protein expression levels of
NF-κB p65, NF-κB p50, IKKα, and IKKβ were significantly decreased, whereas the IκBα
levels were significantly increased in the SDSS and positive groups compared with the
control group (p < 0.05 or p < 0.01). Combined with the results of serum inflammatory
factors, our findings suggested that SDSS could inhibit the NF-κB pathway to reduce
PU-induced inflammation.
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3. Materials and Methods
3.1. Materials and Reagents

Sodium Danshensu (SDSS) was purchased from Aladdin (Shanghai, China). Mucopol-
ysaccharide-polysulfate cream (Hirudoid®) was provided by Hangzhou Women’s Hospital
(Hangzhou, China). Enzyme-linked immunosorbent assay (ELISA) kits for interleukin (IL)-
6, IL-1β, and tumor necrosis factor (TNF)-α were purchased from Boster (Wuhan, China).
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The malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GSH-
Px), catalase (CAT), and hematoxylin–eosin (H&E) staining kits were purchased from
Jiancheng (Nanjing, China). The primary antibodies against NF-κB p65 (AF0246), NF-
κB p50 (AF1246), IKKα (AF0198), IKKβ (AF7200), and IκB-α (AI096) were purchased
from Beyotime (Shanghai, China). The primary antibodies against Keap1 (BF0010), Nrf2
(AF0639), HO-1 (AF5393), GCLM (DF7268), and NQO1 (DF6437) were purchased from
Affinity Biosciences (Liyang, China). The primary antibody against GAPDH (K200057M)
was purchased from Solarbio (Beijing, China).

3.2. Preparation of SDSS Cream

Under aseptic conditions, the SDSS cream was prepared by melting the water phase,
which contained 30 mg SDSS, 1 g glycerol, 0.05 g triethanolamine, and 7.42 g water, at 80 ◦C.
Then, while stirring, the water phase was added slowly to the oil phase, which contained
0.5 g stearic acid, 0.5 g vaseline, and 0.5 g liquid paraffin. After adding them, quickly stir
them in a water bath (80 ◦C) for 3 min, and then continue stirring at room temperature until
condensation occurs. Thus, 10 g of a cream containing 0.03% SDSS (w/w) was prepared.

3.3. Animal Experiments

Male ICR mice (18–22 g, 4–6 weeks) were purchased from the Zhejiang Academy of
Medical Sciences. After a week of adaptive feeding, all mice received an intraperitoneal
injection of 2% sodium pentobarbital to induce anesthesia. The hair on the backs of the
mice was then shaved and removed with 6% sodium sulfide using scissors. Afterwards,
70% ethanol was used to clean and disinfect the area to be shaved. In accordance with
Stadler’s [56] mice modeling, a pair of sterile circular magnets (10 mm in diameter, 5 mm in
thickness, and 2.8 g in weight) were used to clamp approximately 5 mm of skin on the hair
removal area of mice. A single I/R cycle consists of 12 h of magnet placement (ischemia
period) followed by 12 h of magnet removal (reperfusion period). After 2–3 I/R cycles,
each mouse developed two ulcers (Figure 1).

The mice were then divided at random into 3 groups (n = 15 per group). In the control
group, mice with skin wounds were treated with 0.5 g of cream without SDSS. The wounds
of mice in the treatment group (SDSS) were treated with 0.5 g of cream, while those in
the positive control group were treated with 0.5 g of Hirudoid® cream (positive). The
drug was administered daily for 14 days. To evaluate the wound closure of SDSS, mice
were anesthetized and sacrificed 3, 7, and 14 days later (n = 5 for each time point) by
cervical dislocation.

3.4. Determination of the Rate of Wound Healing

On days 0, 3, 7, and 14, the wound-healing pattern was photographed with a digital
camera, and the wound area was calculated using Image J software. The rate of wound
closure (%) was computed as follows [57]:

Wound closure rate (%) = (A0 − At)/A0 × 100%.

where A0 is the wound area at 0 days, and At is the wound area at a particular day.

3.5. Histological Analysis

The tissues of the skin were fixed with 4% paraformaldehyde and embedded in
paraffin. The tissues were then sectioned to a thickness of 5 m. The tissue slides were
stained with H&E in order to evaluate the effect of SDSS on wound repair. The micrographs
were taken with a CX31 light microscope (Olympus, Tokyo, Japan).

3.6. Biochemical Analysis

Eyeball extirpating was used to obtain blood samples from mice, and serum was
extracted from fresh blood by centrifugation (6000× g, 4 ◦C, 3 min). The serum levels
of IL-6, IL-1β, and TNF-α were measured according to Boster’s instructions. The serum
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MDA concentration and SOD, GSH-Px, and CAT activities were measured according to
Jiancheng’s instructions.

3.7. Western Blot Analysis

The PU skin sites were used for Western blotting, and the Western blotting was
performed in accordance with previous research [58]. Each sample underwent SDS-PAGE
electrophoresis with 30 g of protein; the protein bands were then transferred to a PVDF
membrane and sealed for 1 h with 5% bovine serum albumin (BSA). At 4 ◦C overnight,
primary antibodies (GAPDH, Nrf2, HO-1, GCLM, NOQ1, NF-κB P65, NF-κB P50, IKKα,
IKKβ, and IκBα) were added and incubated. The AlphaView software was used to obtain
and quantify the protein bands of interest (version 3.4.0, ProteinSimple, San Jose, CA, USA).

3.8. Statistical Analysis

All results were analyzed using SPSS 26.0 software and expressed as the mean standard
deviation. The one-way ANOVA and Duncan’s test were conducted, and a p < 0.05 was
deemed statistically significant.

4. Conclusions

In conclusion, SDSS cream could promote the wound-healing rate of PU in mice
effectively. The H&E staining results demonstrated that the histomorphology of mice with
PU was significantly enhanced by SDSS. After treatment with SDSS cream, the serum levels
of IL-1β, IL-6, and TNF-α decreased significantly, while the serum SOD, CAT, and GSH-Px
activities increased significantly. In addition, our findings suggested that the protective
mechanism of SDSS may be associated with its activation of the Nrf2/HO-1 pathway and
inhibition of the NF-κB pathway (Figure 8). However, the optimal dosage of SDSS was not
systematically investigated in this study; in the future, more animal experiments can be
conducted to determine the optimal dosage of the drug. In addition, transcriptomics and
proteomics can be used to further investigate the mechanism of SDSS in order to clarify
how it promotes wound healing in mice with PU.
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