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Abstract: The transcription factor nuclear factor-κB (NF-κB) plays a complicated role in multiple
tumors. Mounting evidence demonstrates that NF-κB activation supports tumorigenesis and devel-
opment by enhancing cell proliferation, invasion, and metastasis, preventing cell death, facilitating
angiogenesis, regulating tumor immune microenvironment and metabolism, and inducing thera-
peutic resistance. Notably, NF-κB functions as a double-edged sword exerting positive or negative
influences on cancers. In this review, we summarize and discuss recent research on the regulation of
NF-κB in cancer cell deaths, therapy resistance, and NF-κB-based nano delivery systems.
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1. Introduction

Therapeutic resistance to chemotherapy [1], radiotherapy [2], immunotherapy [3], and
endocrine therapy [4], is currently a main obstacle in tumor therapy. Previously, various
drugs exert their cancer-inhibiting effects by inducing cell death in various cancer types,
and much of the therapeutic resistance is precisely due to the inhibition of apoptosis [5].
In the past decades, an increasing number of studies have focused on the induction of
several types of programmed cell deaths (PCDs) [6,7]. A deep understanding of the
characteristic and regulation of PCDs has promoted research on novel anti-cancer therapies
targeting PCDs [8–10]. PCDs such as ferroptosis [11], necroptosis [12], and pyroptosis [13]
are immunogenic cell deaths, which not only inhibit cell proliferation but also trigger
immune responses and subsequently alter the immune microenvironment [14]. An in-
depth comprehension of the pivotal signaling pathways associated with both PCDs and
immune responses could contribute to attractive clinical therapeutic strategies.

Nuclear factor-κB (NF-κB), as a transcription factor that mediates many biological
processes, is involved in multiple forms of immunogenic cell deaths. NF-κB remains at
the cytoplasm in the resting condition and enters the cell nucleus when it is activated
by various stimuli, thereby regulating diverse physiological and pathological processes
including cell proliferation, angiogenesis, tumor progression, cell deaths, therapeutic
resistance, inflammation, and immune responses [15]. It is well established that NF-κB is a
significant endogenous proinflammatory factor. In recent decades, numerous high-quality
literatures have summarized the molecular mechanism and function of NF-κB in regulating
inflammation during tumorigenesis and progression [15–22].
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Nano delivery systems (NDS) exhibit great promise for application in tumor treatment
because they could accurately target tumor tissues, prolong the half-life of drugs, inhibit
therapy resistance, reduce chemotherapy agents toxicity and side effects, and achieve
drug combination regimens [23–25]. Nanotherapy based on NF-κB inhibition has attracted
wide attention in recent years [26]. This review also summarizes the anti-tumor effects
and mechanisms of the nanoparticulate systems inhibiting NF-κB. Here, we reviewed the
effect and regulatory mechanism of NF-κB in tumor cell deaths, therapeutic resistance,
and nanotherapy.

We searched the high-impact literature and examined thousands of titles and abstracts
and hundreds of full texts through the PubMed and Web of Science databases. Specifi-
cally, we conducted data collection using the MeSH terms “NF-κB” and “tumors/cancers”
combined with text words such as “cell deaths”, “treatment resistance”, or “nanotherapy”.

2. NF-κB Family Members and NF-κB Signaling Pathways

NF-κB is composed of five protein subunits including p50, p52, p65, RelB, and c-
Rel [18]. These proteins permit DNA combination, dimerization, and nuclear translocation.
Notably, p65, RelB, and c-Rel subunits display a transcriptional activation for DNA stim-
ulation, while the p50 and p52 subunits merely serve as helpers for the DNA-binding
effect of NF-κB [27–29]. P50 and p52 are stemmed from predecessors of p105 and p100,
respectively [20]. Theoretically, NF-κB members are capable to form any combination of
homodimers or heterodimers. However, not every hypothetically dimer could occur. The
most common form of NF-κB is the p50/p65 heterodimer [15]. The NF-κB signaling path-
way is tightly regulated under physiological conditions. NF-κB has mild nuclear activity
under resting conditions. NF-κB could be stimulated by plenty of extracellular factors,
which exhibit two different signal transduction cascades comprising the canonical and the
non-canonical pathways [30,31].

In the canonical pathway, NF-κB activity remains at a low level through firmly fas-
tening to the IκB that could mask the nuclear localization sequence of NF-κB [32]. The
canonical NF-κB signaling is activated by TNF-α, TLRLs such as lipopolysaccharide (LPS),
and IL-1. The main process of NF-κB activation is the proteasomal degradation of IκB
through its phosphorylation by an inhibitor of κB kinase (IKK) complex containing two
catalytic elements (IKKα, and IKKβ) and a regulatory element (IKKγ) [33]. Upon activation,
the NF-κB heterodimer p50/p65 or p50/c-Rel is translocated to the cell nucleus, where it
combines with a special DNA sequence and promotes gene transcription [34]. In the non-
canonical pathway, NF-κB signaling is initiated through stimuli including BAFF, CD40L,
RANKL, and LTβ. These extracellular factors stimulate the non-canonical pathway that is
separate from IKKβ and IKKγ (also named NEMO) and IκB. Alternatively, NIK-induced
phosphorylation of an IKKα homodimer mediates the procedure of p100 to p52, leading to
the translocation of heterodimer p52/RelB into the cell nucleus and activating target gene
expression [35–38]. Figure 1 displays the activation of the canonical and the non-canonical
NF-κB pathways.
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Figure 1. The two NF-κB signaling pathways. The activation process of the canonical and the non-
canonical NF-κB pathways are shown on the left and right sides, respectively. RHD, Rel homology 
domain; IκB, inhibitor of κB; TNF-α, tumor necrosis factor-α; TLRLs, Toll-like receptor ligands; IL, 
Interleukin; IKK, IκB kinase; NEMO, NF-κB essential modifier; BAFF, B-cell-activating factor; 
CD40L, CD40 ligand; RANKL, receptor activator of NF-κB lig-and; LTβ, lymphotoxin β; NIK, NF-
κB inducing kinase. 

  

Figure 1. The two NF-κB signaling pathways. The activation process of the canonical and the non-
canonical NF-κB pathways are shown on the left and right sides, respectively. RHD, Rel homology
domain; IκB, inhibitor of κB; TNF-α, tumor necrosis factor-α; TLRLs, Toll-like receptor ligands;
IL, Interleukin; IKK, IκB kinase; NEMO, NF-κB essential modifier; BAFF, B-cell-activating factor;
CD40L, CD40 ligand; RANKL, receptor activator of NF-κB lig-and; LTβ, lymphotoxin β; NIK, NF-κB
inducing kinase.

3. NF-κB Function in Tumor Cell Death
3.1. NF-κB Interacts with Apoptosis and Necroptosis

Apoptosis refers to the active and orderly cell death under physiological or patho-
logical conditions in order to maintain the homeostasis of the internal environment. The
morphological characteristics of apoptosis include cell shrinkage, nuclear condensation,
nuclear DNA fragmentation, and the formation of apoptotic bodies. Notably, the cell
membrane structure is intact during apoptosis [5]. Necroptosis is a highly regulated pro-
grammed necrosis and it has been extensively studied in recent years [12]. Cells undergoing
necroptosis exhibit swelling of organelles, disassembly of the cytoplasm and nucleus, and
rupture of the cellular membrane [39] promoting the release of cell contents and inducing
inflammatory response [40], which is distinguished from apoptosis.
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It is generally believed that NF-κB inhibits cancer cell apoptosis and most types
of tumors are resistant to TNF-α/TNFR-mediated apoptosis because of the preceding
activation of NF-κB [41]. NF-κB could upregulate anti-apoptotic molecules, such as Bcl-2,
Bcl-XL, and FLIP [42], and enhance the transcription of anti-oxidant enzymes such as
MnSOD and FHC to eliminate the level of ROS in tumor cells [43], which eventually exert
the function of apoptosis inhibition. Consistent with this, depression of NF-κB could
convert the function of TNF-α signaling from survival to death in ovarian cancer cells [44]
and promote TNF-α-induced CCA, apoptosis, and necroptosis in hepatocellular carcinoma
(HCC) cells [45]. Moreover, NF-κB suppression could potentiate apoptosis and further
inhibit the development of non-small cell lung cancer (NSCLC) cells [46]. These results
suggest that tumor cells lacking NF-κB signaling are more vulnerable to apoptosis and,
therefore, have a lower malignant potential [47].

Understanding the molecular mechanisms of apoptosis and necroptosis is important to
clarify how NF-κB interacts with them. TNF-α could provoke several cell death processes,
including apoptosis and necroptosis. First, the combination of TNF-αwith TNFR promotes
the combination of RIPK1, TRADD, cIAP, and TRAF and, thus, the constitution of complex
I. Second, complex II comprised of RIPK1, TRADD, caspase 8, and FADD is formed when
RIPK1 is deubiquitinated by CYLD. Third, caspase 8 of complex II inactivates RIPK1 by
proteolytic cleavage, which finally induces the apoptosis pathway [44]. When caspase
8 is blocked, RIPK1 is stabilized and exerts the function of phosphorylated to activate
RIPK3 and form a vital protein complex named necrosome with it. Subsequently, RIPK3
phosphorylates its substrate pro-necrotic enzyme MLKL, promoting its oligomerization
and translocation to the cytomembrane and promoting membrane disruption to execute
necroptosis [12].

RIPK1 [42] and caspase 8 [48] are vital molecular switches in regulating the equilibrium
between cell survival and cell death, and both are implicated in the relation between NF-κB
and apoptosis as well as NF-κB and necroptosis. Recent research has found that RIPK1
recruits to the IKK complex and activates NF-κB, leading to NF-κB binding to the promoters
of CXCR4 and uPA, then facilitating breast cancer metastasis [49]. The ubiquitination of
RIPK1 by cIAP in complex I activate TAK1, which phosphorylates IKK and subsequently
facilitates NF-κB activity and cell survival [50,51]. Moreover, suppression of RIPK1 could
impair NF-κB and potentiate HCC progression [52]. These results demonstrate that RIPK1,
an important molecule involved in apoptosis, could induce NF-κB activation and promote
tumor development.

Since NF-κB could be augmented by RIPK1 [53], caspase 8 inhibitors lead to NF-κB
activation and resist apoptosis by sufficiently blocking the cleavage of RIPK1 and stabilizing
the expression of RIPK1 [54]. Additionally, the inhibition of caspase 8 also activates NF-κB
by stimulating the RIPK1/RIPK3/MLKL signaling pathway. Specifically, the axis activates
the MAPK pathway and promotes IκB degradation and the sustained nuclear entry of
NF-κB, thereby increasing the release of inflammatory cytokine during necroptosis, such as
CXCL1, CXCL8, CCL20, and CSF1 [55]. Moreover, RIPK3-phosphorylated TRIM28 could
upregulate NF-κB in tumor cells, leading to elevated immunostimulatory cytokine such as
GM-CSF expression, thereby contributing to robust cytotoxic anti-tumor immunity [56].
These findings indicate that NF-κB might be prevented by caspase 8, a co-regulator of
apoptosis and necroptosis.

Suppression of caspase 8, which is a central molecule associated with cell death [48],
could facilitate the necroptosis of ovarian cancer cells [44]. Moreover, pan-caspase inhibitors
could facilitate 5-FU-induced necroptosis in colorectal cancer (CRC) cells [57]. NF-κB is
considered an apoptosis inhibitor and various cancers are resistant to apoptosis, owing to
the previous activation of NF-κB [41]. Inducing necroptosis is expected to be an effective
strategy to prevent tumor progression and improve chemotherapy sensitivity when tumor
cell apoptosis is inhibited by NF-κB. Therefore, the induction of necroptosis has been
recommended as an approach to defeat apoptosis resistance.
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3.2. NF-κB and Pyroptosis

Pyroptosis is described as GSDM-mediated and inflammatory PCD, accompanied by
plasma membrane perforation and cell contents release, which then promotes an immune
response and inflammation [58]. After cleavage by caspases or granzymes, the GSDMs
cause the cells to swell, rupture and undergo pyroptosis [14,59–62]. Pyroptosis could play
a double role in potentiating and suppressing cancer cell growth [63]. Our previous study
found that nuclear GSDMD promotes CRC invasion and metastasis, while patients with
elevated cytoplasmic GSDMD expression have a reduced danger of distant metastasis and
improved clinical outcome, indicating that the role of GSDMD during tumor progression
depends on its subcellular locations [64].

Recently, several studies have found that intracellular molecules, or extracellular
compounds that inhibit NF-κB signaling, could promote tumor cell pyroptosis. For instance,
DRD2 restricts the NF-κB signaling pathway as well as induces pyroptosis, and regulates
the tumor microenvironment to prevent breast cancer [65]. Similarly, Tanshinone II could
prevent NF-κB and significantly upregulate the caspase 3/GSDMD pathway, thereby
promoting pyroptosis and preventing cervical cancer progression [66]. Piperlongumine, a
bioactive alkaloid extracted from plants, prevents various biological functions containing
anti-cancer and anti-inflammatory. It is found that the piperlongumine analog L50377
triggers pyroptosis through ROS-mediated NF-κB inhibition in NSCLC [67]. These studies
suggest that NF-κB may impede pyroptosis and promote tumor development.

On the contrary, it has also been demonstrated that NF-κB could promote pyroptosis
and inhibit tumor progression. For example, Polyphyllin VI, a kind of traditional Chinese
medicine, stimulates pyroptosis by activating the NF-κB/NLRP3/caspase 1/GSDMD
pathway in NSCLC [68]. Moreover, NF-κB facilitates Bax activation and cytC release
and further induces the activity of caspase 3 and degradation of GSDME to promote
cell pyroptosis and exert anti-cancer effects in HCC, breast cancer, and CRC under the
stimulation of the metformin-enhanced AMPK/SIRT1 pathway [69]. The initiation of
pyroptosis via metformin/NF-κB is regarded as an innovative therapeutic choice to prevent
diverse tumors. In addition, NF-κB facilitates GSDMD transcription through binding to
the GSDMD promoter area and elevates GSDMD expression to induce the pyroptosis of
adipocytes under LPS stimulation [70].

These studies suggest that NF-κB might play a dual pro-tumor and anti-tumor role by
inhibiting or promoting GSDM-mediated pyroptosis, respectively. Interestingly, GSDM
regulates NF-κB expression in turn and plays a key role in steatohepatitis [71]. However,
no relevant studies focus on whether NF-κB could be regulated by GSDMs in tumors
at present.

3.3. NF-κB Regulates Ferroptosis

Ferroptosis is characterized by iron overload and lipid peroxidation [8,10]. GPX4, an
essential GPX that decreases lipid peroxidation, serves as a crucial inhibitor of ferroptosis.
The ferroptosis activator RSL3 induces ferroptosis in several cancers through decreasing
GPX4 expression [8]. Cystine/glutamate antiporter system xc−, whose primary compo-
nent is SLC7A11, functions as a cystine/glutamate antiporter to formulate GSH. GSH is
converted into GSSG under the catalysis of GPX4, neutralizing the oxidative substances in
the plasma membrane, and thus inhibiting ferroptosis.

NF-κB plays a dual anti-ferroptosis and ferroptosis-promoting role, depending on
the tumor types or the specific stimulus. Most of these studies focus on the negative
function of NF-κB on ferroptosis. A recent report demonstrated that DMF inhibits NF-
κB signaling and efficiently induces lipid peroxidation and ferroptosis in diffuse large B
cell lymphoma (DLBCL) cells and exerts a broad anti-lymphoma effect [72], indicating
that NF-κB may associate with anti-ferroptosis behavior. NKAP protects glioblastoma
(GBM) cells from ferroptosis by upregulating SLC7A11 and promoting cell resistance to
ferroptosis inducers [73]. In addition, NF-κB could prevent ferroptosis through directly
increasing ferroptosis-negative regulator GPX4 or enhancing iron-sequestering molecular
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LCN2. Researchers identify GPX4 as a direct target of NF-κB using RNA-sequencing
and bioinformatic analyses [74]. Moreover, NF-κB is activated by the prevention of the
LIFR/SHP1 axis could enhance the expression of LCN2, thereby exhausting iron and caus-
ing resistance to ferroptosis to promote liver tumorigenesis [75]. These studies show that
NF-κB leads to ferroptosis suppression and tumor progression by preventing lipid peroxi-
dation as well as reducing cellular iron. Notably, an LCN2-neutralizing antibody increases
the ferroptosis-potentiating and anti-tumor effects of sorafenib (SOR), a chemotherapeutic
agent that could inhibit the system xc− and induce ferroptosis, in HCC patient-derived
xenograft tumors [75]. NF-κB could be inhibited by iron chelator DFX. Intriguingly, even
though ferroptosis is inhibited by DFX, the SOR and DFX union show accumulated anti-
cancer effects for HCC via apoptosis and NF-κB signal regulation [76].

NF-κB may also promote tumor cell ferroptosis and reduce tumor malignancy. Sev-
eral studies have shown that specific bioactive molecules or exogenous compounds could
facilitate NF-κB signaling as well as promote ferroptosis to eliminate tumor aggravation.
For example, as an inflammation mediator, HMGB1 not only enhances the LPS-induced
NF-κB to intensify the inflammation in colon cancer cells but also downregulates GPX4
activity and thereafter promotes ferroptosis [77]. The AMPK/NF-κB pathway is mod-
ulated by a plant-derived triterpenoid lupeol that is found to decrease GPX4 and GSH
levels, trigger ferroptosis, and suppress nasopharyngeal carcinoma (NPC) [78]. NF-κB is
induced by RSL3 in the GBM cells, and NF-κB suppression could mitigate RSL3-induced
ferroptosis [79], suggesting that NF-κB is critical for RSL3-induced ferroptosis and subse-
quent GBM suppression. NF-κB also facilitates the ferroptosis of GBM by downregulating
SLC7A11 [79].

Ferroptosis is a recently defined PCD process in 2012, few researchers have con-
centrated on the regulation of NF-κB on ferroptosis, and further research is needed to
deeply understand the relationship between NF-κB and ferroptosis. Figure 2 illustrates
the crosstalk between NF-κB and cell deaths including apoptosis, necroptosis, pyroptosis,
and ferroptosis.
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TNFR, TNF receptor; FLIP, FLICE-inhibitory protein; MnSOD, manganese superoxide dismutase;
FHC, ferritin-heavy chain; RIPK1, receptor-interacting protein kinase 1; TRADD, TNF receptor associ-
ated death domain; cIAP, cellular inhibitor of apoptosis protein; TRAF, TNF receptor associated factor;
FADD, Fas-associated death domain; CYLD, cylindromatosis; MLKL, mixed lineage kinase domain-
like pseudokinase; CXCR4, C-X-C chemokine receptor type 4; uPA, urokinase-type plasminogen
activator; TAK1, transforming growth factor-β (TGF-β)-activated kinase 1; MAPK, mitogen-activated
protein kinase; CXCL, C-X-C chemokine ligand; CCL20, chemokine C-C motif ligand 20; CSF1,
colony-stimulating factor 1; TRIM, tripartite motif-containing; GM-CSF, granulocyte-macrophage
colony-stimulating factor; 5-FU, 5-fluorouracil; GSDM, gasdermin; DRD2, D2 dopamine receptor;
cytC, cytochrome C; AMPK, AMP-activated protein kinase; SIRT1, silent mating type in-formation
regulation 2 homolog-1; GPX4, glutathione peroxidase 4; RSL3, RAS-selective lethal 3; SLC7A11,
solute carrier family 7, Member 11; GSH, glutathione; GSSG, oxidized glutathione; DMF, dimethyl-
formamide; NKAP, NF-κB activating protein; LCN2, Lipocalin 2; LIFR, leukemia-inhibitory factor
receptor; SHP1, Src homology domain 2-containing protein tyrosine phosphatase 1; DFX, deferasirox;
HMGB1, high mobility group box 1.

4. Association of NF-κB with Therapeutic Resistance
4.1. NF-κB Induces Chemotherapy Resistance

Chemoresistance refers to the insensitivity of tumors to chemotherapy drugs and
the unsatisfactory effect of treatment. Chemoresistance is a major challenge resulting
in cancer recurrence and an unfavorable prognosis [80]. Recent findings demonstrate
that NF-κB regulates chemotherapy resistance in various tumors, including gastric can-
cer [81,82], CRC [83], NSCLC [84–86], pancreatic ductal adenocarcinoma (PDAC) [87],
breast cancer [88–92], prostate cancer [93], GBM [94,95], and hematological tumors [96–99].

Microorganism is involved in the onset and progression of diverse human diseases, in-
cluding cancer. Microbiota mainly exists in the gastrointestinal tract, and its products, such
as LPS, can contribute to gastrointestinal tumorigenesis by regulating NF-κB signaling [100].
Helicobacter pylori (H. pylori) is regarded as one of the most common pathogenic factors
of gastric cancer and its infection contributes to microbial dysbiosis that may participate
in gastric carcinogenesis and development [101]. H. pylori could upregulate RASAL2
transcriptional expression through NF-κB activation. Overexpression of RASAL2 is com-
mon in gastric cancer and could contribute to gastric tumorigenesis, poor prognosis, and
the chemoresistance of platinum and fluorouracil-based chemotherapy by activating the
AKT/β-catenin pathway that could be suppressed by PP2A [82]. Moreover, NF-κB inhibi-
tion may reverse cisplatin resistance in gastric cancer cells [81] and restore chemosensitivity
including oxaliplatin and vincristine in CRC cells by preventing NRF2/MRP2 axis [83]
that might enhance multidrug resistance in various tumors. These studies suggest that
NF-κB could induce chemoresistance in gastrointestinal tumors, including gastric cancer
and CRC.

Previous research has indicated that NF-κB promotes EGFR-TKI’s resistance to
NSCLC [86] and NF-κB inhibition could facilitate EGFR-TKI’s sensitivity [84]. Overcoming
acquired resistance to EGFR-TKIs, such as osimertinib and erlotinib, would be a major
breakthrough in the treatment of NSCLC. Osimertinib-induced TGF-β2 activates NF-κB in
NSCLC cells and upregulates the SMAD2/EMT axis, which may further promote osimer-
tinib resistance [85]. It is well known that miRNAs could participate in many tumor-related
biological processes, including metastasis and chemoresistance, through binding to the tar-
get gene and inhibiting special gene expression. NF-κB eliminates the miR-590 expression
and upregulates EHD1, thus increasing stem cell-like properties and erlotinib resistance in
NSCLC [84]. MiR-135b could suppress deubiquitinase CYLD, a negative regulator of NF-
κB, leading to NF-κB activation, NSCLC progression, and an unfavorable prognosis [102].
NF-κB directly inhibits the transcriptional expression of miR-488 which could target and
prevent the expression of ERBB2, leading to the growth and malignancy of pancreatic can-
cer cells [103]. Intriguingly, miR-146a-5p could downregulate the TRAF6/NF-κB axis and
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drive gemcitabine chemoresistance in PDAC [87]. Although miRNA is generally regarded
as a novel therapeutic strategy, since it could specifically prevent tumor-related genes [104],
the relationship between NF-κB and miRNA is complicated. MiRNA interacts with NF-κB
and eventually exerts the function of tumor promotion or prevention.

Moreover, NF-κB is related to the chemoresistance of breast cancer. Breast cancer with
high NF-κB activity is more likely to develop chemotherapy resistance. Additionally, resid-
ual treatment-refractory breast cancer tissues show high levels of NF-κB [90]. MiR-1910-3p
targets and inhibits MTMR3 and activates the NF-κB signaling, thereby potentiating breast
cancer proliferation and metastasis [105]. MiR-132 and miR-212 significantly inhibit the
expression of PTEN, which could promote the AKT/NF-κB pathway and further reduce the
sensitivity of breast cancer cells to doxorubicin (DOX) [88]. Targeting the NF-κB/JNK axis
might eliminate remaining cancer cells and promote treatment efficiency by inducing the
apoptosis of breast cancer cells [90]. ATM and DNA-PKcs, as activators of NF-κB, are critical
to the response of cytotoxic chemotherapies [91]. Etoposide and cisplatin induce DNA-
PKcs and ATM-mediated activation of NF-κB, enhancing APOBEC3B expression, which
drives tumor progression and therapy resistance of breast cancer [92]. In addition, post-
translational modifications also play a vital role in regulating NF-κB signaling activity [106].
The ubiquitination and degradation of NF-κB by FBXW2 could decrease SOX2 expression
and suppress breast cancer stemness, tumorigenesis, and paclitaxel resistance [89].

Gut microbiota participates in the development and chemotherapy resistance of sev-
eral tumors [107–109]. LPS could promote the progression and docetaxel resistance of
prostate cancer by activating the NF-κB/IL6/STAT3 signaling pathway [93].

In addition, aberrant NF-κB activation is prevalent in GBM and could affect both
tumor development and chemoresistance. The routine therapy options for patients with
GBM contain surgical operation, radiotherapy, and chemotherapy with temozolomide
(TMZ) [110], however, long-term use of TMZ may lead to chemoresistance [79]. ADAR3
upregulates NF-κB expression and eliminates GBM cell sensitivity to TMZ [95]. Moreover,
chemotherapy promotes ROS generation that could facilitate tumor cell survival through
activating NF-κB, thereafter upregulating the anti-apoptotic gene Bcl-XL and enhancing
GBM survival and chemotherapy resistance [94].

Notably, NF-κB also participates in chemotherapy resistance in hematologic tumors,
such as multiple myeloma (MM) and acute lymphoblastic leukemia (ALL). MM is one of
the most frequently occurring hematologic malignant tumors and proteasome inhibitor
bortezomib is the first-line therapy for newly diagnosed MM [111]. MM stem cells are con-
sidered to be the primary reason for chemoresistance and recurrence in patients with MM.
NF-κB inhibition could suppress bortezomib resistance and tumor stemness in MM [99].
Moreover, HAPLN1 and MMP2 from bone marrow stromal cells activate NF-κB and in-
duce resistance to bortezomib treatment in MM [97]. ALL remains the main reason for
death among all pediatric tumors [112]. The BM niche is a complicated microenvironment
and may participate in the chemoresistance of ALL [113,114]. Chemotherapeutic drugs,
including Ara-C, DNR, and 6-MP, trigger NF-κB activation by stimulating the ATM/TRAF6
signaling pathway, which directly upregulates bone marrow niche-protecting cytokines
GDF15, CCL3, and CCL4, thereby leading to drug resistance of ALL [98]. Consistently,
suppression of the ATM-dependent NF-κB signaling could improve the sensitivity of ALL
to chemotherapy. Mantle cell lymphoma (MCL) is a refractory aggressive lymphoma with
an adverse clinical outcome. MiR-223-3p could directly inhibit conserved helix-loop-helix
ubiquitous kinase (CHUK) and further decrease the expression of NF-κB, thereby reversing
Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib resistance in MCL [96].

Furthermore, IKKα participates in NF-κB-mediated chemotherapy resistance and
could function as a novel target for enhancing chemotherapy effectiveness [115]. It is well
known that IκB is downgraded in the ubiquitin-proteasome system, liberating and enabling
NF-κB nuclear translocation and activation. Therefore, suppression of the UPS may block
NF-κB and, therefore, enhance the chemotherapy sensitivity of malignant tumors [116].
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In a word, chemoresistance is a primary difficulty in cancer treatment, and NF-κB
inhibition is expected to promote tumor treatment efficacy, improve clinical outcomes, and
extend the survival time of patients.

4.2. NF-κB Promotes Radiotherapy Resistance

Radiotherapy, also named IR, has the advantage of relatively fewer systemic side
effects compared to chemotherapy. Radiotherapy is one of the primary treatments for
squamous cell carcinoma and GBM. NF-κB plays a vital role in the radiotherapy resistance
of cancers and the suppression of NF-κB promotes sensitivity to radiotherapy. Radiotherapy
resistance is the main reason that causes therapy failure and the recurrence of NPC. A recent
study has shown that AKR1B10-induced free fatty acid synthesis potentiates the TLR4/NF-
κB axis which then regulates CCA and DDR, leading to radiation insensitivity of NPC [117].
NF-κB is also a critical driver of radioresistance in human head-and-neck squamous cell
carcinoma [118]. IR-induced cell death is one of the most common mechanisms for the
radiotherapy of several tumors. However, IR also could activate NF-κB that in turn inhibits
IR-mediated apoptosis of esophageal cancer cells [119]. PELI1, a NIK E3 ubiquitin ligase,
mediates the degradation of NIK and then suppresses the activation of the IR-stimulated NF-
κB, causing the downregulation of Bcl-XL, thereby promoting the apoptosis of esophageal
cancer cells induced by radiotherapy [119], indicating that activation of the NIK/NF-κB
pathway could promote radioresistance by inhibiting apoptosis.

Radiotherapy is still the standard treatment approach in patients with GBM [120].
Nevertheless, continual radiation activates NF-κB and then upregulates the expression of
YY1 which could directly suppress miR-103a transcription, resulting in activating the DDR
and promoting stemness and the expansion of tumor cells, thereby driving radioresistance
and the recurrence of GBM [121].GBM is extremely heterogeneous and contains three
subtypes, namely proneural (PN), mesenchymal (MES), and classical [122]. PMT is a critical
phenotypic transformation in GBM and is tightly related to therapy resistance, tumor
recurrence, and poor clinical outcome [110]. NF-κB is proven to be the main molecule
that regulates PMT. Recent research has found that NF-κB could be upregulated by FOSL1
which plays a crucial role in cell proliferation, differentiation, and survival, and eventually
promotes PMT and radioresistance [122]. Moreover, the protein complex ARPC1B-TRIM21-
IFI16 activates NF-κB and promotes PMT and radiotherapy resistance [123]. These results
demonstrate that NF-κB could induce PMT in GBM and thereby reduce radiosensitivity.

In addition, NF-κB also promotes radiotherapy tolerance in CRC by inhibiting tumor
cell apoptosis. ALDH1L2 facilitates a redox protein TXN degradation and activates NF-κB,
thereby upregulating CAT and SOD2, and eliminating ROS to protect cells from ROS-
mediated apoptosis, thereby inducing radioresistance in CRC cells [124].

These studies indicate that NF-κB plays an essential role in the radiotherapy resistance
of tumors including NPC, HNSCC, esophageal cancer, GBM, and CRC.

4.3. NF-κB and Endocrine Therapy Resistance

In addition to chemotherapy resistance and radiotherapy resistance, NF-κB is also
involved in endocrine therapy resistance. Endometrial cancer, breast cancer, and prostate
cancer are common sex hormone-related cancers that are associated with estrogen, proges-
terone, and androgen respectively, and could be treated with endocrine therapy. NF-κB is a
significant mechanism for therapy resistance of the three types of cancers [125,126].

Studies have shown that nearly 75% of breast cancer express ER. TAM could antago-
nize estrogen by competitively binding to ER, leading to the suppression of ER-positive
breast cancer [127]. NF-κB is a driver of TAM resistance [128–130]. For example, PKC-ε and
PKD3 are interacted with TRIM47 and enhance NF-κB signaling, leading to breast cancer
proliferation and TAM resistance [130]. Moreover, HMGB1 leads to TAM endocrine therapy
insensitivity by combining with TLR-4 and inducing NF-κB activation [128]. CDK4/6
kinase suppressors, such as palbociclib, ribociclib, and abemaciclib may inhibit HMGB1
and decrease the TLR-4/NF-κB axis, and reverse TAM resistance [128]. Resistance to en-
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docrine therapy is a primary obstacle to the treatment of breast cancer. NF-κB is engaged
in TAM tolerance and inhibition of NF-κB is expected to improve the sensitivity of TAM
treatment. Moreover, NF-κB upregulates the anti-apoptotic factor of BCL-2 to exert the
effect of endocrine resistance in ER-positive breast cancer [131]. The NF-κB pathway could
be activated in endocrine therapy-resistant breast cancer [132] and may cause more invasive
disease and eventual relapse [133]. Intriguingly, ER is an inhibitor of NF-κB, and prevention
of ER leads to the reactivation of NF-κB [134], however, whether the inhibitory effect of ER
on NF-κB is related to the resistance of NF-κB to endocrine therapy is still inconclusive.

Except for estrogen antagonists TAM, endocrine treatment options for ER-positive
breast cancer also recommend aromatase inhibitor anastrozole and ovarian ablation or
suppression [135]. Aromatase depressors could improve clinical outcomes compared with
TAM in postmenopausal women with breast cancer [136]. However, aromatase inhibitors
are proven to be associated with side effects that reduce patients’ quality of life [137]. At
present, there is no direct evidence that NF-κB engages in aromatase inhibitor resistance in
breast cancer.

AR plays an essential role in the proliferation and development of prostate cancer.
Consequently, ADT is used to treat prostate cancer patients. NF-κB is associated with
castration-resistant prostate cancer and castration could activate NF-κB [138]. HMGB1 is
a significant factor in the progression and invasion of prostate cancer. HMGB1 not only
promotes TAM resistance in breast cancer but also participates in castration resistance
in prostate cancer. HMGB1, combined with TNFR1, facilitates cancer progression and
castration resistance by inducing NF-κB activation in prostate cancer [139]. Furthermore,
NF-κB-induced resistance to ADT may be mediated by the excessive activation of AR and
production of AR variant-7 in prostate cancer cells. Therefore, reversing resistance to ADT
could be reached by utilizing an oral NF-κB inhibitor DMAPT [140].

Another hormone-related tumor is endometrial cancer. Conservative progesterone-
based treatment is an efficient therapy for relapsed or refractory endometrial cancer. Acti-
vation of NF-κB also associates with progesterone resistance in endometrial cancer. The
NF-κB pathway is activated by SREBP, a transcription factor that mediates the anabolism
of cholesterol and lipids, and then inhibits apoptosis, and boosts the proliferation and
resistance to progesterone of endometrial cancer cells. Therefore, as an inhibitor of SREBP1,
fatostatin can improve the sensitivity of endometrial cancer to progesterone and reverse
progesterone resistance by suppressing SREBP1/NF-κB signaling [141].

4.4. NF-κB Functions in Immunotherapy

Evasion of immune surveillance is a hallmark of cancers [142]. While antigens derived
from cancer cells are possibly identifiable by the immune system, cancer cells could evade
immune attacks through different mechanisms, including abnormal activation of immune
checkpoints that could terminate immune responses [143]. PD-1 and PD-L1 are the two
main immune checkpoint proteins. PD-L1 expressed in tumor cells combines with its
receptor, PD-1 expressed in T-cells, thereby inducing T-cell apoptosis, preventing cytotoxic
T-cell efficacy, and triggering tumor immune evasion. The PD-1/PD-L1 blockade therapies
(immune checkpoint block, ICB) have been approved for the therapy of diverse tumor
types. Although anti-PD-1 and anti-PD-L1 antibodies could improve patient disease-free
survival, the response among some patients is still unsatisfactory.

NF-κB is vital in modulating both innate and acquired immune responses. NF-κB is a
significant regulator of the immune evasion of tumor cells [144]. NF-κB upregulates the
transcriptional expression of PD-L1 [144,145] in several cancer types such as pancreatic
cancer [144,146], cervical cancer [147], prostate cancer [148], and CRC [149]. NF-κB and
PD-L1 could be suppressed by CDK4/6-phosphorylated RB protein, which is a well-
studied tumor suppressor, thus eliminating tumor development, and this seems to be
a common regulatory mechanism occurring in different tumor types [150]. Therefore,
CDK4/6 inhibition or RB suppression might induce the undesirable activation of the NF-
κB/PD-L1 pathway and cause an immune evasion of tumor cells [150]. HDAC5 prevents
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NF-κB and decreases PD-L1 expression, inhibiting cancer immune evasion, and leading
to a favorable clinical outcome for patients with PDAC. Consistently, HDAC5 silencing
could improve ICB sensitivity by activating the NF-κB/PD-L1 axis in immunotherapy-
resistant pancreatic tumors [144], demonstrating that the effectiveness of ICB depends
on the high expression rate of PD-L1 of tumor cells and NF-κB activation could reverse
ICB resistance by enhancing PD-L1 expression. Furthermore, NF-κB could induce the
transition of macrophage in the tumor microenvironment from M2 to M1 phenotype and
decrease the level of inflammatory factors (IL-10, TGF-β and PGE2) which could prevent
cytotoxic T-cells, thereby upregulating the expression of PD-1 in T-cells and potentiating the
sensitivity to anti-PD-1 therapy of HCC [151]. Response to immune checkpoint therapy is
closely associated with PD-L1 expression in tumor cells and PD-1 expression in T-cells. The
activation of NF-κB upregulates the expression of PD-L1 in tumor cells and PD-1 expression
in T-cells, which is a double-edged sword. The NF-κB/PD-L1 (or PD-1) pathway could
lead to immune evasion on the one hand and elevate immunotherapy sensitization and
reverse immunotherapy resistance on the other hand.

However, activation of the NF-κB/PD-L1 pathway also leads to resistance to ICB
therapy. For example, ligation of TLR/IL-1R activates IRAK4, the primary kinase that
could trigger the innate immune response, and activates the TAK1/IKK/NF-κB pathway,
ultimately upregulating PD-L1 and HAS2, and driving dysfunction and the exhaustion of
T-cell anti-tumor immunity and resistance to ICB [146]. Therefore, targeting IRAK4 could
prevent PD-L1 and activate T-cells, therefore highly enhancing immunotherapy in pancre-
atic cancer. In addition, MGP upregulates NF-κB and then activates PD-L1 expression to
facilitate cytotoxic T-cell exhaustion, thereby promoting liver metastasis of CRC. The union
of MGP knockdown and anti-PD-1 therapy can synergistically resist liver metastasis of
CRC [149]. Furthermore, tumor size decrease is significantly obvious when the combination
of anti-PD-1 with NF-κB inhibition compared with anti-PD-1 therapy alone [152], suggest-
ing that the optimal function of PD-1 suppressor demands prevention of NF-κB activity.
These results show that the NF-κB/PD-L1 axis promotes immunotherapy resistance and
the combination of anti-PD-L1 (or PD-1) with NF-κB suppression significantly promotes
tumor regression [153].

Conservative treatments for cancers include chemotherapy, radiotherapy, endocrine
therapy, and immunotherapy. NF-κB can be activated by chemotherapy, radiotherapy, and
endocrine therapy, contributing to treatment failure and resistance in various cancer types.
Therefore, inhibition of NF-κB can relieve therapeutic tolerance and improve the treatment
sensitivity of tumors. However, the role of NF-κB in immunotherapy is complicated and
needs to be further elucidated. Figure 3 demonstrates the relationship between NF-κB and
therapeutic resistance.

The bioactive molecules or exogenous compounds which promote or inhibit NF-κB
signaling are listed in Table 1.

Table 1. Regulation mechanisms and specific effects of bioactive molecules or exogenous compounds
that promote or inhibit NF-κB in various tumor types.

Agents
The Function of NF-κB
(PRO, Promotion;
INH, Inhibition)

Regulation Mechanism Specific Effects on
Various Tumor Types Reference

Polyphyllin VI PRO

activates the
NF-κB/NLRP3/caspase
1/GSDMD pathway, and
promotes pyroptosis

Anti-NSCLC [68]

Metformin PRO

activates the
AMPK/SIRT1/NF-κB/Bax-
cytC/caspase 3/GSDME
pathway, and
promotes pyroptosis

Anti-HCC, breast
cancer, and CRC [69]
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Table 1. Cont.

Agents
The Function of NF-κB
(PRO, Promotion;
INH, Inhibition)

Regulation Mechanism Specific Effects on
Various Tumor Types Reference

Lupeol PRO
activates the AMPK/NF-κB
pathway, decreases GPX4,
and triggers ferroptosis

Anti-NPC [78]

RSL3 PRO
activates NF-κB, decreases
GPX4, and
induces ferroptosis

Anti-GBM [79]

H. pylori PRO
activates the
NF-κB/RASAL2/AKT/
β-catenin pathway

Promotes gastric
tumorigenesis, and
chemoresistance of
platinum and
fluorouracil

[82]

Osimertinib PRO
activates the
TGFβ2/NF-κB/SMAD2/
EMT pathway

Promotes osimertinib
resistance in NSCLC [85]

Etoposide and
Cisplatin PRO

activates the
DNA-PKcs/ATM/NF-κB/
APOBEC3B pathway

Promotes breast cancer
progression and
therapy resistance

[92]

LPS PRO activates the
NF-κB/IL-6/STAT3 pathway

Promotes prostate
cancer progression and
docetaxel resistance

[93]

Ara-C, DNR, and 6-MP PRO

activates the
ATM/TRAF6/NF-
κB/GDF15, CCL3,
CCL4 pathway

Promotes drug
resistance of ALL [98]

Tanshinone II INH activates caspase 3/GSDMD
axis and promotes pyroptosis Anti-cervical cancer [66]

Piperlongumine
analogue L50377 INH

induces ROS-mediated
NF-κB inhibition and
promotes pyroptosis

Anti-NSCLC [67]

DMF INH induces lipid peroxidation
and ferroptosis Anti-DLBCL [72]

DFX INH
inhibits ferroptosis, DFX +
SOR
promotes apoptosis

Anti-HCC [76]

CDK4/6 kinase
suppressors
(Palbociclib, Ribociclib,
and Abemaciclib)

INH inhibits the HMGB1/TLR-4/
NF-κB pathway

Reverses TAM
resistance in breast
cancer

[128]

DMAPT INH oral NF-κB inhibitor Reverses resistance to
ADT in prostate cancer [140]

Fatostatin INH inhibits the SREBP1/
NF-κB pathway

Reverses progesterone
resistance in
endometrial cancer

[141]
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Figure 3. NF-κB and therapeutic resistance. Black solid arrows represent facilitation and blue
dashed arrows represent inhibition. Hp, Helicobacter pylori; RASAL2, rat sarcoma (RAS) protein
activator-like 2; PP2A, protein phosphatase 2A; NRF2, nuclear factor-erythroid 2 p45 related factor
2; MRP2, multidrug resistance-associated protein 2; EGFR-TKIs, epidermal growth factor receptor-
tyrosine-kinase inhibitors; EHD1, C-terminal Eps15 homology domain-containing 1; ERBB2, receptor
tyrosine-protein kinase 2; MTMR3, myotubularin-related protein 3; PTEN, phosphatase and tensin
homolog deleted on chromosome 10; JNK, Jun N-terminal kinase; ATM, ataxia-telangiectasia mutated
gene; DNA-PKcs, DNA-PK catalytic subunit; APOBEC3B, apolipoprotein B mRNA editing catalytic
polypeptide 3B; FBXW2, F-box and WD-repeat-containing protein 2; SOX2, SRY-related high-mobility-
group (HMG)-box protein 2; STAT3, signal transducer and activator of transcription 3; ADAR3, the
third member of adenosine deaminase that acts on RNA; HAPLN1, hyaluronan and proteoglycan link
protein 1; MMP2, matrix metalloproteinase 2; BMSCs, bone marrow stromal cells; Ara-C, cytarabine;
DNR, daunorubicin; 6-MP, 6-mercaptopurine; GDF-15, growth differentiation factor 15; CHUK,
conserved helix-loop-helix ubiquitous kinase; IR, ionizing radiation; AKR1B10, aldo-keto reductase
B10; FFA, free fatty acid; CCA, cell cycle arrest; DDR, DNA damage repair; PELI1, pellino E3 ubiquitin
protein ligase 1; PMT, proneural (PN) to mesenchy-mal (MES) transition; FOSL1, FOS-like antigen 1;
ARPC1B, actin-related protein complex 1B; IFI16, γ-interferon inducible protein 16; TXN, thioredoxin;
ALDH1L2, aldehyde dehydrogenase 1 family member L2; CAT, catalase; ER, estrogen receptor;
TAM, tamoxifen; PKC-ε, protein kinase C-ε; PKD3, protein kinase D3; AR, androgen receptor; ADT,
androgen-deprivation therapy; AR-V7, AR variant 7; DMAPT, dimethylaminoparthenolide; SREBP,
sterol regulatory element-binding protein; PD-1, programmed death-1; PD-L1, programmed death-
ligand 1; RB, retinoblastoma; CDK4/6, cyclin-dependent kinases 4 and 6; HDAC5, the histone
deacetylase member 5; PGE2, prostaglandin E2; IRAK4, L-1R-associated kinase 4; HAS2, hyaluronan
synthase 2; MGP, matrix Gla protein.
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5. NF-κB-Based NDS

As mentioned above, NF-κB activation generally prevents apoptosis and leads to
treatment resistance in diverse tumors. NDS developed rapidly over the past decades.
NDS could increase the transfer efficacy and enhance the bioavailability of agents, reduce
drug toxicity and side effects, and eventually improve patients’ prognosis [26]. Recent
findings demonstrate that anti-NF-κB nanotherapy has the potential to inhibit the pro-
gression, metastasis, and chemotherapy resistance in various tumors such as CRC [154],
NSCLC [155], pancreatic cancer [156], breast cancer [157,158], GBM [159], adult T-cell
leukemia/lymphoma (ATLL) [160], and melanoma [161].

NF-κB could be activated by anti-cancer agents DOX and then upregulate anti-
apoptotic genes, exert pro-survival function, and further reduce DOX sensitivity [162].
Both selenium and curcumin constituents could inhibit NF-κB activation [163]. Therefore,
curcumin-loaded selenium nanoparticles (Se-Cur NPs) are developed and applied in com-
bination with HA-based polyethylene glycol (PEG) and related NPs loaded with DOX
(PSHA-DOXNPs). The NPs complex prevents the expression of NF-κB and induced CCA
and apoptosis in CRC cells through Se-Cur NPs and enhances the efficacy of DOX at the
same time [154].

Furthermore, researchers devised a hyaluronic acid (HA)-modified glycol chitosan
(GC) nanoparticle that carried DOX and celecoxib (CXB), it is named HA-GC-DOX/CXB.
The HA-decorated NPs effectively carried agents into NSCLC via CD44-mediated endo-
cytosis. The HA-GC-DOX/CXB system obviously downregulates cyclooxygenase (COX),
MMPs, and NF-κB, as well as increases the expression of caspase 3, thereby significantly
suppressing NSCLC tumor inflammation, proliferation, invasiveness, and enhancing apop-
tosis [155]. In addition, the HA-modified poly lactic-co-glycolic acid (PLGA)-PEG nanopar-
ticles (PLGA-PEG-HA NPs) could target and deliver thiotetrazole, a suppressor of PI3K,
to CD44 overexpressing pancreatic cancer cells, thereby improving the efficacy of anti-
cancer drugs and inducing tumor cell premature senescence through the inhibition of the
PI3K/AKT/NF-κB signaling pathway in pancreatic cancer [156].

Chrysin is a flavone and has anti-cancer activity [164]. Hydrophobic poly (ε-caprolactone)
PCL-PEG-NPs encapsulated chrysin could promote G protein-coupled ER (GPER) expres-
sion and lead to the inhibition of NF-κB/MMPs signaling, which could prevent tumor
aggressiveness and metastasis in breast cancer [158]. Additionally, astaxanthin solid lipid
NPs (AX-SLN) inhibit the AKT/NF-κB axis and then contribute to the inhibition of breast
carcinogenesis and expansion [157].

NF-κB-based nano delivery systems also reduce the malignancy of brain tumors.
Disulfiram is a well-known anti-alcohol drug and has anti-cancer activity by eliminating
cancer stem cells (CSCs) and reversing chemoresistance. The cytotoxicity of disulfiram
relies on copper and the disulfiram-copper complex could prevent NF-κB activation [165].
It is found that PLGA-encapsulated disulfiram (DS-PLGA) prevents NF-κB activation,
eradicates GBM stem cells, blocks migration and invasion of GBM cells, and reverses
chemoresistance [159].

Anti-NF-κB nanotherapy could effectively prevent hematological tumors such as
ATLL [160]. Small interfering RNA (siRNA) could target mRNA for cancer treatment.
A peptide-based NF-κB siRNA NP which prevents the expression of the NF-κB signal-
ing pathway could be rapidly delivered to ATLL, thereby inhibiting ATLL growth and
sensitizing advanced ATLL to etoposide [160]. Furthermore, siNF-κB could also be en-
capsulated in polymeric micelle NPs and carried to tumor tissues or metastatic sites via
intravenous administration, thereby inhibiting melanoma migration/invasion and pul-
monary metastasis [161].

Table 2 demonstrates a summary of anti-NF-κB nano delivery systems.
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Table 2. Targeting NF-κB nano delivery systems in various tumor types.

Agents or Nucleic Acid NPs Encapsulation Tumor Types Reference

Curcumin + selenium + DOX PSHA CRC [154]

DOX + CXB HA-GC NSCLC [155]

Thiotetrazole PLGA-PEG-HA pancreatic cancer [156]

Chrysin PCL-PEG breast cancer [158]

Astraxanthin SLN breast cancer [157]

Disulfiram PLGA GBM [159]

siNF-κB peptide ATLL [160]

siNF-κB polymeric micelle melanoma [161]

6. Conclusions and Future Outlook

NF-κB acts as a double-edged sword in cancer due to its multifaceted role such as
regulating tumor metabolism, promoting angiogenesis, mediating inflammation, affecting
cell death, and participating in treatment resistance. NF-κB is involved in the whole
process of tumor evolution by facilitating inflammation in carcinogeneses and regulating
the inflammatory state of the tumor microenvironment in tumor progression. Due to the
limited space, we focused on the regulation of NF-κB in cell death and treatment resistance
in various tumors. Cell death is a strictly regulated process that serves as a natural barrier
that prevents the development and progression of cancer, and the resistance to cell death is
often responsible for therapy tolerance and failure. Although NF-κB could induce therapy
resistance by regulating cell deaths, no “one-fits-all” mechanism can be derived.

Notably, most studies support the role of NF-κB in tumor suppression. The en-
dogenous active molecules, exogenous compounds, miRNAs, and natural plant extracts
mentioned in this review could act as NF-κB regulators, affecting cell deaths, tumor de-
velopment, and treatment resistance. As a novel drug delivery technique, nanoparticles
could transport diverse bioactive/exogenous compounds that inhibit NF-κB activity and
improve the efficacy of anti-cancer drugs. However, the clinical application of NDS is
still limited, and large-scale clinical trials are needed to elucidate whether NDS-mediated
NF-κB inhibition could improve the clinical benefit of cancer patients. Based on the intricate
relationship between NF-κB and cancer, there is still a long way to go to achieve the benefits
of precise treatment by targeting the NF-κB family.
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