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Abstract: Benzimidazoles are classified as a category of heterocyclic compounds. Molecules having
benzimidazole motifs show promising utility in organic and scientific studies. A series of mono-
substituted benzimidazoles were synthesized by ZnO-NPs via cyclocondensation between substituted
aromatic aldehydes and o-phenylene diamine. The synthesized compounds were characterized and
compared with the traditional methods. The nano-catalyzed method displayed a higher yield,
shorter time and recyclable catalyst. The DFT study and antioxidant activity were investigated
for benzo[d]imidazole derivatives. Compound 2a exhibited the highest antioxidant activity among
the tested compounds. We focused on the catalytic activity of ZnO in the synthesis of heterocyclic
structures with the goal of stimulating further progress in this field. The superiorities of this procedure
are high yield of product, low amounts of catalyst and short reaction time.

Keywords: 1H-benzo[d]imidazole; eco-friendly synthesis; nano ZnO; in silico studies DFT studies;
antioxidant activity; molecular docking; pharmacokinetics

1. Introduction

Benzimidazole or 1H-1, 3-benzodiazole-based heterocycles are structurally much like
and can evidently take the place of nucleotides, i.e., the adenine base of the DNA. This is
regarded in addition to a factor of vitamin B. This feature has been substantially utilized in
drug synthesis and medicinal chemistry, showing a huge variety of organic and scientific
applications. Benzimidazole is also named 3-azaindole, benzimiinazole, benzoglyoxine.
Benzimidazole is a vital modified structure that presents an extensive number of natural
and pharmacologically active molecules. Magnetic nanoparticles (MNPs) have emerged
as a new category of catalysts. This is referred to as ultrafine size and high surface area.
Oxidation is a vital process in cell functionality and human life; imbalance in this bio-
chemical process produces high amounts of free radicals like oxygen and nitrogen [1–3].
Oxidative stress of these free radicals leads to the damaging of proteins, DNA and other
vital compounds in the body, which can cause chronic illness such as cancer, autoimmune
disorders, cardiovascular diseases, diabetes, neurodegenerative diseases and aging [4–6].
Therefore, the needs of novel antioxidants have been the subject of intensive research.
Heterocylic aromatic compounds with nitrogen atoms are considered as important phar-
macophores owing to their versatile pharmacological activities [7] as anti-cancer [8,9],
anti-oxidant [10], and anti-microbial [11]. Benzimidazoles are one of the most privileged
heterocyclic substructures with wide biological activity, particularly as antioxidants [12,13].
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The benzimidazole scaffold is found in many commercial drugs such as Nocodazole (anti-
cancer), Tiabendazole (antifungal and antiparasitic), (Figure 1) [14,15]. The unique aspects
of the benzimidazole core structure empower its ability of free-radical scavenging. Hence,
the development of a nano-catalyzed environmentally benign protocol for the synthesis of
benzimidazole derivatives is widely studied. Nano catalysts improve the yields and reduce
the time of the reactions, in addition to their potential to be recycled many times [16,17].
In this regard, the high catalytic reactivity of ZnO nanoparticles and their environmental
advantages make it an effective catalyst in organic reactions [18]. As a continuation of our
work, some benzimidazoles have been synthesized using ZnO-NPs for their antioxidant
examination and DFT studies.
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Figure 1. Benzimidazole core in some important drugs.

In this article, we attempt to demonstrate the synthesis of some biologically important
benzimidazole derivatives by ZnO NPs. This study covers conventional and new methods
to synthesize certain pharmacologically active benzimidazole derivatives.

2. Results and Discussion
2.1. Chemistry

The reaction between o-phenylene diamine 1 and salicyaldehyde was selected for
optimization of the reaction conditions. The reaction was carried out in the presence of two
distinct nano catalysts (TiO2 and ZnO); the ZnO-NPs catalyzed reaction observed a greater
yield. Accordingly, benzimidazoles 2b–2g were achieved using ZnO-NPs as a catalyst
(Scheme 1). Moreover, higher yields were obtained compared with the reported traditional
approaches [19,20]. The data is summarized in Table 1. The structure of compound
2a was confirmed by 1H-NMR spectrum by the presence of two singlet signals at 9.02
and 13.20 ppm assigned to OH and NH protons, respectively, and the aromatic protons
displayed in the region of 6.52–7.43 ppm. Whereas, the 13C-NMR spectra shows a signal at
(δ in ppm) 163.2 due to C=N-benzimidazole. For compounds 2b–2g, their 1H NMR spectra
showed NH signals appeared at 12.58–13.28 ppm.

Pharmaceuticals 2023, 16, x FOR PEER REVIEW 2 of 24 
 

 

cancer [8,9], anti-oxidant [10], and anti-microbial [11]. Benzimidazoles are one of the most 
privileged heterocyclic substructures with wide biological activity, particularly as antiox-
idants [12,13]. The benzimidazole scaffold is found in many commercial drugs such as 
Nocodazole (anticancer), Tiabendazole (antifungal and antiparasitic), (Figure 1) [14,15]. 
The unique aspects of the benzimidazole core structure empower its ability of free-radical 
scavenging. Hence, the development of a nano-catalyzed environmentally benign proto-
col for the synthesis of benzimidazole derivatives is widely studied. Nano catalysts im-
prove the yields and reduce the time of the reactions, in addition to their potential to be 
recycled many times [16,17]. In this regard, the high catalytic reactivity of ZnO nanopar-
ticles and their environmental advantages make it an effective catalyst in organic reactions 
[18]. As a continuation of our work, some benzimidazoles have been synthesized using 
ZnO-NPs for their antioxidant examination and DFT studies. 

 
Figure 1. Benzimidazole core in some important drugs. 

In this article, we attempt to demonstrate the synthesis of some biologically im-
portant benzimidazole derivatives by ZnO NPs. This study covers conventional and new 
methods to synthesize certain pharmacologically active benzimidazole derivatives. 

2. Results and Discussion 
2.1. Chemistry 

The reaction between o-phenylene diamine 1 and salicyaldehyde was selected for op-
timization of the reaction conditions. The reaction was carried out in the presence of two 
distinct nano catalysts (TiO2 and ZnO); the ZnO-NPs catalyzed reaction observed a greater 
yield. Accordingly, benzimidazoles 2b–2g were achieved using ZnO-NPs as a catalyst 
(Scheme 1). Moreover, higher yields were obtained compared with the reported tradi-
tional approaches [19,20]. The data is summarized in Table 1. The structure of compound 
2a was confirmed by 1H-NMR spectrum by the presence of two singlet signals at 9.02 and 
13.20 ppm assigned to OH and NH protons, respectively, and the aromatic protons dis-
played in the region of 6.52–7.43 ppm. Whereas, the 13C-NMR spectra shows a signal at (δ 
in ppm) 163.2 due to C=N-benzimidazole. For compounds 2b–2g, their 1H NMR spectra 
showed NH signals appeared at 12.58–13.28 ppm. 

 
Scheme 1. Synthetic route for formation of 1H-Benzimidazole derivatives 2(a–g). 

  

Scheme 1. Synthetic route for formation of 1H-Benzimidazole derivatives 2(a-g).



Pharmaceuticals 2023, 16, 969 3 of 23

Table 1. Optmization of different nanoparticles and their effects on yield of 2-. (1H-benzo[d]imidazol-
2-yl) phenol (2a).

Entry Solvent Catalysis (mol) Temp (◦C) Time (h) Yield (%) Ref.

1 EtOH TiO2(nano) (0.02%) 70 ◦C 2 86% This work
2 EtOH ZnO(nano) (0.02%) 70 ◦C 2 92% This work
3 Toluene p-TsOH 80 ◦C 2 81% [19]
4 EtOH PSA r.t 30 min 85% [20]

A possible mechanism for the formation of products in the presence of the nano-ZnO
catalyst is shown in Scheme 2. At first, the aromatic aldehyde is activated by nano-ZnO.
Intermediate I results by nucleophilic attack of o-phenylenediamine 1 to aromatic aldehyde.
Subsequently, coordination of nitrogen to nano-ZnO facilitates intramolecular cyclization
of intermediate I and the formation of intermediate II. Deprotonation of intermediate II
results in the target product.
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Scheme 2. Possible reaction mechanism pathway for formation of 2-substituted benzimidazoles.

The chemical structure of compound 2f was elucidated based on 1HNMR and 13C
NMR analyses. The appearance of the shielded signal at 12.98 ppm corresponding to the NH
group in the 1HNMR spectrum confirms the formation of 1H-benzimidazole moiety. Fur-
thermore, the 13C NMR spectrum indicated the presence of SP and SP2 carbons attributed
to C≡N and (C=N-benzimidazole) functions at (δ in ppm) 115.2 and 149.5. In Scheme 3,
the compound 2f further reacted with H2SO4 60% to furnish 4-(1H-benzo[d]imidazol-2-yl)
benzoic acid 3. In its 1HNMR spectrum, the end cyclic NH and carboxylic OH protons
resonated as two singlets at δ 13.19 and 10.25 ppm, respectively. The 13C NMR spectrum
revealed the absence of C≡N carbon and presence of C=O of the carboxylic group at
167.0 ppm. The acid derivative 3 was then esterified in ethanol and a few drops of Conc.
H2SO4 added to form 4-(1H-benzo[d]imidazol-2-yl)-benzoic acid ethyl ester 4; the structure
was confirmed with the spectroscopic analysis. In 1H NMR of compound 4, triplet and
quartet signals were revealed at 1.35 and 4.37 ppm, respectively, which was attributed to
(OCH2CH3) ethyl ester protons. Other evidence of the formation of compound 4 is its
13C NMR, which accounted for 2 sp3 carbons at δ 14.61 and 61.65 for CH2 and CH3 ethyl
protons, respectively. The C=O signal from the carbonyl of the ester group is also observed
around 165.52 ppm. The carbon peak from the C=N group in the benzimidazole ring was
also observed at 149.42 ppm as expected. The formation of hydrazide 5 was reached via
hydrazonolysis of ethyl ester 4 with hydrazine hydrate in ethanol. The formation of 5
showed strong absorption bands at 3411, 3303, and 3158 cm−1 for the NH2/NH groups.
The 1H NMR of 5 displayed the presence of singlet δH 12.52 for benzimidazole-NH and
4.35, 7.25 ppm for NH2, NH (hydrazide) proton; and the aromatic protons (Ar-H) were
found in the spectrum at δH 7.56–7.72. 13C NMR (DMSO-d6) showed signals at δC 192.4
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assigned to the C=O group, 140 ppm assigned to C-N, in addition to 109.5 ppm assigned to
aromatic carbons at δC 134.7.
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2.2. ZnO- NPs Examination
2.2.1. XRD Examinations

Figure 2 signified the X-ray diffraction pattern of the ZnO-NPs between 2θ in the
range of 10 and 70◦. It demonstrated prominent peaks located at 2θ values of 31.84, 34.52,
36.33, 47.63, 56.71, 62.96, 68.13, and 69.18◦, specified to the hexagonal ZnO structure,
and coordinating in that order with (100), (002), (101), 102), (110), (103), (200), (112) and
(201) reflection planes in agreement with the Joint Committee on Powder Diffraction
Standards (JCPDS) card no 089-0510, which designates the formation of the monocrystalline
phase [21,22]. As well, the lattice parameters of the hexagonal unit cell were proved to be
almost (a = 3.249
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2.2.2. Morphological and Elemental Analyses (EDX)

The morphological study revealed that the obtained ZnO-NPs seem to have uniform
size in the form of arbitrarily distributed nanorods with a hexagonal (wurtzite) morphology.
This complements the planes formed by its hexagonal structure as identified by XRD pattern.
Particles had a plane surface in the nano size range [24,25] as revealed in Figure 3a. The
remark of some larger nanoparticles in the SEM image was credited to the agglomeration of
particles [26]. In addition, the rodlike structure is the best nanostructure compared to others;
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as a result of their one-dimensional nanostructures [27]. The EDX spectrum established the
chemical composition of the ZnO-NPs. Figure 3b demonstrated the presence of only Zn
and O elements; thus showing the purity of the prepared ZnO. No impurity was evident
within the detection limit of the EDX. Therefore, it may be stated that the EDX proved that
the synthesis process used was able to produce pure ZnO nanoparticles within its detection
limit. TEM images presented in Figure 3c settled the hexagonal structure of the prepared
ZnO nanoparticles as decided by the XRD [28]. The TEM picture Figure 3c together
with the selected area electron diffraction (SAED) pattern seen in Figure 3d exhibited
diagonally arranged concentric circles distinct with bright spots. The diffraction rings
confirmed that the prepared ZnO was highly crystalline with the preferential orientation of
nanocrystals [29,30]. As stated by Khan et al., the concentric rings may be acknowledged as
the diffraction from the (100), (101), (102), (110), (103) and (112) plane of the polycrystalline
structure (wurtzite) of the hexagonal crystal coordination [31].
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2.2.3. Zeta Potential

The zeta potential (ξ) was used to recognize the surface charge of the particle, which
performed as a sign of their colloidal stability. Nanoparticles with high positive or negative
zeta potential display dispersion stability; as a result, they do not agglomerate on storage.
The zeta potential of ZnO-NPs was found to be of negative value [−14.4 (mV)] as elucidated
in Figure 4. The negative value is probably resultant to the samples’ negative charges. The
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negative zeta potential value designates that the dispersed ZnO NPs were crowned by
negatively charged groups, which demonstrates their stability.
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The antioxidant activity was performed using the DPPH radical scavenging method
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7.8
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15.6
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31.25
(µg/mL)

62.5
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125
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250
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500
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1000
(µg/mL) IC50

2a 27.41 35.50 51.89 63.76 81.24 88.75 91.86 93.21 93.88 95.63 7.35
2c 4.8 7.39 10.34 16.58 26.23 40.61 44.45 84.73 90.13 92.82 85.21
2f 1.23 2.85 5.91 8.23 15.96 27.18 36.40 50.38 72.54 89.75 246.60
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method.

The Compound 2a at IC50 of 7.35 (µg/mL) seemed to be most active, which is as-
sumed to be due to the presence of the free hydroxyl group on the aromatic ring, which is
responsible for the antioxidant properties. The hydrogen from this group is donated to the
free radical, resulting in a relatively stable free radical form. On the other hand compounds
2c and 5 also exhibited moderate to significant antioxidant activity (77.07–85.21 µg/mL).
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2.4. Insilico Studies
2.4.1. Molecular Docking (Antioxidant)

The recently identified and generated drug targets were compared to ascorbic acid, a
reference substance derived from the cytochrome c peroxidase enzyme (PDB code: 2X08),
in the database’s molecular docking analysis to examine their potential as antioxidants.
The goal of this research was to gain a better knowledge of how the chemicals created bind
to the cytochrome c peroxidase enzyme’s protein-binding site.

The co-crystallized ligand ascorbic acid was re-docked into the active site using the
same number of criteria in order to validate the results of the current docking experiment at
the active site. The root mean square deviation (RMSD) of the best-docked pose was 1.5912,
and the energy score was −7.0409 kcal/mol, supporting the docking study performed
with MOE software. Figure 6 shows that four hydrogen bonds were made between Asp37,
Gly41, Val45 and Arg184 by ascorbic acid.
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The predicted binding modes for compounds 2a and 5 have energies of −7.3817 and
−7.1462 kcal/mol, respectively. As seen in (Table 3), (Figure 6), compound 2a successfully
formed hydrogen bonds with Ser81, while compound 5 did the same with His181. The
score of this molecule ensures that it will bind to the cytochrome c peroxidase enzyme’s
protein-binding site with great stability.

Table 3. The binding scores, RMSD values, distance and receptor interactions of the three most
promising compounds (2a and 5) compared to the docked reference ascorbic acid for antioxidant
activity.

Comp. Score
(Kcal/mol) RMSD

Interacting Residues

Receptor Interactions Distance (Å) E (Kcal/mol)

Ascorbic acid −7.0409 1.5912

Asp37/H-donor
Gly41/H-donor

Val45/H-acceptor
Arg184/H-acceptor

2.58
2.68
2.81
2.74

−4.90
−1.40
−2.90
−4.40

2a −7.3817 1.4893 Ser81/pi-H 3.91 −0.90
5 −7.1462 2.0053 His181/H-donor 3. 39 −1.20

2.4.2. Pharmacokinetiks
Molinsipration

The synthesized substances 2a and 5 expected pharmacokinetic/Molinspiration prop-
erties are listed in Table 4a. The majority of synthesized compounds showed promising
bioactivity with the aid of Molinspiration virtual screening, as suggested by the docking
parameters in Table 4b, which reveal the drug-like characteristics against kinase inhibitors,
protease, and enzyme inhibitors. The calculated distribution of activity scores (version
2022.08), which include scores for around 100,000 typical drug-like compounds, are con-
trasted with scores for GPCR ligands, kinase inhibitors, ion channel modulators, nuclear
receptor ligands, protease inhibitors and other enzyme targets. The score enables effective
separation of molecules that are active and inactive.

Table 4. a—Physicochemical properties of the synthesized compounds. b—Physicochemical Molin-
spiration bioactivity score.

(a)
Compound miLogP TPSA n-Atoms M.W. nON nOHNH n-Violations n-rotb Volume

2a 3.28 48.91 16 210.24 3 2 0 1 188.29
5 1.93 83.80 19 252.28 5 4 0 2 222.95

(b)

Compound GPCR
Ligand

Ion Channel
Modulator Kinase Inhibitor Nuclear Receptor Ligand Protease

Inhibitor
Enzyme
Inhibitor

2a −0.10 0.10 0.11 −0.25 −0.47 0.16
5 −0.16 −0.48 0.15 −0.64 −0.24 0.07

Drug-likeness and oral bioavailability analysis of compounds 2a and 5 using Swiss
ADME web re-sources:

Early on in the drug development process, it is crucial to analyze the pharmacokinetic
features of candidate drugs. Lipinski and his team claim that drug-like 2a and 5 must
adhere to the rule of five (RO5), which is that they must have a molecular weight (MW) of
500 Da, 5 hydrogen bond donors (HBDs), and 10 hydrogen bond acceptors (HBAs). These
requirements are depicted in Figures 7 and 8, respectively [33].
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3. Experimental

The melting points were measured by a digital Electrothermal IA 9100 Series apparatus
Cole-Parmer, Beacon Road, Stone, Staffordshire, ST15 OSA, UK) and were uncorrected. IR
spectra (KBrdiscs) were recorded on PyeUnicam Sp-3–300 or Shimadzu FTIR 8101 PC IR
spectrophotometers (Cairo University, Cairo, Egypt). C, H and N analysis was carried out
on a PerkinElmer CHN 2400. 1H and 13C NMR spectra were recorded on a Bruker 400 MHz
NMR spectrometer using tetramethylsilane (TMS) as the internal standard; chemical shifts
are expressed in δ (ppm), and DMSO-d6 was used as the solvent. All chemicals were
purchased from Sigma-Aldrich (Taufkirchen, Germany), and all solvents were purchased
from El-Nasr Pharmaceutical Chemicals Company (analytical reagent grade, Cairo, Egypt).
All chemicals were used as supplied without further purification. The antioxidant activity
was carried at the Regional Center for Mycology & Biotechnology (RCMB) Al-Azhar
University, Naser City, and Cairo. The transmission electron microscopy (TEM) sample was
loaded on a carbon-coated Cu grid (200 mesh) and examined at 200 KV using a JEM-2100
(JEOL, Tokyo, Japan) electron microscopy unit—Mansoura University.

3.1. General Procedure for the Synthesis of 2-Substituted 1H-Benzimidazoles 2(a–g)

Benzaldehyde derivatives (10 mmol) and o-phenylenediamine (1) (10 mmol) were
dissolved in absolute ethanol (50 mL) in the presence of (0.02 mol%) ZnO (nano particles).
This mixture was stirred at 70 ◦C for 15 min–2 h. The product was washed repeatedly with
an ethanol–water (1:1) mixture and then recrystallized from ethanol.

3.1.1. 2-(1H-Benzo[d]imidazol-2-yl) Phenol (2a)

This compound was prepared by traditional methods [19,20]: yellow powder, yield
(92%), m.p. = 226–228 ◦C. IR (KBr, cm–1): 3318 (OH, NH), 1591 (C=N). 1H-NMR: δ, ppm
(DMSO-d6): 6.52 (t, 1H, 3J =7.00 Hz, Ar-H), 6.70 (d, 1H, 3J = 8.48 Hz, Ar-H), 7.23-7.43 (m,
4H, Ar-H), 9.02 (s, 1H, OH), 13.20 (s, 1H, NH). 13C NMR: δ, ppm (DMSO-d6): 113.51, 116.9,
119.8, 123.5, 127.7, 134.8, 136.7, 139.8, 163.2, 172.6 (C=N, imidazole and Ar-C). Anal. Calcd
for C13H10N2O, (210.23):C, 74.27; H, 4.79; N, 13.33. Found: C, 74.25; H, 4.76; N, 13.34.

3.1.2. 2-(Thiophen-2-yl)-1H-benzo[d]imidazole (2b)

This compound was prepared by traditional methods [34]: pale yellow powder, yield
(53.3%), m.p. = 288–296 ◦C. IR (KBr, cm–1): 3320 (NH), 1591 (C=N); 1H-NMR: δ, ppm
(DMSO-d6): 7.83 (d, 1H, Ar-H), 7.73 (d, 1H, Ar-H), 7.61 (d, 1H, Ar-H), 7.50 (d, 1H, Ar-H).
7.16–7.24 (m, 3H, Ar-H), 12.90 (s, 1H, NH). Anal. Calcd for C11H8N2S (200.26): C, 65.97; H,
4.03; N, 13.99. Found: C, 74.25; H, 4.76; N, 13.34.

3.1.3. 2-(Naphthalen-1-yl)-1H-benzo[d]imidazole (2c)

This compound was prepared by traditional methods [34]: Pale brown powder, Yield
(61.8%), m.p. = 224–226 ◦C. IR (KBr, cm–1): 3323 (NH), 1591 (C=N). 1H-NMR: δ, ppm
(DMSO-d6): 7.23–8.11 (m, 10H, Ar-H), 9.11 (d, 1H, 3J = 8.16 Hz, Ar-H), 12.93 (s, 1H, NH).
13C-NMR: δ, ppm (DMSO-d6): 111.8, 119.5, 122.0, 123.3, 125.7, 126.8, 127.7, 1283, 130.6,
131.9, 132.3, 133.6, 134.9, 135.8, 143.2, 144.3, 151.2 (C=N, benzimidazole). Anal. Calcd for
C17H12N2 (244.29): C, 83.58; H, 4.95; N, 11.47. Found: C, 83.55; H, 4.97; N, 11.45.

3.1.4. 2-(4-Chlorophenyl)-1H-benzo[d]imidazole (2d)

This compound was prepared by traditional methods [20,33,34]: Pale brown powder,
Yield (61%), m.p. = 296–298 ◦C. IR (KBr, cm–1): 3318 (NH), 1490 (C=N). 1H-NMR: δ,
ppm (DMSO-d6): 7.20 (d, 2H, 3J = 8.48 Hz, Ar-H), 7.58–7.64 (m, 4H, Ar-H), 8.17 (d, 2H,
3J = 8.70 Hz, Ar-H), 12.97 (s, 1H, NH). 13CNMR: δ, ppm (DMSO-d6): 107.7, 116.5, 116.7,
128.0, 129.3, 130.3, 130.4, 130.9, 131.6, 133.2, 160.9 (Ar-C). Anal. Calcd for C13H9ClN2 (228.7):
C, 68.28; H, 3.97; N, 12.25 Found: C, 68.30; H, 3.95; N, 12.20.
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3.1.5. 2-(4-Nitrophenyl)-1H-benzo[d]imidazole (2e)

This compound was prepared by traditional methods [35,36]: Brown powder, Yield
(57.3%), m.p. = 320–322 ◦C. IR (KBr, CM−1): 3366 (NH), 1593 (C=N). 1H-NMR: δ, ppm
(DMSO-d6): 7.26 (d, 2H, 3J = 7.9 Hz, Ar-H), 7.59–7.71 (m, 4H, Ar-H), 8.40 (d, 2H, 3J = 8.2 Hz,
Ar-H), 13.28 (s, 1H, NH). 13CNMR: δ, ppm (DMSO-d6): 112.4, 119.4, 122.3, 124.0, 124.2, 127.3,
130.5, 136.0, 143.8, 147.7, 148.9 (C=N, imidazole and Ar-C). Anal. Calcd for C13H9N3O2
(239.2): C, 65.27; H, 3.79; N, 17.56. Found: C, 65.24; H, 3.77; N, 17.60.

3.1.6. 4-(1H-benzo[d]imidazol-2-yl) Benzonitrile (2f)

White powder, Yield (96.3%), m.p. = 276–278 ◦C. IR (KBr, cm–1): 3345 (NH), 1594
(C=N), 2224 (C≡N). 1H-NMR: δ, ppm (DMSO-d6); 7.42 (d, 2H, 3J = 6.08 Hz, Ar-H), 7.75 (d,
2H, 3J = 6.08 Hz, Ar-H), 8.18 (d, 2H, 3J = 8.36 Hz, Ar-H), 8.30 (d, 2H, 3J = 8.36 Hz, Ar-H),
12.98 (s, 1H, NH, exchange with D2O). 13C NMR: δ, ppm (DMSO-d6): 115.2 (C≡N), 124.9,
127.8, 129.9, 130.6, 130.8, 133.5, 136.1, 149.5., 167.0 (C=N, imidazole and Ar-C). Anal. Calcd.
for C14H9N3 (219.2): C, 76.70; H, 4.14; N, 19.17. Found: C, 76.74; H, 4.16; N, 19.20.

3.1.7. 4-(1H-benzo[d]imidazol-2-yl)-2-methoxyphenol (2g)

Beige powder, Yield (52.1%), m.p. = 240–242 ◦C. IR (KBr, cm–1): 3353 (NH), 1590
(C=N). 1H-NMR: δ, ppm (DMSO-d6); 3.73 (s, 3H, OCH3), 6.95 (d, 2H, 3J = 8.16 Hz, Ar-H),
7.17 (d, 2H, 3J = 6.08 Hz, Ar-H), 7.47–7.75 (m, 4H, Ar-H), 12.58 (s, 1H, NH)). 13C NMR: δ,
ppm (DMSO-d6): 56.13, 110.7, 113.7, 114.5, 116.1, 118.6, 120.1, 121.7, 146.0, 148.3, 148.9, 152.2
(C=N, imidazole and Ar-C). Anal. Calcd. for C14H12N2O2 (224.3): C,74.98; H, 5.39; N, 12.49.
Found: C, 74.95; H, 5.40; N, 12.51.

3.1.8. 4-(1H-benzo[d]imidazol-2-yl) Benzoic Acid (3)

A mixture of 2f (10 mmol) and sulfuric acid 60% (30 mL) was stirred at 140 ◦C
for 6 h, then suspended in 150 mL water and the resulting precipitate was filtered off.
Recrystallization from ethanol afforded white solid. This compound was prepared in
traditional methods [35,36]. Yield (76%), m.p. = 300–302 ◦C. IR (KBr, cm–1): 3373 (br, OH
and NH), 1695 (C=O, acid), 1600 (C=N). 1H-NMR: δ, ppm (DMSO-d6): 7.60–7.70 (m, 4H,
Ar-H), 8.00 (d, 2H, 3J = 8.40 Hz, Ar-H), 8.33 (d, 2H, 3J = 8.40 Hz, Ar-H), 10.25 (s, H, OH),
13.19 (s, 1H, NH). Anal. Calcd. for C14H10N2O2 (238.24): C, 70.58; H, 4.23; N, 11.76. Found:
C, 70.55; H, 4.20; N, 11.74.

3.1.9. Ethyl 4-(1H-benzo[d]imidazol-2-yl) Benzoate (4)

To a solution of compound 3 (10 mmol) in absolute ethanol, a few drops of conc.
sulfuric acid were added and the mixture was heated under reflux for 4 h. The crude
product was filtered off, air dried and recrystallized from ethanol. White powder, Yield
(50%), m.p. = 284–286 ◦C. IR (KBr, cm–1): 3334 (NH), 1742 (C=O, ester), 1572 (C=N). 1H-
NMR: δ, ppm (DMSO-d6): 1.35 (t, 2H, 3J = 7. 20 Hz OCH2CH3), 4.37 (q, 2H, 3J = 7.20 Hz,
OCH2CH3), 7.41 (d, 2H, 3J = 7.20 Hz, Ar-H), 7.76 (d, 2H, 3J = 7.20 Hz, Ar-H), 8.18 (d,
2H, 3J = 8.40 Hz, Ar-H), 8.32 (d, 2H, 3J = 8.40 Hz, Ar-H), 13.12 (s, 1H, NH, exchange with
D2O). 13C NMR: δ, ppm (DMSO-d6): 14.61, 61.65, 115.2, 124.8, 127.8, 130.4, 130.9, 132.4,
133.6, 135.8, 136.3, 149.4, 165.5, 167.0 (C=N, benzimidazole and Ar-C). Anal. Calcd. for
C15H14N2O (238.3): C, 75.61; H, 5.92; N, 11.76. Found: C, 75.67; H, 5.91; N, 11.73.

3.1.10. 4-(1H-benzo[d]imidazol-2-yl)benzohydrazide (5)

To a solution of ester compound 4 (10 mmol) in ethanol (25 mL), hydrazine hydrate
(98%; 2 mL) was added and heated under reflux for 5 h. The reaction mixture was cooled.
The crude product was filtered, washed with water and dried. It was crystallized from
ethanol. White powder, Yield (86%), m.p. = 270–272 ◦C. IR (KBr, cm–1): 3411, 3303, 3158
(NH2/NH), 3014 (arom.-CH), 1594 (C=N); 1H-NMR: δ, ppm (DMSO-d6): 4.35 (s, 2H, NH2,),
7.25 (s, 1H, NH, 7.25–8.33 (m, 4H, Ar–H); 12.52 (s, 1H, NH).13C NMR: δ, ppm (DMSO-
d6):112.7, 119.6, 122.50, 123.61, 127.5, 130.22, 131.07, 134.77, 135. 59, 140.90, 150.49 (C=N,
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benzimidazole) and 165.79 (C=O amide). Anal. Calcd. for C14H12N4O (252.27): C, 66.65; H,
4.79; N, 22.21. Found: C, 66.62; H, 4.80; N, 22.23.

3.2. Preparation of ZnO

In the current work, a simple sol gel method was used to create uniform nanorods
with a hexagonal structure of pure ZnO nanoparticles using zinc acetate Zn(CH3CO2)2
as a metal precursor and sodium hydroxide as a reducing agent. ZnO nanoparticles
were synthesized using 50 mL of aqueous 0.1 M NaOH solution [99% (Merck, Darmstadt,
Germany] and 500 mL of aqueous precursor 0.05 M zinc acetate solution [ZnAc]. 2H2O,
Qualikems Reagent (99%) were separately prepared using deionized water after equations
1 and 2. In this experiment, all chemical reagents were attained from commercial sources as
guaranteed-grade and used as received devoid of additional treatment. NaOH solution was
slowly added to the zinc acetate solution, while vigorous magnetic stirring was conducted
at 50 ◦C to form intensive transparent white gel. The reaction mixture was persistent for
1 h, then allowed to stand at ambient temperature for 24 h. The solution was centrifuged at
3500 rpm for 10 min and supernatant was removed. The gained precipitate was dried in a
dryer at 70 ◦C for 12 h. Consequently, the obtained powder was finally grinded into fine
powder.

Zn(CH3COO)2 · 2H2O + 2NaOH→ Zn(OH)2 + 2CH3COONa + 2H2O (1)

Zn(OH)2 → ZnO + H2O (2)

Characterization of the ZnO

The prepared ZnO nanoparticles were characterized by XRD, SEM/EDX and TEM.
The crystalline phase of ZnO was identified using X-ray diffraction analysis via a [Bruker
D8 advance diffractometer, Germany] with Cu-Kα radiation (λ = 0.15418 nm). The aim
of using the XRD was to evaluate the phase purity and growth of crystalline phases,
and consider the nanosize of the prepared ZnO. The X-ray diffractometer functioned at
40 kV and 40 mA in the range of 2θ (10–70◦). The crystalline phase was demonstrated by
comparing the diffraction patterns of the fabricated composites with Joint Committee on
Powder Diffraction Standards (JCPDS) standards.

The microcrystalline and morphology configuration of the ZnO was proved via
the scanning electron microscope equipped with energy dispersive X-ray microanaly-
sis (SEM/EDX, model FEJ Quanta 250 Fei, Eindhoven, The Netherlands) operating at
voltage 15 kV. The samples’ surface was layered by gold by means of a [S150A sputter
coater, Edwards, England] under 0.1 Torr, vacuum 1.2 kV voltage and 50 mA current. The
purpose of this coating was to improve the scanning of samples.

As well, the nanoparticle nature and crystallinity were participated observed by high
resolution transmission electron microscope (HR-TEM, Joel model JEM-2100, operating
voltage 200 kV, Sendai, Japan). Aqueous dispersion of the particles was drop-casted
onto a copper grid coated with carbon before being air dried at room temperature to be
microscopically scanned.

The zeta potential of the prepared sample was measured using (Zetasizer, Nano-
ZS, Malvern Instruments Ltd., Malvern, UK). Prior to zeta assessment, about 0.05 g of
the sample was dispersed and sonicated in 5 mL distilled water for 30–60 min in a bath
ultrasonicator. The constancy of the suspensions will be examined by measuring the zeta
potential. The refractive indexes for ZnO and dispersant (water) were agreed to be 2.00
and 1.33, correspondingly.

3.3. DPPH Radical Scavenging Activity

A freshly prepared (0.004% w/v) methanol solution of 2,2-diphenyl-1-picrylhydrazyl
(DPPH) radical was prepared and stored at 10 ◦C in the dark. A methanol solution of
the test compound was prepared. A 40 µL aliquot of the methanol solution was added to
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3 mL of DPPH solution. Absorbance measurements were recorded immediately with a
UV-visible spectrophotometer (Milton Roy, Spectronic 1201). The decrease in absorbance at
515 nm was continuously determined, with data being recorded at 1 min intervals until the
absorbance stabilized (16 min). The absorbance of the DPPH radical without antioxidant
(control) and reference compound ascorbic acid were also measured. All the determinations
were performed in three replicates and averaged. The percentage inhibition (PI) of the
DPPH radical was calculated according to the formula:

PI = [{(AC − AT)/AC} × 100] (3)

where AC = Absorbance of the control at t = 0 min and AT = absorbance of the sam-
ple+DPPH at t = 16 min [32].

The 50% inhibitory concentration (IC50), the concentration required to 50% DPPH
radical scavenging activity was estimated from graphic plots of the dose response curve
using Graphpad Prism software (San Diego, CA, USA; https://www.graphpad.com/
features accessed on 30 May 2023).

Antioxidant Evaluation

The antioxidant activity was performed using the DPPH radical scavenging method
where ascorbic acid was used as a positive control for comparison [32]. The results of the
antioxidant activity of the compounds 2a, 2c, 2f, 3, 4 and 5 are shown in Table 2. The activity
was assessed by measuring its electron-donating ability to DPPH, which is indicated by
changes in absorbance of the solution of different concentrations at 515 nm. The DPPH
radical scavenging activity of the compounds increased with an increase in concentration;
the result of the radical scavenging was expressed in terms of half-inhibition concentration
(IC50), which denotes the concentration required to scavenge 50% of DPPH radicals.

3.4. Insilico Studies
3.4.1. Molecular Docking (Antioxidant)

The computational methods for the most bioactive compounds that would be docked
utilizing Molecular Operating Environment software (2015) were developed using Chem-
draw 12.0. The data were evaluated using the London DG force and force field energy.
MMFF 94 (Merck molecular force field 94) was used for all minimizations up until a root
mean square deviation (RMSD) gradient of 0.1 kcalmol−1 A−1 was reached [37,38], and
automatic estimation of partial expenses. The MOE program’s dock function (S, kcal/mol)
was utilized to evaluate the ligand’s ability to bind.

The protein data bank provided the X-ray crystal structure of the enzyme in PDB
format (PDB ID: 2X08, resolution: 2.01) (https://www.rcsb.org/structure/2X08 (accessed
on 30 May 2023)). In order to prepare the enzyme for docking studies, water was removed,
all hydrogen bonds were added, the potential was fixed, and fake atoms were created from
the resulting alpha spheres [39]; and how the ligand interacts with the active site’s amino
acids examined. The best Docking Score is produced by the active ligand’s biggest negative
value [40–42].

3.4.2. Assessment of Pharmacokinetic Properties

The oral bioavailability characteristics of the compounds were investigated using the
SwissADME website, and key characteristics relating to the drug-likeness of the chosen
compounds were assessed using the online tool Molinspiration (http://molinspiration.
com/ (accessed on 30 May 2023)) [43,44].

3.4.3. Molinspiration
Bioavailability Radar

It is a tool for quickly evaluating a molecule’s drug-likeness. Six physicochemical
characteristics were taken into account: lipophilicity, size, polarity, solubility, flexibility,

https://www.graphpad.com/features
https://www.graphpad.com/features
https://www.rcsb.org/structure/2X08
http://molinspiration.com/
http://molinspiration.com/
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and saturation. A physicochemical range was established on each axis using descriptors, as
previously mentioned [45].

Physicochemical Properties

These include straightforward molecular and physicochemical descriptors that in-
dicate the complexity of the molecule, such as molecular weight (M.W.), the number of
particular atom types, fraction Csp3 (carbon bond saturation as defined by fraction sp3)
and molecular refractivity (M.R.). Additionally, the polar surface area (PSA), which was
calculated using the topological polar surface area (TPSA), was utilized to swiftly estimate
several ADME features, particularly those related to passing through biological barriers,
including absorption and brain entrance [46].

Lipophilicity

The consensus log Po/w, which is the mean of the values predicted by the five
free predictors iLOGP, XLOGP3, WLOGP, MLOGP and SILICO- IT, is then generated by
Molinspiration [47].

Water Solubility

Water Solubility is predicted by Molinspiration. A bioavailability score was devel-
oped [48]. The results are the decimal Log p of the molar solubility in water and the Log S
values. Additionally, the qualitative solubility classes and water solubility in mg/mL and
mol/L were reported.

Pharmacokinetics

Molinspiration employs specific models to assess the test compound’s ADME char-
acteristics. Christopher A. Lipinski developed the “Lipinski Rule of Five” in 1997 as a
guideline for evaluating drug-likeness and deciding whether an inhibitor with particular
biological and pharmacological characteristics would be an orally active medication in
the human body. According to the rule, a molecule can be orally absorbed/active if two
(2) or more of the following thresholds are met: molecular weight (Mw) of the molecule
(500), octanol/water partition coefficient (ilog P)_5, number of hydrogen bond acceptors
(nHBA)_10, number of hydrogen bond donors (nHBD)_5, and topological polar surface
area (TPSA) 40 2. The first model forecasts blood-brain barrier (BBB) penetration and pas-
sive gastric absorption [49]. The second approach predicts whether or not the permeability
glycoprotein (P-GP), which is necessary to assess active efflux through membranes, such as
from the gastrointestinal wall to the lumen or brain, is a substrate or non-substrate [50]. The
third model predicts the interaction of substances with the key isoenzymes of cytochrome
P450 (CYP) (CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4), which are crucial for the
metabolic biotransformation process that leads to drug clearance. Additionally, these isoen-
zymes’ inactivation contributes to medication interactions [46] causing poisonous or other
negative effects. The skin permeability coefficient (Kp), which is linearly associated with
molecule size and lipophilicity, is predicted by the fourth model [50]. Skin permeability
decreases as log Kp (cm/s) becomes increasingly negative.

3.5. Computational Details

The geometric parameters and energies were computed by density functional the-
ory at the B3LYP/CEP-31G level of theory, using the GAUSSIAN 98 W package of the
programs [51], on geometries that were optimized at CEP-31G basis set. The high basis
set was chosen to detect the energies at a highly accurate level. The atomic charges were
computed using the natural atomic orbital populations. The B3LYP is the keyword for the
hybrid functional [52], which is a linear combination of the gradient functionals proposed
by Becke [53] and Lee, Yang and Parr [54], together with the Hartree-Fock local exchange
function [55].
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Structural Parameters and Models
Compounds of 2a–2g and (3–5)

The geometrical structures of all studied compounds are slightly sterically-hindered;
the atoms of these compounds are distributed in the one plane as shown in Figures S1–S10
(See Supplementary Materials). The planarity of these compounds plays an important role
in the rising of the degree of stability, and also effects the degree of biological effect of these
compounds. The complete planarity of these compounds also causes lowering of the values
of the dipole moments of these compounds. The dihedral angles are varied from 0.0◦ to
180.0◦ for all studied compounds; these values confirm that the two aromatic systems are
lying in the same plane. The bond angles are varied between 105◦ to 127◦; these values
reflect the type of sp2 hybridization spreading over most atoms of the studied compounds;
all bond angles and dihedral angles are listed in Table S1 for the compounds 2a–2g and
Table S2 for compounds 3–5.The planarity of the molecules responsible for its activities
and also in the biological activity, the substituent aromatic system and benzimidazole
can be rotated around the carbon-carbon bonds, C8–C10, but it does not occurred and
molecules favor presence as planer molecules without any rotation to the one occupied
plane. The value of energy of these compounds is varied between −7275.761 kcal/mol for
the compound (2b), which is less stable and −11,082.178 kcal/mol for the compound (2c),
which is considered more stable than other studied compounds as listed in the Table S3,
while the value of energy for the compounds 3, 4 and 5 are −9559.620, −11,197.394 and
−10,255.360 kcal/mol, respectively. Also, the values of the dipole moment are varied
between 4.442 D for compound (2g) and 5.905 D for compound (2a); also, the other com-
pounds 3–5 possess lower dipole moment values than the others. The dipole moment
values of these compounds as listed in Table S2 are varied from 1.680 to 3.193 D. The bond
length between the two aromatic systems C8-C10 in all studied compounds are varied
between 1.339 to 1.355 [56] Å, which are the shortest C-C bonds among all C-C bonds. The
bond lengths, C8-N9 and N7-C8 of the benzimidazole ring are varied between 1.351 and
1.354 [57] Å for C8-N9; and between 1.339 and 1.343 [56] Å, there is a single bond character
between N7 and C6 atoms; and also between N9 and C5 atoms [58,59] the bond lengths
between nitrogen atom N9 and the neighbor carbon atoms C8 of the benzimidazole ring
have double bond characters [60]; while the bond lengths between nitrogen atom N7 and
the neighbor carbon atoms C8 of the benzimidazole ring have single bond characters. The
bond lengths between atoms are listed in the Tables S1 and S2. These values are compared
with the crystal structure of the molecule, which has a similar structure [61]. Detailed
analysis of corresponding bond lengths in various hetero-cyclic compounds was given
elsewhere [57,61].

Molecular Orbitals and Frontier

Molecular orbitals also play an important role in the electric properties, as well as in
UV-Vis [62]. An electronic system with smaller values of the HOMO-LUMO gap should be
more reactive than one having a greater energy gap [63]. The energy gap, ∆E of the studied
compounds, varied between 0.039 for compound (2a) which is more reactive; and 0.149 eV
for compound (2b), which is less reactive. So electron movement between these orbitals
could easily occur by decreasing the value of the energy gap, so that there is a peak around
250 nm in the UV-Vis spectra for all studied compounds. On the other hand, the adjacent
orbitals are often closely spaced on the frontier region.

The nodal properties of molecular orbitals of the studied compounds in Figure S11 are
illustrative and suggest orbital delocalization, strong orbital overlap, and a low number
of nodal planes. The energy difference between HOMO and LUMO (energy gap, ∆E)
for all studied compounds varied according to the type of substitutions as shown in
Table S3. Hard molecules have a higher HOMO-LUMO gap, and soft molecules have a
smaller HOMO-LUMO gap [64]; the degree of softness is important in the detection of the
biological activity of any compound, whereas the greater softness value means the greater
biological activity value. The values of η and ∆E (HOMO-LUMO) are given in Table S3.
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It is obvious that the compound (2a) is softer than all studied compounds; the value η
varied from 0.019 for compound (2a) to 0.075 for compound (2b). Also, the electronic
transition within the soft compounds is easy as indicated from the ∆E. There are some
quantum chemical parameters depending upon the energy values of HOMO and LUMO
were calculated as global softness (S), electro negativity (χ), absolute softness (σ), chemical
potential (Pi), global electrophilicity (ω) and additional electronic charge (∆Nmax) of all
studied compounds. From these values, the compound (2a) is absolute soft according to the
(σ = 25.641 eV), while the compound (2b) is treated as hard compounds (σ = 13.333 eV). As
seen in Figure S11, all compounds have the same nucleus aromatic systems and different
substitution. These compounds are divided into different parts according to composition
as given in Table S4; there are three parts, the benzene ring, imidazole ring and substitution
group. The electron density of the HOMO state of all studied compounds is delocalized
over all atoms with different portions; except in the case of (2e, 3 and 4), where there is a
localization of the electron density mainly on the substitution group with 100% without
any percent on any atoms of the benzimidazole system with 0.0%. The electron density of
the LUMO is also delocalized over all atoms of the compounds with different portions, as
in Figure 9.
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Charge Distribution Analysis

The charge distribution analysis on the optimized geometry configuration of all stud-
ied compounds was made on the basis of natural population analysis (NPA). Selected data
are reported in Table S5. The charge distribution accumulated on the benzimidazole ring
was affected by the changing substituent group; in the case of compound (2a), there is a
lower negative charge on the benzimidazole ring than on others; and also, there is a higher
negative charge on the substituent group. These values indicate there is a net negative pole
and a net positive pole on the molecule; as a result, the molecule is more dipole, µ = 5.905 D.
The charge density accumulated on the benzimidazole varied from −0.205 for compound
(2a) to −0.3075 for compound (2b); the charge accumulated on the substituent groups
varied from −0.0399 for compound (2b) to −0.5723 for compound (5). The most negative
charge is localized on the nitrogen atoms of the benzimidazole ring system and localized
on the nitrogen, oxygen and sulfur atoms of the substituent, while all hydrogen atoms
in all compounds carry a positive charge. These results mean that electronic transitions
π-π* and n-π* can be carried out from a higher electron density region toward the lower
electron density regions involved in these compounds according to its composition. This
conclusion is further confirmed by comparing the values of the calculated charge density
on the donating nitrogen atoms of the benzimidazole ring and also the oxygen, nitrogen
and sulfur atoms of the substituent in different compounds. The distribution of atomic
charges is also important in the determination of the direction of the dipole moment vector
in the compounds, which depends on the centers of negative and positive charges.

Excited State

The TD-DFT at the B3LYP levelusing the G03W program proved to give an accurate
description of the UV-vis. Spectra [65,66]. Time-dependent density functional response
theory (TD-DFT) has been recently reformulated [67] to compute discrete transition energies
and oscillator strengths, and has been applied to a number of different atoms and molecules.
Bauernschmitt and Ahlrichs [68] included hybrid functionals proposed in the calculation
of the excitation energies. The electronic transition could be described as mixed π-π* and
n→π* transitions. The energies of HOMO and LUMO states for all studied compounds are
listed in Tables S6–S8. The HOMO can perform as an electron donor and the LUMO as the
electron acceptor in a reaction profile.

Six excited states are involved in the case of compound (2a); these excited states
corresponding with four absorption bands were obtained experimentally as given in
Table S6. The first experimental band was obtained at λmax = 333.5 nm; this band is
composed of two exited states results from a combination of several transitions, H-2→ L
(17%), H-2→ L + 1 (9%), H-2→L + 2 (23%), H-1→ L + 2 (21%), H-1→ L + 3 (15%), H→
L + 1 (13%), H→ L + 2 (19%), this excited state assigned to π-π* at 327.6 nm and H-4→L
(15%), H-2→L+1 (49%), H-1→ L + 3 (17%), H→ L + 2 (9%) at 338.96 nm and assign to
π-π*. The second observed band at 342 nm is composed of the combination of two excited
states. The first excited state results from interaction between electronic configurations
at 340.83 nm, which represent n→π* transition. This transition results from H-4→ L + 1
(14%), H-4→ L + 2 (11%), H-2→ L (9%), H-1→ L (12%), H-1→ L + 1 (23%), H-1→ L + 3
(25%), H→ L + 1 (24%), H→ L + 3 (17%) and the second excited state at 348.28 nm and
results from H-4→ L + 1 (13%), H-4→ L + 3 (7%), H-2→ L (14%), H-2→ L + 2 (21%), H-1
→ L (16%), H-1→ L + 2 (13%), H→ L + 1 (26%), H→ L + 3 (8%) which assign to π-π*. The
third observed absorbed band at 367 nm was composed of only one excited state H-3→ L
(14%), H-3→ L + 4 (12%) at 370.77 nm and assign to π-π* transition. The fourth observed
band at 373.5 nm was equivalent to one excited state, which results from H-3→ L + 4 (12%)
at 379.35 nm and assigned to π-π* transition. All electronic transition configurations of the
compounds (2a–2d) are given in Table S6, and the absorption spectra of the compounds
(2a–2d) are shown in Figure S12.

In Table S7, in the case of compound (2e), seven excited states were obtained theoreti-
cally. These excited states correspond with three observed absorption bands as shown in
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Figure S13. The first excited state results from a combination of several transitions, H-8→
L + 2 (16%), H-5→ L + 2 (13%), H-3→ L (23%), H-3→ L + 3 (27%), H-3→ L + 5 (28%), H-1
→ L + 2 (16%), H→ L + 2 (13%); this excited state assigned to π-π* at 328.04 nm. The second
excited state results from interaction between electronic configurations, which represent
n→π* transition; this transition results from H-1→ L (38%), H-1→ L + 1 (23%), H-1→
L + 3 (21%), H→ L (16%), H→ L + 3 (13%), H→ L + 4 (16%) and can be observed around
333.06 nm. The third excited state is assigned to π→π* transition, represents a transition
appearing at 336.61 nm, H-2→ L (24%), H-2→ L + 1 (21%). These three excited states
are combined together to express on the observed absorption band at 334 nm. The fourth
excited state at 358.01 nm results as H-7→ L (23%), H-7→ L + 1 (18%), H-7→ L + 2 (14%)
and assigned to n-π*. The fifth exited state results from combination transitions, H-5→ L
(21%), H-1→ L (23%), H→ L (16%), H→ L+1 (79%). This excited state assigned to π→π*
at 361.48 nm. These excited states are corresponding with the observed absorption band at
359 nm. The sixth excited state results from interaction between electronic configurations,
which represent n→π* transition. This transition results from H-4→ L (21%), H-4→ L + 1
(23%), H-4→ L + 3 (16%) and can be observed around 371.69nm. The seventh excited state
is assigned to n→π* transition, and represents a transition appearing at 375.75 nm, H-6→ L
(21%), H-6→ L + 1 (23%), H-6→ L + 3 (16%). These excited states correspond with the
observed absorption band at 374.5 nm. Also, all electronic transition configurations of the
compounds (2e–2g) are given in the Table S7.

In the case of compound (3), there are five observed absorption bands as shown in
Figure S13. The first band at 334 nm is combined of one excited state, which results from
H-3→ L (16%), H-2→ L (13%), H-2→ L + 2 (23%), H-1→ L + 3 (27%), H-1→ L + 4 (28%),
H→ L + 1 (16%), H→ L + 2 (13%), H→ L + 3 (13%), which assigned to π-π* at 331.23
nm. The second observed absorption band at 346 nm was composed of two excited states,
one assigned to n→π* transition at 340.21 nm and the other assigned to π→π* transition at
343.26 nm. These transitions result from H-3→ L (38%), H-3→ L+1 (23%), H-3→ L + 2
(21%), H-2→ L (16%), H-2→ L + 2 (13%), H→ L + 2 (16%) and H-1→ L (24%), H-1→
L + 1 (21%), H-1→ L + 2 (24%), H→ L + 3 (21%). The third observed absorption band at
353.5 nm results from H-5→ L (23%), H-5→ L + 1 (18%), H-5→ L + 4 (14%), H-5→ L +
5 (14%) at 351.69 nm and assigned to n→π* transition. The fourth observed absorption
band at 369 nm corresponds with the excited state at 370.4 nm, resulting in H-1→ L (21%),
H→ L (23%), H→L+1 (79%). The fifth absorption band at 384 nm is assigned to n→π*
transition and results from H-4→ L (21%), H-4→ L + 1 (23%), H-4→ L + 3 (16%), H-4
→ L + 4 (23%), H-4→ L + 5 (16%) and can be observed around 388.2 nm. All electronic
transition configurations of the compounds (3–5) are given in the Table S8.

4. Conclusions

The authors herein endeavored to design an efficient and environmentally friendly
protocol to synthesize benzimidazoles derivatives 2a–g and 3–4. The synthesized com-
pounds were produced in excellent yield using ZnO-NPs. In addition, results indicated
that compound 2a has higher in vitro antioxidant activity than those of standard ascorbic
acid. The compound 2a is absolute soft according to this study, and the results revealed
that the newly formed compounds exhibited antioxidant activities on HRBC hemolytic and
membrane stabilization and DPPH scavenging percent, respectively. All synthesized com-
pound structures were elucidated via the most different elemental and spectral analytical
methods. The superiorities of this procedure are environmental, high yield of product and
low amounts of catalyst, and short reaction time.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph16070969/s1, Figure S1: IR Spectrum of compound (2a).
Figure S2: 1H-NMR Spectrum compound of (2a). Figure S3: 13C-NMR Spectrum of compound
(2a). Figure S4: IR Spectrum of compound (2c). Figure S5: 1H-NMR Spectrum of compound
(2c). Figure S6: 13C-NMR Spectrum of compound (2c). Figure S7: IR Spectrum of compound (2d).
Figure S8: 1H-NMR Spectrum of compound (2d). Figure S9: 13C-NMR Spectrum of compound
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(2d). Figure S10: IR Spectrum of compound (2e). Figure S11: 1H-NMR Spectrum of compound (2e).
Figure S12: 13C-NMR Spectrum of compound (2e). Figure S13: 1H-NMR Spectrum of compound
(2f) in D2O. Figure S15: 13C-NMR Spectrum of compound (2f). Figure S17: 1H-NMR Spectrum
of compound (3). Figure S19: 1H-NMR Spectrum of compound (4) in D2O. Figure S20: 13C-NMR
Spectrum of compound (4). Figure S23: 1H-NMR Spectrum of compound (5). Figure S24: 13C-NMR
Spectrum of compound (5).
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