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Abstract: Nutrigenomics is the study of the impact of diets or nutrients on gene expression and
phenotypes using high-throughput technologies such as transcriptomics, proteomics, metabolomics,
etc. The bioactive components of diets and nutrients, as an environmental factor, transmit information
through altered gene expression and hence the overall function and traits of the organism. Dietary
components and nutrients not only serve as a source of energy but also, through their interactions
with genes, regulate gut microbiome composition, the production of metabolites, various biological
processes, and finally, health and disease. Antimicrobial resistance in pathogenic and probiotic
microorganisms has emerged as a major public health concern due to the presence of antimicrobial
resistance genes in various food products. Recent evidence suggests a correlation between the
regulation of genes and two-component and other signaling systems that drive antibiotic resistance in
response to diets and nutrients. Therefore, diets and nutrients may be alternatively used to overcome
antibiotic resistance against novel antibiotics. However, little progress has been made in this direction.
In this review, we discuss the possible implementations of nutrigenomics in antibiotic resistance
against novel antibiotics.
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1. Introduction

In contrast to nutrigenetics, which deals with the impacts on human health of the
single-nucleotide polymorphisms (SNPs) that are associated with nutrient metabolism,
nutrigenomics is concerned with studying the impacts of nutrients on gene expression to
understand how foods influence human health using high-throughput technologies such as
epigenomics, transcriptomics, etc. [1]. Nutrition plays an essential role in life since macro-
and micronutrients are essential building blocks for sustaining life [2]. The pathways for
nutrient–gene communication routes have existed throughout the evolution of life [3].
Furthermore, because some nutrients directly regulate the genome or the epigenome
through interaction with transcription factors or chromatin modifiers, they have a health
impact [4]. Thus, a nutrigenomics approach can provide a snapshot of genes that are turned
on or off to regulate a trait or phenotype. Increasing research in this field should lead
to a better understanding of how nutrition affects metabolic pathways and homeostasis
regulation, which may then be used for the prevention of chronic diet-related disorders [5].
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One of the first studies to use transcriptomics technology for human dietary interven-
tions assessed the effects of a high-carbohydrate breakfast compared to a high-protein meal
on the gene expression profile in blood leukocytes of healthy males [6]. Breakfasts high in
carbohydrates resulted in the differential expression of genes mostly engaged in glycogen
metabolism, whereas breakfasts high in protein content led to the differential expression
of genes primarily involved in protein production [6]. The effects of the chronic feeding
of various diets comprising vanaspati (rich in trans fatty acids (TFAs)), palm oil (rich in
saturated fatty acids (SFAs)), and sunflower oil (rich in polyunsaturated fatty acids (PU-
FAs)) at a 10% level of all dietary composition on 11β-hydroxysteroid dehydrogenase type
1 enzyme (11β-HSD1) gene expression have been examined in rat retroperitoneal adipose
tissue. When compared to a PUFA-enriched diet, meals high in TFAs and SFAs showed
superior 11β-HSD1 gene expression in rat retroperitoneal white adipose tissue (RPWAT).
The risk of developing obesity and insulin resistance increased because of the enhanced
local conversion of inactive to active glucocorticoids in adipose tissue [7]. Recently, using a
nutrigenomics approach, we showed that Indian dietary habits and food ingredients may
have reduced the severity and death rate of the COVID-19 pandemic in Indians [8].

Colistin (polymyxin E) is a polymyxin antibiotic extensively used in animal health for
the oral treatment of enterobacterial digestive infections in pigs, poultry, and cattle [9]. Pre-
vious studies utilizing culture-dependent techniques on farm animals in Tunisia revealed
the prevalence of colistin-resistant Gram-negative bacteria. In a recent investigational study,
DNA analysis for ten known mcr genes was conducted on cloacal swabs from 195 broiler
chickens from six farms in Tunisia [10]. A total of 81 (41.5%) of the 195 animals tested posi-
tive for mcr-1 with positive cases on all farms. These findings corroborate the emergence
of colistin resistance in farm animals in Tunisia and suggest that investigating antibiotic-
resistance genes (ARGs) might contribute to epidemiological research on antimicrobial
resistance dissemination [10].

A nutrigenomics study showed the positive effects of phytobiotics and organic acids
on ghrelin gene expression levels, gut microbiota composition, performance metrics, and
intestinal histomorphological alterations in broiler chicks compared to antibiotics [11]. The
addition of phytobiotics enhanced (p < 0.05) villus height and the ratio of villus height/crypt
depth in the ileum, jejunum, and duodenum, while decreasing ghrelin gene expression
levels. Total coliform and E. coli levels in cecal and ileal digesta were considerably lower
(p < 0.05) compared to antibiotic treatment. Lactobacillus spp. were shown to be favorably
associated with the villus height/crypt depth ratio in the duodenum by correlation analysis.
Based on the nutrigenomics methodology, the findings highlighted the significance of
gene–nutrient–microbiota relationships. As a result, phytobiotics and organic acids may be
viable alternatives to antibiotics for increased performance and immunity in chickens, as
well as healthier meat production [11]. Moreover, phytobiotics will contribute to decreased
antibiotic use and the prevention of the potential emergence of microorganisms resistant
to antibiotics.

Metagenomics approaches have been employed to investigate the content and dynamic
distribution of ARGs, as well as the microbial population, in three types of factory-processed
Chinese garlic powder (GP) products [12]. The findings revealed that 126 ARG genes from
11 different ARG species were detected. With the processing of GP, the expression of ARGs
increased at first and later decreased [12]. Since garlic is added to food, this finding raises
concern about the possible emergence of antibiotic-resistant strains from dietary supplies.

This review aims at highlighting the effect of nutrients on the genome or epigenome
which may lead to emerging antimicrobial resistance for novel antibacterial agents, which
has been discussed using nutrigenomic approaches.

2. Methods

In the present review, the following sources were included: randomized controlled tri-
als (RCTs), controlled non-randomized clinical trials (CCTs), retrospective and prospective
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comparative cohort studies, case-control or nested case-control studies, reviews, systematic
reviews, and thematic books.

A search strategy was designed using medical subject headings (MeSH). The MeSH
terms of supplements, nutrition, nutrigenomics, gut microbiome, and antimicrobial resis-
tance were used to systemically search PubMed and MEDLINE databases. Only studies
in the English language were included. All relevant publications up to April 2023 were
included. No limits regarding study design or date were set for the search. Duplicate
studies were removed from our study pool. All included studies were scanned against
inclusion and exclusion criteria. Our inclusion criteria primarily focused on published liter-
ature that assessed the effect of nutrients on the genome and its correlation with emerging
antimicrobial resistance for novel antibacterial agents.

3. Results and Discussion
3.1. The Effect of Nutrition on the Human Gut Microbiome

Trillions of bacteria occupy the human gut, forming a dynamic ecological system
involved in both health and disease. The composition of the gut microbiota is unique to
each individual and tends to be generally constant throughout life, but daily transitory
changes are noted. Diet is a fundamentally modifiable element determining the makeup
of the gut microbiota, implying that therapeutic dietary techniques are possible to control
microbial diversity, composition, and stability. While food can cause changes in the gut
microbiota, these changes appear to be transient. It is uncertain if long-term dietary changes
may cause lasting changes to the gut microbiota, owing to a dearth of long-term human
nutritional interventions or long-term follow-ups of short-term dietary treatments [13].

Aside from nutrition, the gut microbiota is influenced by a mix of extrinsic factors
such as lifestyle and medicine and intrinsic factors such as host genetics, immunology,
and metabolic control. It is commonly known that external variables show the greatest
influence, with nutrition being the most extensively studied variable [14]. On the other
hand, according to a 2016 study of 1126 twins, genetics shows a modest 8.8% average effect
in determining the gut flora [15].

The human diet normally comprises many food components, such as protein, fat, and
carbohydrates, with a proper balance required. The community and diversity of the gut
microbiome have a large impact on the kind and quantity of nutrition. The digestion of
food elements results in variation in the end products, which play an important role in
the prevention, management, and treatment of diseases like cancer and diabetes [16,17].
Moreover, the flourishing or fading of the beneficial microbiome may result in increased
metabolites in a healthy direction or the appearance of opportunistic genera. The produc-
tion of certain metabolites may result in a pathogenic appearance that can influence host
physiology and gene expression, resulting in the development of various diseases [18].

A fat-containing diet alters the gut microbial composition, usually resulting in a drop
in Bacteroidetes and an increase in both Firmicutes and Proteobacteria [19]. Furthermore,
certain genera of the class Gammaproteobacteria increased their abundance in comparison
to other particular genera, resulting in a change in the microbial population and diver-
sity [20]. These alterations reduce the microbial synthesis of short-chain fatty acids and
antioxidants. Changes in metabolites have consequences, such as increased disease risk.
Carbohydrates have been proven to boost cell survival in cancer by increasing the expres-
sion of genes related to fatty tissue and obesity [21]. Diets high in complex carbohydrates
generated from plant tissue are slowly digested by the gut bacteria, particularly those
found in the distal intestine. Plant fiber digestion enhances the symbiotic microbiota, which
leads to an increase in short-chain fatty acids, which have a role in energy supply and
hence in human health. Complex carbohydrates improve body weight, food intake, glucose
homeostasis, and insulin sensitivity [22]. On the other hand, several studies have found a
link between a higher-fiber diet and a lower risk of irritable bowel syndrome, inflammatory
bowel disease, cardiovascular disease, diabetes, and colon cancer [23].
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3.2. The Effect of Diets and Nutrients on Human-Genome-Level Expression

In the context of nutrigenetics and nutrigenomics, bioactive components are dietary
ingredients that may transmit information from the external environment, alter gene ex-
pression in the cell, and hence affect the overall function of the organism (Figure 1). It is
critical to consider nutrition not only as a source of energy and essential nutrients necessary
for life and organism growth but also as a factor impacting biochemical processes, bio-
chemical pathway activation, and health/disease. Dietary bioactive components influence
gene expression through chromatin structural modifications, the activation of transcription
factors via signaling cascades, or direct ligand binding to nuclear receptors [24]. Individual
phenotypes can be altered by nutrient-induced gene expression. SNPs in a variety of genes
involved in inflammation and lipid metabolism, on the other hand, can modify the bioac-
tivity of essential metabolic pathways and mediators, as well as the capacity of nutrients to
interact with these mediators and metabolic pathways [25].

Gene expression in human blood and other tissues has been demonstrated to be de-
pendent on gender, age, and time of day. However, additional variables that may influence
gene expression have not been well investigated. For example, it is unclear whether the
fasting or feeding condition will provide a clear answer related to the association between
gene expression in the blood and obesity [26]. Several recent studies have demonstrated
the adaptability of biological networks by revealing rapid network rewiring in response to
various environmental challenges. Fasting and feeding responses in rats have been studied
with some success [27]. Other studies have demonstrated that circadian clock genes in
mouse heart tissue are controlled differentially during food intake and fasting [28].
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Figure 1. Illustration of the relationships between nutrition and the genome [29]. (A) Nutrigenetics:
genetic polymorphisms can induce differential gene expression. As a result, different metabotypes
exist, which show different responses to nutrition, different nutrient requirements, and potential
food intolerance. Of note, the location of SNPs can also affect epigenetic modifications. (B–D) Nu-
trigenomics: methyl donor availability, bioactivity of dietary compounds, and xenobiotics (B) can
affect the one-carbon cycle and other pathways, thus consequentially, affecting DNA methylation and
histone modifications (C). Not just parental molecules (B) but also derived compounds and metabolic
products of microbial activity (D) can affect these pathways (C).

3.3. Antimicrobial Resistance Mechanisms

Antimicrobial resistance (AMR) is defined as the ability of bacteria to live and thrive in
the presence of antimicrobial substances. Antimicrobial agents, such as antibiotics, disinfec-
tants, and food preservatives, are available and can be employed against microorganisms
to restrict their ability to grow, prevent their reproduction, or even kill them. Natural, semi-
synthetic, and synthetic substances with distinct mechanisms capable of causing major
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changes on the metabolic and physiological levels of bacteria include cell-wall synthesis
modifications such as β-lactams and glycopeptides, protein synthesis inhibitors such as
macrolides and tetracyclines, metabolic pathway inhibitors such as sulfonamides, and
interference with DNA replication and translation such as fluoroquinolones [30].

Antimicrobial resistance is a dramatic natural phenomenon that arises spontaneously
over time through genetic change inside bacteria. However, variables like drug usage and
misuse accelerate this transformation. For example, administering incorrect antibiotics
for viral infections such as the flu might contribute to the resistance process. It poses
a comparable hazard to animals and food production sustainability [30]. Antimicrobial
resistance mechanisms are classified into four types: restriction of drug uptake, alteration
of drug targets, inactivation of drugs, and active drug efflux (Figure 2). Intrinsic resistance
mechanisms include drug target alterations, drug inactivation, and drug efflux; acquired
resistance mechanisms include drug target modifications, drug inactivation, and drug
efflux. Because of structural changes, etc., the processes utilized by Gram-negative bacteria
differ from those used by Gram-positive bacteria [31].
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3.4. Antimicrobial Effect on the Human Gut Microbiome

The gut microbiota is vital for host health and is influenced by a variety of variables,
including antibiotics. Antibiotic-induced changes in gut microbial composition can have a
negative impact on health by reducing microbial diversity, changing functional attributes
of the microbiota, forming and selecting antibiotic-resistant strains, and increasing suscep-
tibility to infection with pathogens like Clostridioides difficile [32].

Recently, scientists discovered that broad-spectrum antibiotics had a negative influ-
ence on the gut microbiome [33]. The gut microbiota, which is home to bacteria, archaea,
microeukaryotes, and viruses, plays an important role in human health. It inhibits pathogen
colonization, modulates gut immunity, supplies necessary nutrients and bioactive metabo-
lites, and aids in energy balance [33]. It has been reported that oral antibiotics are associated
with an increased risk of colon cancer [34]. For example, extremely preterm children
subjected to continuous antibiotic therapy had fewer varied bacterial communities, lower
species richness, and higher ARGs in their gut [35,36].

Antibiotics can cause antibiotic-associated diarrhea (AAD), and studies have shown
that clindamycin might modify the microbial population, promoting the colonization of
potential pathogens such as C. difficile, resulting in diarrhea and colitis [37]. The use of
antibiotics has also been linked to changes in protein expression and energy consump-
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tion in the microbiota, with a minor increase following antibiotic therapy, possibly as a
coping strategy for antibiotic stress, which decreases at later stages and after exposure to
antibiotics [38].

Antibiotics can affect the transcription of numerous important functional genes, in-
cluding those encoding transport proteins, glucose metabolism genes, and protein synthesis
genes. Exposure of Pseudomonas aeruginosa to sub-inhibitory antibiotic doses elevated the
expression of virulence-associated genes, resulting in the increased production of rham-
nolipids and phenazines. Numerous investigations have indicated that aminoglycosides,
lactams, vancomycin, and oxacillin may all promote biofilm development at sublethal
doses [32]. These biofilms then serve as antibiotic-resistance reservoirs. It provides fur-
ther resistance to bacteria against various antibiotics and host defense, making treatment
difficult for people and causing a variety of complications such as pipe/equipment obstruc-
tion in healthcare settings and food sectors [39]. Metabolomics profiles were examined in
antibiotic-treated pigs from postnatal days 7 to 42, subjected to a corn-soy baseline diet
with or without infeed antibiotics [40]. The antibiotic-treated group exhibited increased
amounts of metabolites linked to amino acid metabolism, resulting in lower amino acid con-
centrations. Short-chain fatty acid production was also reduced as butyrate and propionate
levels declined [40].

3.5. Phylogenetic Groups and Antimicrobial Resistance Genes from Poultry

There is little information on the occurrence of metal and antibiotic resistance in
potentially pathogenic E. coli entering the food chain from pigs, which might endanger
human health. The phenotypic and genotypic resistance of E. coli to 18 antibiotics and
three metals (mercury, silver, and copper) at pig slaughterhouses in the United Kingdom
has been investigated, which revealed resistance to streptomycin, sulphonamide, oxytetra-
cycline, ampicillin, chloramphenicol, ceftiofur, amoxicillin-clavulanic acid, trimethoprim-
sulfamethoxazole, aztreonam, and nitrofurantoin [41]. E. coli isolated from meat originating
from different animal species may have ARGs and therefore pose a risk to human health.
To identify antimicrobial resistance genes in E. coli isolates from pig, cattle, chicken, and
turkey meat and to determine if resistance genotypes are related to phylogenetic groupings
or meat species, a normal culture procedure was applied, including 313 isolated E. coli
samples [42].

Resistance genes could be detected by PCR in 98% of resistant isolates. The tetracy-
cline resistance genes tet(A) and tet(B), streptomycin resistance genes strA and aadA1,
sulphonamide resistance genes sulI and sulII, kanamycin resistance genes dfr and aphA,
and ampicillin resistance genes blaTEM have been identified. One stx1-positive E. coli
isolate recovered from pigs carried the tet(A) gene and belonged to the phylogenetic group
B2, whereas another stx1-positive strain isolated from cattle was multi-resistant, tested
positive for blaTEM, aphA, strA-B, sulII, and tet(A), and belonged to the phylogenetic
group A. Most E. coli populations with diverse resistance genes to a single antibiotic showed
statistically significant differences in MIC values [42].

The genomic backbone and plasmid correlations with antimicrobial resistance were
investigated [43]. A total of 72 pathogenic avian E. coli (APEC) strains were studied. Isolates
that were resistant to tetracycline and trimethoprim-sulfamethoxazole (87.5% each) and
harbored blaTEM (61.1%) dominated. Furthermore, phylogroup D was the most common,
in total at 23.6%, and was among multidrug-resistant (MDR) isolates (14/63). The results
indicated that group D strains have a high capacity to host a wide range of plasmids
(Inc-types) harboring various AMR genes. This means that phylogroup D might pose a
problem in dealing with antimicrobial resistance in poultry [43].

3.6. New Antibiotics against Microbial Resistance

Antibiotic resistance and the growth of multidrug-resistant bacterial strains have
now become extremely widespread in hospitals and pose a threat to worldwide infectious
disease control. Possible antibiotic-resistance approaches are being examined, and different
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mechanisms for the antibiotic resistance of certain previously beneficial antibiotics are
under investigation [44]. If an active substance does not exhibit cross-resistance to current
antibiotics, it is considered novel. Cross-resistance is defined in this context as resistance to
the same class of antibiotics that may be assessed by systematic, in vitro sensitivity testing
of genetically determined bacteria. If sufficient information on cross-resistance is lacking
or unavailable, an active substance is considered innovative if it belongs to a new class
of antibiotics, has a novel target or binding site, or demonstrates a novel mechanism of
action [44].

Since 2017, eight novel antibacterial active compounds have been authorized, includ-
ing one for the treatment of tuberculosis (TB). The non-profit organization TB Alliance
created pretomanid, a therapeutic compound for the treatment of multidrug-resistant TB.
Approximately half of the new antibiotics licensed target carbapenem-resistant Enterobac-
teriaceae (CRE), oxacillinase-48-producing Enterobacteriaceae (OXA-48), and β-lactamase-
producing Enterobacteriaceae (ESBL). Despite significant advances in TB and C. difficile
research, antibiotics are still ineffective in treating carbapenem-resistant Acinetobacter bau-
mannii and Pseudomonas aeruginosa [45].

Since 2019, the new chemical compound zoliflodacin has been evaluated in Phase
III for the treatment of multidrug-resistant Neisseria gonorrhoeae [46]. It is the first an-
tibiotic of the spiropyrimidinetrion class to be synthesized. Its novel action comprises
inhibition of type II bacterial topoisomerase, targeting a different location than fluoro-
quinolones [47]. Zoliflodacin has a very low resistance frequency and is efficacious not only
against multidrug-resistant N. gonorrhoeae with MICs ranging from 0.002 to 0.25 µg/mL
but also against a variety of Gram-positive and Gram-negative bacteria [42]. Even when
bacteria are subjected to combinations of zoliflodacin and antibiotics currently in use,
such as ceftriaxone, doxycycline, and gentamycin, no resistant mutations of N. gonorrhoeae
have been detected. Zoliflodacin does not exhibit cross-resistance with currently available
fluoroquinolones [46].

Ridinilazole is a synthetic, fast-acting antibiotic from the bis-benzimidazole family for
the treatment of C. difficile [48]. It is poorly absorbed by the gastrointestinal lumen after
oral administration. Ridinilazole is virtually perfect for the treatment of CDI, as it showed
in vitro selective efficacy against C. difficile, minimal systemic absorption, and a decreased
impact on the gut microbiota. Ridinilazole-resistant strains have not been identified. The
findings of the action on the microbiota are quite encouraging, as the microflora remained
essentially intact following ridinilazole treatment. In contrast, the most recent fidaxomycin
therapy showed altered gut microbiota, and vancomycin therapy resulted in a significant
drop in Bifidobacteria [44].

Delafloxacin, a new antibacterial DNA and topoisomerase IV inhibitor fluoroquinolone,
shows increased activity in acidic media [49]. Its comparable affinity to both DNA gy-
rase and topoisomerase IV in Gram-positive (Staphylococcus aureus) and Gram-negative
(E. coli) bacteria limits the potential for antibiotic resistance, requiring the accumulation
of numerous mutations in both enzyme genes [44]. Eravacycline is a completely syn-
thetic fluorocycline of the tetracycline family that was engineered to treat complicated
intra-abdominal infections (CIAI). It primarily combats the acquired resistance of regular
tetracyclines [50]. The acquisition of genes encoding certain efflux pumps and the presence
of ribosomal protection proteins (RPPs) are the two key mechanisms causing pathogen
resistance to tetracyclines [51].

Various efflux pumps have been found in Gram-positive and Gram-negative bac-
teria. The most common efflux pumps are encoded by the tet(A) and tet(B) genes in
Gram-negative bacteria and the tet(K) and tet(L) genes in Gram-positive bacteria [45].
Eravacycline has the same pharmacophore as tetracyclines, but it has two distinct modifica-
tions in ring D at positions C7 (addition of a fluorine atom) and C9 (addition of a pyrrolidine
acetamide group) [52]. The modifications at positions C7 and C9 render eravacycline effi-
cacious against Gram-positive and Gram-negative bacterial strains otherwise resistant to
first- and second-generation tetracyclines. Eravacycline, like other tetracyclines, inhibits
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the entrance of molecules from the aminoacyl-tRNA complex by reversibly binding to the
ribosomal 30S subunit. However, compared to typical tetracyclines, the interaction between
eravacycline and ribosomes is significantly stronger due to the recognition of several target
sites. The first- and second-generation compounds are bacteriostatic; however, eravacycline
possesses in vitro bactericidal activity against selected strains of A. baumannii, E. coli, and
K. pneumoniae [44].

Plazomicin is a novel aminoglycoside derived from a modified sisomicin (a particular
antibiotic against Gram-negative infections for which gentamicin, the first-choice molecule,
was ineffective) [53]. Plazomicin inhibits most of the aminoglycoside-modifying enzymes
(AME) that inactivate aminoglycosidic drugs in Enterobacteria spp. due to its novel
chemical structure in comparison to other aminoglycosides. It differs significantly from the
structures of gentamycin and tobramycin but is similar to amikacin [44].

3.7. How Genomics Mitigates the Public Health Impact of Antimicrobial Resistance

Whole-genome sequencing (WGS) and, more recently, metagenomic investigations
have considerably improved our understanding of the antimicrobial resistance (AMR)
process, and these technologies are guiding mitigation measures for better understanding
and controlling AMR (Table 1) [54]. Culture-based antimicrobial susceptibility testing (AST),
which is still used in clinical microbiology and patient care, has historically been used to
identify AMR. While phenotyping gives clear visual evidence of how bacteria will interact
with an antibiotic, it typically provides little or no information about resistance mechanisms,
with divergent genetic clones frequently exhibiting similar resistance profiles [55].

Multi-locus sequence typing (MLST), a genetic typing method, provides a better level
of pathogen resolution than AST but is very limited since it only describes a tiny part of a
genome. WGS, on the other hand, gives genome-wide information at the single nucleotide
level that may be utilized to determine the existence and mechanisms of AMR, as well as
pathogen identification, virulence, and origin [56,57]. With the advent of next-generation
sequencing (NGS), which uses high-throughput, parallel sequencing of DNA fragments,
pathogen genomes may now be identified quickly and at a cheap cost [58,59].

Comparative phylogenetic analysis can be used to determine the degree of relatedness
between different isolates based on the extent of genome similarity and, when combined
with epidemiological and clinical data, can help understand the specific temporal patterns
of AMR and transmission [55]. Furthermore, recent advancements in metagenomic se-
quencing methods have completely eliminated the need for establishing bacterial cultures.
As a result of combining all accessible genetic information in a sample, metagenomic analy-
sis allows for a shift in focus from an individual pathogen to the community microbiome
landscape, resulting in a highly comprehensive model of how pathogens interact, mobilize,
and access AMR genes [60].

Table 1. Case studies on using whole-genome sequencing (WGS) to reduce the public health burden
of antimicrobial resistance (AMR).

Case 1: International Surveillance—Determination of the Population Structure and Epidemiology of Carbapenem-Resistant
K. pneumoniae (CR-Kp) across Europe [61]

Justification WGS/Workflow Main Findings Advantages of WGS

The primary reservoirs and
transmission dynamics of
CR-Kp in Europe are still

poorly understood.

For sequencing, European
hospital laboratories have

submitted consecutive clinical
isolates of CR-Kp, along with

a susceptible strain for
comparison.

Primary cause of CR-Kp
dissemination

(Carbapenemase acquisition);
another main source of CR-Kp

spread (nosocomial
acquisition).

A baseline for continuous
CR-Kp monitoring.

Emphasize the importance of
nosocomial spread.
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Table 1. Cont.

Case 2: Enhancing the National Surveillance of Antimicrobial Resistance in the Philippines [55]

Justification WGS/Workflow Main Findings Advantages of WGS

National laboratory-based
surveillance showed an

increase in AMR incidences
over the preceding ten years.

Understanding of the
epidemiology and causes of

AMR remained limited.

Retrospective sequencing of
MDR GNB collected before

the introduction was
performed and examined with

phenotypic and
epidemiological data.

E. coli ST410, drivers of
carbapenem resistance at
several healthcare system

levels were found, including a
localized outbreak of

plasmid-driven CR-Kp
impacting a single healthcare

facility.

The implementation of
efficient infection control

methods was made.

Improved global coverage.

Case3: Investigating an MRSA Outbreak in a Neonatal Unit in the UK [62]

Justification WGS/Workflow Main Findings Advantages of WGS

Over a 6-month period,
phenotypically comparable

MRSA isolates were found in
patients in a special baby care

unit but could not be
connected chronologically or

geographically.

WGS was performed on all
MRSA isolates received from

special baby unit patients.

MRSA isolates from the
community, as well as

screening samples from
elsewhere in the hospital,

were also sequenced.

Two previously excluded
isolates were part of the

epidemic, allowing temporal
linkages between patients to

be established.

Beyond the newborn unit, a
large transmission network

was discovered.

Testing of a large number of
isolates

Precise identification of
related strains

Allowing for comprehensive
epidemic reconstruction.

Allowing for the identification
of the source of the epidemic

and the successful
implementation of infection

control measures.

Case 4: Investigating the Direction of Transmission in an A. baumannii Outbreak in a UK Hospital [63]

Justification WGS/Workflow Main Findings Advantages of WGS

The molecular typing of a
cluster of A. baumannii isolates

acquired at a UK hospital
suggested a clonal epidemic,
but the route of transmission
between cases could not be

established.

WGS analysis was performed
on a group of isolates

acquired from patients with
similar molecular typing

profiles and antibiograms.

The index case was identified,
and the subsequent chain of

transmission was determined.

One patient/isolate was
found to be unconnected, and

the outbreak investigation
was abandoned.

The directionality of
transmission may be

identified by WGS, allowing
for a precise reconstruction of

the outbreak.

Case 5: Contact Tracing and Detection of Secondary Cases of TB in the Netherlands [64]

Justification WGS/Workflow Main Findings Advantages of WGS

Secondary TB detection and
screening are critical for TB

control. The poor precision of
molecular typing makes the

accurate identification of case
clusters and transmission

networks difficult.

Molecular typing and WGS.

The two techniques were
evaluated in terms of

discrimination and accuracy.

WGS proved more capable of
determining the relatedness of

isolates than molecular
typing.

Aided in the identification of
transmission episodes.

Contact tracing and
generating a broader

knowledge of TB control.
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Table 1. Cont.

Case 6: Identifying the Drivers of AMR in Atypical Enteropathogenic E. coli (aEPEC) Strains Isolated from Children < 5 Years
in Four Sub-Saharan African Countries and Three South Asian Countries [65]

Justification WGS/Workflow Main Findings Advantages of WGS

The incidence, causes, and
drivers of AMR in E. coli
intestinal isolates from

children in the community in
many places throughout the

world were unclear.

The phenotypic susceptibility
of isolates and WGS were

investigated and linked with
antibiotic usage, disease state,

phylogenetic lineage, and
geographic location.

AMR was shown to be
prevalent, with 65% of isolates

resistant to at least three
antimicrobial medication

classes.

A wide spectrum of genetic
pathways of AMR was

discovered.

Conduct a thorough
examination of AMR across a

vast geographical area.

Revealing information about
AMR epidemiology,

distribution, and causes.

Case 7: Investigation of Colistin Resistance Detected in Commensal E. coli in Food Stock Animals in China [66]

Justification WGS/Workflow Main Findings Advantages of WGS

Routine surveillance revealed
a significant increase in the
rates of colistin resistance in
bacteria colonizing pigs in
China, but the cause of this

resistance remained
unknown.

Conjugation tests were
performed.

The WGS on plasmids was
utilized to identify the

relevant gene.

The plasmid-associated
colistin resistance gene

sequence was identified and
named mcr-1.

The genetic foundation of a
novel AMR mechanism has

been identified and
characterized.

Case 8: Understanding of the Epidemiology of MDR and XDR Pathogens Amenable to Control by Vaccination [67,68]

Justification WGS/Workflow Main Findings Advantages of WGS

AMR is affecting the
effectiveness of typhoid fever

therapy. Resistance to
azithromycin was discovered

in Bangladesh and later in
Pakistan, but the genetic basis

and likelihood of spread
remained unclear.

WGS was used to examine
clinical isolates of

azithromycin-resistant S.
Typhi.

The phylogenetic analysis
allowed the strains to be
contextualized among

contemporaneous S. Typhi
isolates in both contexts.

Resistant isolates in
Bangladesh and Pakistan
arose from the separate

acquisition of mutations in the
same gene.

The breadth of azithromycin
selection pressure and the

critical need for disease
management by vaccination.

Two independent epidemics
of azithromycin-resistant S.

Typhi were identified.

Development of innovative
typhoid conjugate vaccines for

infection control.

3.8. Potential Nutrigenomics Effects on Increased Antimicrobial Resistance against
New Antibiotics

According to metagenomic research, commensal bacteria in healthy people help keep
pathogenic bacteria at a low density, implying that carriage is not often a concern. When
patients have invasive surgery, however, there is a loss of microbial diversity, which
is followed by the colonization of harmful bacteria. The use of antimicrobials, which
commonly leads to the selection of drug-resistant pathogens and enables horizontal gene
transfer (HGT) of AMR genes between bacterial lineages and species, might increase
this impact. WGS investigations are currently being utilized to uncover the colonization
variables that allow specific infections to grow quickly and survive in such conditions,
with the hope that treatments targeting persistent organisms will be developed to reduce
pathogen colonization [69–74].

ARGs from heat-treated bacteria might be transmitted to other bacteria via a variety of
HGT pathways (Table 2). HGT is aided by mobile genetic elements (MGEs) like plasmids,
integrons, and transposons, which allow genes to travel more freely. The frequency of HGT
is heavily influenced by the qualities of MGEs, the characteristics of the donor and recipient
populations, and the environment. Three primary conventional HGT pathways have been
indicated: (1) conjugation, (2) transformation, or (3) transduction. Other, less well-known
processes of DNA transfer may occur [75].
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Conjugation takes place between living bacterial cells and is not possible if the cells
are heat-inactivated [76]. DNA fragments, including ARGs, may be released from lysed,
heat-inactivated bacteria and transmitted through transformation. Natural transformation
has been seen in over 60 bacterial species and is likely to occur in many more [77,78].
Few studies have specifically examined exogenous DNA absorption by bacteria in food.
There is evidence that DNA stability is inversely proportional to DNA length and that
while heat treatments destroy lysed-exposed ARGs, fragments may still be long enough
to be transformed by other bacteria [79]. Transduction is a kind of HGT that is mediated
by bacteriophages (phages) and related particles known as gene transfer agents (GTAs).
Phages can package some genetic material (including ARGs) of their hosts by replicating
within the host cell before lysing it (lytic) or by integration into the host cell genome
(lysogenic) [76].

Table 2. Studies on the fate of antibiotic-resistance genes (ARGs) after exposure to heat.

Procedure Medium

Evaluation
Tempera-

ture
(◦C)

Species

Antimicrobial
Resistance

Genes
(ARGs)
Present

Stated
Antimicrobial

Resistance
Profiles

Recipient
Species

ARGs
Detected

Post-
Treatment
from Non-
Culturable

Samples

Transformation
Demonstrated Reference

Cooked—
boiled (20 min),
grilled (10 min),
microwaved (5
min, 900 W), or

autoclaved
(20 min, 121 ◦C)

Chicken,
beef,
pork

Not Stated E. faecalis aac(6′)-Ie-
aph(2′′)-Ia

Aminoglycosides,
except for

streptomycin
(predicted profile,

not tested)

E. faecalis YES NO [80]

General heat
treatments Saline

40, 50,60,
70, 80, 90,

100
E. coli

blaCTX-M-1,
blaCMY-2,

tetA,
strA

Cephalosporins,
tetracycline,

streptomycin
E. coli YES YES 70 ◦C for

30 min [81]

Milk
pasteurization
(sterilization)

Milk and
elution
buffer

63.5, 121 S. aureus,
S. sciuri

blaZ,
mecC,
tetK

Penicillin,
methicillin,
tetracycline

S. aureus YES YES 63.5 ◦C for
30 min [82]

Non-food
autoclaving

Distilled
water
and in

presence
of salt

121, 135 Plasmid
(pUC18) NS Ampicillin E. coli - YES 121 ◦C for

15 min [83]

Individual patient risk factors for getting infected by extended-spectrum β-lactamase-
producing bacteria include an extended hospital stay prior to infection, antibiotic exposure,
and recent travel abroad (Figure 3) [68]. Male sex, older age, and co-morbidities are all risk
factors for multi-drug-resistant (MDR) Gram-negative bacteria infections [69]. Changes in
the human microbiota occur in response to disease, particularly when antibiotic exposure
is frequent and/or chronic. Enterobacterales are common gastrointestinal colonizers that
can serve as key reservoirs for mobile AMR genes [60].

Enterococci are innately resistant to cephalosporins, allowing them to develop un-
usually high densities in patients subjected to cephalosporin treatment and encouraging
diffusion to other areas where infection occurs. The cognate response sensor (CroS) kinase
and its cognate response regulator (CroR) are essential for cephalosporin resistance in
Enterococcus faecalis, but little is known about the variables that govern this signaling system
to modify resistance. To detect protein–protein interactions in E. faecalis cells, a protein frag-
ment complementation assay was used, which revealed a previously unknown association
of CroR with the HPr protein of the phosphotransferase system (PTS), which is responsible
for carbohydrate uptake and catabolite control of gene expression. The potential of CroS to
increase cephalosporin resistance and gene expression in a nutrient-dependent manner is
limited by its connection with HPr, according to genetic and physiological investigations.
Mutational studies revealed that the interface via which HPr associates with CroR differs
from the interface via which it associates with other cellular partners [84].
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A study in the United States showed that aminoglycosides were discovered to be the
most common and widespread cause of AMR in healthy people, and aminoglycoside-O-
phosphotransferases (aph3-dprime) were associated negatively with total calories and the
consumption of soluble fibers. Data revealed that individuals with low ARGs ingested
much more fiber in their diets than medium and high ARG individuals, who possessed a
greater abundance of obligate anaerobes in their gut microbiota, particularly from the family
Clostridiaceae. Moreover, machine learning was used to look for connections between
387 nutritional, physiological, and lifestyle characteristics and antimicrobial resistance and
discovered that enhanced phylogenetic diversity of food was related to individuals with
low ARG levels [85].

Data from animal studies showed that in both canines and felines, 23 (ARGs) were
found in 50% of the samples, with tetracycline and aminoglycoside resistance genes being
the most common. The abundance of a particular ARG tended to respond similarly to
nutritional intervention. When compared to dogs subjected to a baseline diet, dogs on the
high-protein and low-carbohydrate (HPLC) diet had a higher abundance of the tetracycline
resistance genes tet(W), tet(O), and tet(44) and the macrolide resistance genes mefA and
mel but a lower abundance of the β-lactam ARG CfxA6. The quantity of these ARGs was
similar in HPLC-fed kittens and moderate-protein/moderate-carbohydrate (MPMC)-fed
kittens [86]. The tetracycline resistance gene tet(W) was found in the greatest number
of taxa, mostly in Firmicutes. Bifidobacterium, a genus widely utilized in dairy product
fermentation and as a probiotic, shared tet(W) with a wide range of other species [86].
Dietary Cu and Zn supplementation in swine production may further increase the likeli-
hood of antibiotic resistance spreading through the co-selection and mobilization of ARGs
and subsequent transmission to humans [87,88]. Co-selection can occur when ARGs and
metal-resistance genes (MRGs) are genetically linked (co-resistance), when the same re-
sistance mechanism confers resistance to both metals and antibiotics (cross-resistance), or
when a common regulator controls the expression of both metal- and antibiotic-resistance
systems [89]. Indeed, increased dietary Cu and Zn dosages used to promote swine de-
velopment have been demonstrated to select for Cu or Zn resistance and to co-select for
antibiotic resistance in certain groups of swine gut bacteria containing harmful strains [90].

The previously mentioned new antibiotics in Section 3.6 showed no emerging resis-
tance against their antibacterial activity, which makes them more adventitious than other
existing antibiotics in different clinical settings. However, the aforementioned evidence
regarding nutrigenomic effects on antimicrobial resistance suggests the potential emergence
of resistance one day against these new antibiotics.
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4. Conclusions

It is apparent that significant effort is being dedicated to the development of antibiotic
alternatives to promote better clinical outcomes with a low incidence of resistance. As
we move forward, we must keep resistance mechanisms in mind so that they can be
perpetuated. Nutrigenomic pathways seem to carry a lot of unknowns that may result
in the emergence of antibiotic resistance. The use of metagenomic analyses has greatly
enhanced the understanding of the mechanisms underlying antimicrobial resistance (AMR),
and the advanced technologies have facilitated the implementation of effective measures to
better understand and manage AMR. Antibiotic-resistance genes (ARGs) from heat-treated
bacteria might be transmitted to other bacteria via a variety of horizontal gene transfer
pathways. For the moment, new antibiotics like zoliflodacin, ridinilazole, and eravacycline
seem to overcome the occurrence of resistance, but one-day resistance against those agents
may occur based on obtained nutrigenomic effect evidence.

5. Recommendations

• Antimicrobial stewardship programs are encouraged and should be integrated with
different nutrigenomic approaches in healthcare settings.

• Monitoring and limiting the use of new antibiotic molecules to overcome any potential
incidence of antibiotic resistance.

• Focusing on the nutrient effect on human gut microbiome dysbiosis and its correlation
with antibiotic-resistance incidence.

6. Limitations

• This article did not cover the possible chances of integrating nutrigenomic approaches
with clinical practice.

• There is no available data on emerging resistance against newly discovered antibiotic
molecules.
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