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Abstract: The epidermal growth factor receptor (EGFR), also known as ErbB1 and HER1, belongs
to the receptor tyrosine kinase family. EGFR serves as the primary driver in non-small-cell lung
cancer (NSCLC) and is a promising therapeutic target for NSCLC. In this study, we synthesized a
novel chemical library based on a benzofuran–indole hybrid scaffold and identified 8aa as a potent
and selective EGFR inhibitor. Interestingly, 8aa not only showed selective anticancer effects against
NSCLC cell lines, PC9, and A549, but it also showed significant inhibitory effects against the double
mutant L858R/T790M EGFR, which frequently occurs in NSCLC. In addition, in PC9 and A549 cells,
8aa potently blocked the EGFR signaling pathway, cell viability, and cell migration. These findings
suggest that 8aa, a benzofuran–indole hybrid derivative, is a novel EGFR inhibitor that may be a
potential candidate for the treatment of NSCLC patients with EGFR mutations.

Keywords: benzofuran; indole; hybrid structure; NSCLC; EGFR

1. Introduction

The identification of new chemical entities with pharmacologically modulating proper-
ties is important in the early stages of drug discovery processes. Accordingly, the generation
of new drug-like chemical scaffolds and their derivatives for biological screening is highly
desired. Against this backdrop, we were able to find several chemical motifs (I–VI) with
significant pharmacological functions through the synthesis and biological evaluation of
novel heterocycles (Figure 1) [1–3].

Lung cancer is the most the common cause of cancer-related death worldwide, with a
5-year patient survival rate of less than 15%. Non-small-cell lung cancer (NSCLC), which is
commonly found in lung cancer, accounts for 85% of lung cancer cases [4,5].

The epidermal growth factor receptor (EGFR) belongs to the receptor tyrosine kinase
family, which is highly expressed in NSCLC patients [6]. Given the pivotal role of the EGFR
signaling pathway in regulating tumorigenesis, cell growth, and proliferation in NSCLC, the
EGFR emerges as an attractive therapeutic target [7]. For example, EGFR overexpression
or mutation has been demonstrated in 43–89% of NSCLC patients [8]. In addition, it has
been observed that 25% of NSCLC patients exhibited mutations in the EGFR tyrosine kinase
domain, with 75% of these mutations being associated with overexpression of EGFR [9].
EGFR overexpression or abnormalities trigger sustained signal transduction, promoting cell
survival, proliferation, relapse, tumorigenesis, and metastasis in NSCLC through the MAPK,
PI3K/AKT, and signal transducer and activator of transcription (STAT) factors [10,11]. To
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date, clinically available EGFR inhibitors comprise EGFR tyrosine kinase inhibitors (TKIs)
like erlotinib, gefitinib, afatinib, and osimertinib, and monoclonal antibodies (mAbs) such
as panitumumab and cetuximab [12]. However, despite initial robust responses to first- and
second-generation EGFR-TKIs, a considerable number of NSCLC patients develop acquired
resistance during EGFR-TKI treatment within 9 to 14 months after starting treatment [13].
Therefore, there remains a necessity for the development of novel EGFR inhibitors to address
drug resistance in the treatment of NSCLC.
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Figure 1. Bioactive heterocycles developed in our laboratory.

Erlotinib and gefitinib are two representative EGFR-TKIs with a 4-anilinoquinazoline
skeleton (Figure 2). In 2008, Lüth and Löwe reported the synthesis of quinazoline–indole
hybrids (A) which were found to exhibit EGFR inhibitory activity [14]. In connection with
our continued interest in the design and synthesis of new anticancer agents [15,16], we
hoped to find a new heterocyclic skeleton to replace the quinazoline moiety while retaining
the indole group. Along this line, we wondered whether benzofuran could be used instead
of quinazoline.
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Figure 2. Design for developing new EGFR inhibitors.

Benzofuran has been employed as a key pharmacophore of a number of small molecules
with biological activities, such as anti-inflammatory, antimicrobial, antifungal, antioxidant,
antiviral, and antitumor properties [17]. As an another important privileged structure,
indole constitutes a core skeleton in many bioactive natural products and pharmaceuti-
cals [18]. Although several benzofuran- or indole-based EGFR inhibitors (VII–XI) have
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been discussed in the literature (Figure 3) [19–23], no chemical scaffolds consisting of both
benzofuran and indole have been reported as EGFR inhibitors. Here, we wish to describe
the modular synthesis and biological evaluation of benzofuran–indole hybrids as a new
class of highly promising EGFR inhibitors.
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As part of our general plan to make poly-functionalized benzofurans, a domino
nucleophilic substitution–dehydrative cyclization procedure with 1 was deemed to give
2,3-disubstituted benzofuran 2 (Scheme 1a). To validate our hypothesis, the requisite
starting material 1 (when LG is OH) was envisioned to be easily prepared via a Friedel–
Crafts-type reaction between phenol and arylglyoxal [24]. Inspired by our recent success
in achieving the hexafluoroisopropanol (HFIP)-mediated hydroxyalkylation of indolizine
3 to arylglyoxal to afford 4 (Scheme 1b) [25], we expected that a HFIP-promoted Friedel–
Crafts-type reaction between phenol 5 and arylglyoxal would give rise to 7, which could be
converted to benzofuran 8, having an indole at the C3 position upon exposure to indole
and p-toluenesulfonic acid (PTSA) (Scheme 1c). The biological investigation of benzofuran–
indole hybrid 8 [26] revealed that this class of compounds exhibit anticancer activity against
PC9 and A549 lung cancer cells via the inhibition of phosphorylated EGFR. Here, we wish
to describe our findings along this line.
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2. Results and Discussion
2.1. Design and Synthesis of Benzofuran–Indole Hybrids

When we reacted 5a (2 equiv) with phenylglyoxal (1 equiv) in the presence of HFIP
(0.5 equiv) in toluene at 70 ◦C, the desired product 7a was isolated in 95% yield (Scheme 2).
The subsequent treatment of 7a with indole and PTSA (0.2 equiv) in CHCl3 at 60 ◦C
provided benzofuran possessing an indole at the C3 site in 97% yield.
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Having found the optimal conditions for the synthesis of 7 and 8, we examined the
reaction scope with several phenols, (hetero)arylglyoxals, and indoles (Table 1). In general,
these two-step sequences allowed for a variety of 2-arylbenzofurans 8 bearing an indole at
the C3 site via intermediates of 7 in good to excellent yields. Various functional groups,
such as alkoxy, alkyl, and halogen, were well tolerated under these conditions.

Table 1. Synthesis of 8 a.
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Table 1. Cont.
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reaction scope with several phenols, (hetero)arylglyoxals, and indoles (Table 1). In gen-
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HFIP (0.5 equiv) in toluene (4 mL) was stirred at 70 °C for 36 h. A mixture of 7a (0.08 mmol, 1 
equiv), indole (1.5 equiv), and PTSA (0.2 equiv) in CHCl3 (2 mL) was stirred at 60 °C for 16 h. b Iso-
lated yield (%). 

Having found the optimal conditions for the synthesis of 7 and 8, we examined the 
reaction scope with several phenols, (hetero)arylglyoxals, and indoles (Table 1). In gen-
eral, these two-step sequences allowed for a variety of 2-arylbenzofurans 8 bearing an 
indole at the C3 site via intermediates of 7 in good to excellent yields. Various functional 
groups, such as alkoxy, alkyl, and halogen, were well tolerated under these conditions. 
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An immunoblot analysis of these compounds indicated that 8e significantly inhibited
the phosphorylation of the EGFR (Figure 4). In addition, 8g showed a weak ability to
reduce p-EGFR levels. The cytotoxicity of these benzofuran–indole hybrids 8 against lung
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cancer cell lines was evaluated in PC9 cells (Table 2). Consistent with the immunoblot
analysis results, both 8e and 8g showed potent cytotoxicity in PC9 cells.
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Figure 4. The inhibitory effects of 8a–y on the EGFR in PC9 cells. PC9 cells were pretreated with
10 µM of 8a–y for 6 h, and then the cells were treated with EGF (20 ng/mL) for 30 min. The expression
levels of p-EGFR were observed by immunoblot analysis.

Table 2. Inhibitory effects of 8a–y on cell viability of PC9 cells (mean, n = 4).

Compound IC50 (µM)

8a 7.53
8b 24.67
8c 6.3
8d 13.38
8e 0.56
8f 31.98
8g 0.85
8h 18.59
8i 11.33
8j 6.33
8k 6.76
8l 14.99

8m 10.61
8n 7.38
8o 2.44
8p 4.04
8q 2.24
8r 5.59
8s 4.46
8t 9.58
8u 2.32
8v 2.11
8w 1.58
8x 27.86
8y 1.58

As 8e showed promising anticancer activity, more close analogs (8z–ad) were synthe-
sized for secondary screening. Our immunoblot analysis showed that 8aa reduced p-EGFR
more than 8e, and 8aa inhibited EGFR kinase activity with IC50 values of 0.44 ± 0.02 µM
(Figure 5). The cytotoxic activities of these derivatives against the lung cancer cell lines
(PC9 and A549) indicated that 8aa exhibited the most remarkable cytotoxicity among the
derivatives, with IC50 values of 0.32 ± 0.05 µM and 0.89 ± 0.10 µM, respectively (Table 3).
To identify whether 8aa is a potent EGFR inhibitor, further studies were conducted.
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2.2. Inhibitory Effect of 8aa on EGFR Signaling Pathways in PC9 and A549 Cells 
Previous studies have reported that the upregulation of the EGFR occurs frequently 

in NSCLC, and the EGFR plays an important role in the development and progression of 
NSCLC [27,28]. To investigate the effects of 8aa on multiple EGFR-mediated signaling 
pathways, we performed an immunoblot analysis on the EGF-induced phosphorylation 
of the EGFR, AKT, and ERK1/2 in NSCLC cell lines, namely PC9 and A549 cells. As 
shown in Figure 6, EGF strongly increased the phosphorylation of EGFR, and 8aa signif-
icantly reduced the EGF-induced phosphorylation of the EGFR in a dose-dependent 
manner. In addition, 8aa also reduced the phosphorylation of AKT and ERK1/2, down-
stream signaling pathways of the EGFR. These results indicated that 8aa can effectively 
block the signal transduction pathway through EGFR phosphorylation. 

0.45 6.51



Pharmaceuticals 2024, 17, 231 11 of 27

Table 3. Cont.

Compound Structure
IC50 (µM)

PC9 A549

8ac

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 11 of 29 
 

 

8ab 

MeO O

NH
Br

MeO
OMe

 

0.45 6.51 

8ac 

O
Ph

NH
Br

O

O  

2.42 3.53 

8ad 

O
Ph

NH
I

O

O  

1.65 3.21 

2.2. Inhibitory Effect of 8aa on EGFR Signaling Pathways in PC9 and A549 Cells 
Previous studies have reported that the upregulation of the EGFR occurs frequently 

in NSCLC, and the EGFR plays an important role in the development and progression of 
NSCLC [27,28]. To investigate the effects of 8aa on multiple EGFR-mediated signaling 
pathways, we performed an immunoblot analysis on the EGF-induced phosphorylation 
of the EGFR, AKT, and ERK1/2 in NSCLC cell lines, namely PC9 and A549 cells. As 
shown in Figure 6, EGF strongly increased the phosphorylation of EGFR, and 8aa signif-
icantly reduced the EGF-induced phosphorylation of the EGFR in a dose-dependent 
manner. In addition, 8aa also reduced the phosphorylation of AKT and ERK1/2, down-
stream signaling pathways of the EGFR. These results indicated that 8aa can effectively 
block the signal transduction pathway through EGFR phosphorylation. 

2.42 3.53

8ad

Pharmaceuticals 2024, 17, x FOR PEER REVIEW 11 of 29 
 

 

8ab 

MeO O

NH
Br

MeO
OMe

 

0.45 6.51 

8ac 

O
Ph

NH
Br

O

O  

2.42 3.53 

8ad 

O
Ph

NH
I

O

O  

1.65 3.21 

2.2. Inhibitory Effect of 8aa on EGFR Signaling Pathways in PC9 and A549 Cells 
Previous studies have reported that the upregulation of the EGFR occurs frequently 

in NSCLC, and the EGFR plays an important role in the development and progression of 
NSCLC [27,28]. To investigate the effects of 8aa on multiple EGFR-mediated signaling 
pathways, we performed an immunoblot analysis on the EGF-induced phosphorylation 
of the EGFR, AKT, and ERK1/2 in NSCLC cell lines, namely PC9 and A549 cells. As 
shown in Figure 6, EGF strongly increased the phosphorylation of EGFR, and 8aa signif-
icantly reduced the EGF-induced phosphorylation of the EGFR in a dose-dependent 
manner. In addition, 8aa also reduced the phosphorylation of AKT and ERK1/2, down-
stream signaling pathways of the EGFR. These results indicated that 8aa can effectively 
block the signal transduction pathway through EGFR phosphorylation. 

1.65 3.21

2.2. Inhibitory Effect of 8aa on EGFR Signaling Pathways in PC9 and A549 Cells

Previous studies have reported that the upregulation of the EGFR occurs frequently
in NSCLC, and the EGFR plays an important role in the development and progression
of NSCLC [27,28]. To investigate the effects of 8aa on multiple EGFR-mediated signaling
pathways, we performed an immunoblot analysis on the EGF-induced phosphorylation of
the EGFR, AKT, and ERK1/2 in NSCLC cell lines, namely PC9 and A549 cells. As shown
in Figure 6, EGF strongly increased the phosphorylation of EGFR, and 8aa significantly
reduced the EGF-induced phosphorylation of the EGFR in a dose-dependent manner.
In addition, 8aa also reduced the phosphorylation of AKT and ERK1/2, downstream
signaling pathways of the EGFR. These results indicated that 8aa can effectively block the
signal transduction pathway through EGFR phosphorylation.
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the cells were incubated with EGF (20 ng/mL) for 30 min. The expression levels of p-EGFR, t-EGFR,
p-AKT, t-AKT, p-ERK1/2, and t-ERK1/2 were measured by immunoblotting. (B,D) p-EGFR, p-AKT,
and p-ERK1/2 protein intensities were normalized to t-EGFR, t-AKT, and t-ERK1/2, respectively
(mean ± S.E., n = 3). * p < 0.05; ** p < 0.01.

2.3. Molecular Modeling of 8aa

To elucidate the underlying mechanism driving the preferential binding of 8aa to the
active conformation of EGFR-TKD, molecular docking studies were carried out using the
tyrosine kinase domain of the EGFR (PDB ID: 1M17), which provided the initial erlotinib
conformation [29]. The binding mode of 8aa to the EGFR is depicted in Figure 7, showing
its possible molecular interactions. The methoxy oxygens at the C5 and C6 positions of
8aa form hydrogen bond interactions with the kinase hinge that is an amide backbone
of Met793 (Figure 7). The benzofuran moiety within 8aa, situated at the core, maintains
hydrophobic interactions with Val726 and Leu844. In addition, the phenyl group at the
C1 site of benzofuran 8aa is shown to have a π-π interaction with Phe723. Based on these
results, compound 8aa induced the intended mechanism of action by conserving the overall
interaction with the tyrosine kinase domain of the EGFR.
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complex showed that some residues (yellow stick) were involved in binding with 8aa (cyan—carbon),
including non-bonded interactions (Phe723, Val726, Met677, and Leu844) and red dot hydrogen bonds
(Met793). (B) A super-imposed model of the co-crystal structure (1M17.pdb) of 8aa and erlotinib
(magenta—carbon).

2.4. Effect of 8aa on Cell Viability in PC9, A549, MCF7, HepG2, PC3, HT29, HaCaT, and
HEK293T Cells

To investigate whether 8aa shows selective cytotoxicity on lung cancer cells, we per-
formed cell proliferation assays on PC9 and A549 non-small-cell lung adenocarcinoma,
MCF7 breast adenocarcinoma, HepG2 hepatocellular carcinoma, PC3 prostate adenocarci-
noma, HT29 colorectal adenocarcinoma, HaCaT human skin keratinocyte, and HEK293T
human embryonic kidney cells. As expected, 8aa significantly inhibited cell viability in
both the PC9 and A549 cells with IC50 values of 0.32 ± 0.05 and 0.89 ± 0.10 µM, respec-
tively (Figure 8A,B). Interestingly, 8aa showed weak inhibitory effects on other cancer
cell lines, namely MCF7, HepG2, PC3, and HT29 (Figure 8C–F). In addition, 8aa weakly
reduced cell viability in the non-tumorigenic cell lines, including HaCaT and HEK293T
(Figure 8G,H). These findings indicate that 8aa has the potential to serve as a potent and
selective anticancer agent for NSCLC.
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2.5. 8aa Inhibits Cell Migration in PC9 and A549 Cells

To assess the potential effect of 8aa on NSCLC cell migration, an in vitro wound
healing assay was performed using PC9 and A549 cells. Interestingly, 8aa significantly
inhibited cell migration in both the PC9 and A549 cells in a dose-dependent manner. In the
PC9 cells, treatment with 0.1, 1, and 3 µM of 8aa reduced cell migration by 21.6%, 42.0%,
and 63.7%, respectively. Similarly, in the A549 cells, exposure to 0.1, 1, and 3 µM of 8aa
inhibited cell migration by 19.7%, 33.0%, and 59.6%, respectively (Figure 9).
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were treated with the indicated concentrations of 8aa, and time-lapse images were obtained every 2 h
after wound infliction. (C,D) Representative wound images were taken at 0 h and 30 h following the
administration of 8aa at the indicated concentrations. The scale bars represent 300 µm.

2.6. 8aa Significantly Induces Apoptosis in PC9 and A549 Cells

The pharmacological inhibition of the EGFR signaling pathway causes apoptosis in
various solid tumors [30,31]. To investigate the apoptotic potential of 8aa in PC9 and A549
cells, we evaluated its influence on caspase-3 activity and PARP cleavage, established markers
of apoptotic signaling. Interestingly, caspase-3 activity was significantly increased by 8aa in
the PC9 and A549 cells in a dose-dependent manner, and the increased caspase-3 activity
was completely inhibited by AC-DEVD-CHO, a potent caspase-3 inhibitor (Figure 10A–D).
In addition, the expression levels of cleaved PARP were significantly increased by 8aa in both
the PC9 and A549 cells in a dose-dependent manner (Figure 10E–H). These results reveal that
8aa exhibits potent anticancer effects by inducing apoptosis in NSCLC cells.
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Figure 10. Effects of 8aa on caspase-3 activity and PARP cleavage in PC9 and A549 cells. (A,B) PC9
and A549 cells were treated with 3 µM of 8aa for 24 h and then incubated with 1 µM of caspase-3
substrate (green) and 1 µM of Hoechst 33342 (blue) for 30 min before image acquisition. The scale bars
represent 200 µm. (C,D) The PC9 and A549 cells were treated with 8aa at the indicated concentrations
for 24 h, and then 1 µM of caspase-3 substrate was treated for 30 min. Caspase-3 activity was
inhibited by 20 µM of Ac-DEVD-CHO (mean ± S.D., n = 3). (E,F) The cells were treated with 8aa at
the indicated concentrations for 24 h, and the expression levels of PARP, cleaved-PARP, and β-actin
were measured by immunoblotting. (G,H) Cleaved-PARP protein intensities were normalized to
β-actin (mean ± S.E., n = 3). * p < 0.05; ** p < 0.01; *** p < 0.001.

To further investigate the effect of 8aa on the cell cycles of PC9 and A549 cells, we
carried out cell cycle analysis using propidium (PI) staining. As shown in Figure 11, 8aa
significantly promoted the ratios in the Sub-G1 (apoptotic peak) phase compared to the
control group, but the G2/M phase was not affected by 8aa. In the case of the 8aa treatment
group, the G0/G1 phase reduced from 73.01% to 47.50% and from 81.64% to 64.24% in the
PC9 and A549 cells, respectively. Also, the Sub-G1 phase increased from 8.52% to 35.23%
and from 8.48% to 21.40% in the PC9 and A549 cells, respectively. These results suggest
that 8aa significantly induces apoptosis without exerting an effect on cell cycle arrest.
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2.7. 8aa Potently Inhibits EGFRL858R/T790M in H1975 Cells

Drug resistance in NSCLC patients is predominantly attributed to EGFR mutations,
with the L858R and T790M mutations being the most prevalent EGFR mutations in
NSCLC [32–34], and these mutations are associated with resistance to EGFR-TKIs in
NSCLC [35,36]. To investigate whether 8aa inhibits EGFRL858R/T790M, we performed im-
munoblot analysis on the EGF-induced phosphorylation of EGFRL858R/T790M in H1975 cells
expressing both EGFR mutations L858R and T790M. Notably, 8aa potently inhibited the
EGF-induced phosphorylation of EGFRL858R/T790M compared to erlotinib (Figure 12A,B).
In addition, a structural simulation of the 8aa and EGFRL858R/T790M complex revealed that
8aa can interact with Asp855 of EGFRL858R/T790M. The indole N-H bond seemed to form a
hydrogen bond with the carboxylic acid of Asp855, whereas the same type of hydrogen
bonding interaction was not observed in erlotinib (Figure 12C,D). These results suggest
that 8aa can potently inhibit EGFRL858R/T790M in NSCLC.
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Figure 12. Effect of erlotinib and 8aa on EGFRL858R/T790M. (A) H1975 cells were pretreated with
erlotinib and 8aa at the indicated concentrations for 6 h, and then EGF (20 ng/mL) was treated
for 30 min. (B) p-EGFR (L858R/T790M) band intensities were normalized to β-actin (mean ± S.E.,
n = 3). (C) A structural simulation of the 8aa complex showed that some residues (yellow stick)
were involved in binding with 8aa (purple—carbon) red dot hydrogen bonds (Met793 and Asp855).
(D) A docking model of erlotinib (orange—carbon) established by using the co-crystal structures of
EGFRL858R/T790M (4I22.pdb). * p < 0.05; ** p < 0.01; *** p < 0.001.

3. Experimental Section
3.1. General Methods

Unless specified, all reagents and starting materials were purchased from commercial
sources and used as received without purification. “Concentrated” refers to the removal of
volatile solvents via distillation using a rotary evaporator. “Dried” refers to pouring onto
or passing through anhydrous magnesium sulfate followed by filtration. Flash chromatog-
raphy was performed using silica gel (230–400 mesh) with hexanes, ethyl acetate, and
dichloromethane as the eluents. All reactions were monitored by thin-layer chromatogra-
phy on 0.25 mm silica plates (F-4) visualized with UV light. Melting points were measured
by using a capillary melting point apparatus. 1H and 13C NMR spectra were recorded on a
400 MHz NMR spectrometer and were described as chemical shifts, multiplicity (s, singlet;
d, doublet; t, triplet; q, quartet; m, multiplet), coupling constant in hertz (Hz), and number
of protons. High-Resolution Mass Spectra (HRMS) were measured with an electrospray
ionization (ESI) and Q-TOF mass analyzer.

3.1.1. General Procedure for the Synthesis of 7

A reaction mixture of glyoxal (0.33 mmol, 1 equiv), 5 (2.0 equiv), and HFIP (0.5 equiv)
in toluene (4.0 mL) was stirred at 70 ◦C for 36 h. The reaction mixture was concentrated in
vacuo to give the crude residue, which was purified by silica gel column chromatography
(hexane/ethyl acetate/dichloromethane = 8:1:2) to afford 7.
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2-Hydroxy-2-(2-hydroxy-4-methoxyphenyl)-1-phenylethan-1-one (7a). Ivory solid,
mp: 108.1–108.8 ◦C (81 mg, 95%); 1H NMR (400 MHz, (CD3)2CO) δ 8.04 (d, J = 8.0 Hz, 2H),
7.55 (t, J = 7.6 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 7.05 (d, J = 8.4 Hz, 1H), 6.42 (d, J = 2.4 Hz,
1H), 6.37 (dd, J = 8.4, 2.4 Hz, 1H), 6.32 (s, 1H), 3.68 (s, 3H); 13C NMR (100 MHz, CDCl3)
δ 199.3, 161.0, 155.5, 133.9, 133.5, 129.6, 129.0, 128.6, 117.3, 106.9, 102.6, 71.7, 55.2; HRMS
(ESI-QTOF) m/z [M+H]+ calcd for C15H15O4 259.0965, found 259.0993.

2-Hydroxy-2-(2-hydroxy-4-methoxyphenyl)-1-(3-methoxyphenyl)ethan-1-one (7b). Ivory
solid, mp: 105.9–106.2 ◦C (91 mg, 96%); 1H NMR (400 MHz, (CD3)2CO) δ 7.70–7.55 (m, 2H), 7.34
(t, J = 8.0 Hz, 1H), 7.10 (d, J = 6.8 Hz, 1H), 7.05 (d, J = 8.0 Hz, 1H), 6.44 (s, 1H), 6.38 (d, J = 8.0 Hz,
1H), 6.31 (s, 1H), 3.80 (s, 3H), 3.68 (s, 3H); 13C NMR (100 MHz, (CD3)2CO) δ 199.0, 160.8,
159.7, 155.4, 152.5, 135.7, 129.5, 120.8, 119.4, 118.8, 113.1, 105.5, 101.5, 70.1, 54.8, 54.5; HRMS
(ESI-QTOF) m/z [M+Na]+ calcd for C16H16NaO5 311.0890, found 311.0908.

2-Hydroxy-2-(2-hydroxy-4-methoxyphenyl)-1-(naphthalen-2-yl)ethan-1-one (7c). Ivory solid,
mp: 107.2–107.9 ◦C (65 mg, 64%); 1H NMR (400 MHz, CDCl3) δ 8.53 (s, 1H), 8.00 (d, J = 8.4 Hz,
1H), 7.90 (d, J = 8.0 Hz, 1H), 7.86–7.82 (m, 2H), 7.59 (t, J = 6.8 Hz, 1H), 7.53 (t, J = 7.2 Hz, 1H),
7.02 (d, J = 8.8 Hz, 1H), 6.69 (s, 1H), 6.35 (s, 3H), 4.48 (s, 1H), 3.67 (s, 3H); 13C NMR (100 MHz,
CDCl3) δ 199.2, 161.1, 155.8, 135.9, 132.3, 131.2, 131.0, 129.9, 129.8, 129.0, 128.6, 127.8, 126.9, 124.1,
117.1, 106.9, 102.9, 72.7, 55.3; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C19H16NaO4 331.0941,
found 331.0938.

1-(3-Chlorophenyl)-2-hydroxy-2-(2-hydroxy-4-methoxyphenyl)ethan-1-one (7d). Ivory
solid, mp: 107.4–107.9 ◦C (86 mg, 89%); 1H NMR (400 MHz, (CD3)2CO) δ 8.02 (s, 1H),
7.96 (d, J = 7.2 Hz, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.09 (d, J = 8.4 Hz, 1H),
6.43 (s, 1H), 6.40 (d, J = 8.4 Hz, 1H), 6.28 (s, 1H), 3.69 (s, 3H); 13C NMR (100 MHz, CDCl3)
δ 198.1, 161.2, 155.3, 135.1, 135.0, 133.8, 130.0, 129.8, 128.9, 127.0, 116.6, 107.0, 102.8, 72.1, 55.3;
HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C15H13ClNaO4 315.0395, found 315.0411.

1-(4-Bromophenyl)-2-hydroxy-2-(2-hydroxy-4-methoxyphenyl)ethan-1-one (7e). Ivory
solid, mp: 108.1–108.8 ◦C (72 mg, 65%); 1H NMR (400 MHz, (CD3)2CO) δ 7.95 (d, J = 7.6 Hz,
2H), 7.62 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.4 Hz, 1H), 6.43 (s, 1H), 6.39 (d, J = 7.2 Hz, 1H),
6.26 (s, 1H), 3.68 (s, 3H); 13C NMR (100 MHz, (CD3)2CO) δ 160.9, 155.6, 155.5, 133.8, 131.7,
130.3, 129.6, 127.5, 118.3, 105.6, 101.5, 70.5, 54.5; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for
C15H13BrNaO4 358.9889, found 358.9912.

1-(5-Bromothiophen-2-yl)-2-hydroxy-2-(2-hydroxy-4-methoxyphenyl)ethan-1-one (7f).
Yellow solid, mp: 125.3–125.9 ◦C (92 mg, 81%); 1H NMR (400 MHz, (CD3)2CO) δ 7.76
(d, J = 3.6 Hz, 1H), 7.26–7.17 (m, 2H), 6.47–6.42 (m, 2H), 6.05 (s, 1H), 3.71 (s, 3H); 13C NMR
(100 MHz, (CD3)2CO) δ 191.4, 161.0, 155.6, 142.6, 133.7, 131.8, 129.7, 121.8, 118.5, 105.6, 101.7,
71.3, 54.6; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C13H12BrO4S 342.9634, found 342.9626.

2-Hydroxy-2-(2-hydroxy-4,5-dimethoxyphenyl)-1-phenylethan-1-one (7g). Ivory
solid, mp: 145.9–146.3 ◦C (93 mg, 98%); 1H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 7.6 Hz,
2H), 7.51 (t, J = 7.2 Hz, 1H), 7.37 (t, J = 7.6 Hz, 2H), 6.51 (s, 1H), 6.33 (s, 1H), 6.24 (s, 1H), 3.67
(s, 3H), 3.66 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 199.3, 150.2, 148.4, 143.2, 134.0, 133.4,
128.9, 128.6, 115.5, 111.3, 101.8, 71.5, 56.4, 55.7; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for
C16H17O5 311.0890, found 311.0908.

2-Hydroxy-2-(2-hydroxy-4,5-dimethoxyphenyl)-1-(3-methoxyphenyl)ethan-1-one (7h). Ivory
solid, mp: 162.9–163.2 ◦C (85 mg, 81%); 1H NMR (400 MHz, (CD3)2CO) δ 7.66 (d, J = 6.8 Hz, 1H),
7.62 (s, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.10 (d, J = 6.4 Hz, 1H), 6.73 (s, 1H), 6.51 (s, 1H), 6.32 (s, 1H),
3.81 (s, 3H), 3.70 (s, 3H), 3.64 (s, 3H); 13C NMR (100 MHz, (CD3)2CO) δ 199.1, 159.7, 150.5, 148.6,
143.1, 135.8, 129.5, 120.8, 119.4, 116.8, 113.1, 112.8, 101.0, 70.2, 56.0, 55.0, 54.8; HRMS (ESI-QTOF)
m/z [M+Na]+ calcd for C17H18NaO6 341.0996, found 341.1006.

2-Hydroxy-2-(2-hydroxy-4,5-dimethoxyphenyl)-1-(4-methoxyphenyl)ethan-1-one (7i).
Ivory solid, mp: 109.7–110.0 ◦C (100 mg, 95%); 1H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 8.0 Hz,
2H), 6.86 (d, J = 8.0 Hz, 2H), 6.52 (s, 2H), 6.37 (s, 1H), 6.16 (s, 1H), 4.59 (s, 1H), 3.82 (s, 3H),
3.73 (s, 3H), 3.70 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 197.6, 164.2, 150.2, 148.4, 143.3, 131.4,
126.2, 116.0, 113.9, 111.3, 101.9, 71.2, 56.5, 55.7, 55.5; HRMS (ESI-QTOF) m/z [M+H]+ calcd for
C17H19O6 319.1176, found 319.1253.
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1-(3-Chlorophenyl)-2-hydroxy-2-(2-hydroxy-4,5-dimethoxyphenyl)ethan-1-one (7j).
Ivory solid, mp: 139.6–140.2 ◦C (100 mg, 94%); 1H NMR (400 MHz, (CD3)2CO) δ 8.05 (s, 1H),
7.98 (d, J = 7.6 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.46 (t, J = 7.6 Hz, 1H), 6.76 (s, 1H), 6.49 (s, 1H),
6.29 (s, 1H), 3.68 (s, 3H), 3.64 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 199.3, 161.2, 157.6, 142.1,
141.6, 135.0, 130.5, 129.0, 127.8, 125.7, 109.9, 108.0, 100.6, 74.6, 56.3, 56.2; HRMS (ESI-QTOF)
m/z [M+Na]+ calcd for C16H15ClNaO5 345.0500, found 340.0502.

2-Hydroxy-2-(2-hydroxy-4,6-dimethoxyphenyl)-1-phenylethan-1-one (7k). Ivory
solid, mp: 145.9–146.3 ◦C (58 mg, 62%); 1H NMR (400 MHz, (CD3)2CO) δ 7.91 (d, J = 5.2 Hz,
2H), 7.50 (t, J = 6.8 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 6.25 (s, 1H), 6.04 (d, J = 8.0 Hz, 2H), 3.72
(s, 3H), 3.68 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 200.2, 161.6, 158.3, 156.9, 133.9, 133.5,
128.4, 128.3, 106.1, 94.6, 91.7, 68.7, 55.6, 55.2; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for
C16H16NaO5 311.0890, found 311.0917.

2-(5-(Benzyloxy)-2-hydroxy-4-methoxyphenyl)-2-hydroxy-1-phenylethan-1-one (7l).
Ivory solid, mp: 150.1–150.6 ◦C (72 mg, 60%); 1H NMR (400 MHz, CDCl3) δ 7.86 (d, J = 7.2 Hz,
2H), 7.52 (t, J = 7.2 Hz, 1H), 7.37 (d, J = 7.6 Hz, 2H), 7.34–7.27 (m, 6H), 6.59 (s, 1H), 6.39 (s, 1H),
6.06 (s, 1H), 4.95 (s, 2H), 3.76 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 199.3, 149.5, 148.4, 143.8,
136.5, 134.0, 133.5, 129.0, 128.7, 128.5, 127.9, 127.2, 116.0, 112.3, 103.9, 71.7, 70.7, 56.7; HRMS
(ESI-QTOF) m/z [M+Na]+ calcd for C22H20NaO5 387.1203, found 387.1227.

2-(5-(Benzyloxy)-2-hydroxy-4-methoxyphenyl)-2-hydroxy-1-(4-methoxyphenyl)ethan-
1-one (7m). Ivory solid, mp: 151.2–151.8 ◦C (54 mg, 42%); 1H NMR (400 MHz, CDCl3)
δ 7.97 (d, J = 8.4 Hz, 2H), 7.37–7.28 (m, 5H), 6.85 (d, J = 8.4 Hz, 2H), 6.55 (s, 1H), 6.50 (s, 1H),
6.38 (s, 1H), 6.14 (s, 1H), 4.96 (s, 2H), 4.58 (s, 1H), 3.81 (s, 3H), 3.68 (s, 3H); 13C NMR (100 MHz,
CDCl3) δ 197.6, 164.2, 149.4, 148.4, 143.8, 136.6, 131.5, 128.5, 127.9, 127.2, 126.2, 116.6, 113.9,
112.2, 103.9, 71.2, 70.7, 56.8, 55.5; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C23H22NaO6
417.1309, found 417.1324.

2-Hydroxy-2-(6-hydroxybenzo[d][1,3]dioxol-5-yl)-1-phenylethan-1-one (7n). Ivory solid,
mp: 139.2–139.9 ◦C (72 mg, 80%); 1H NMR (400 MHz, CDCl3) δ 7.97 (d, J = 7.2 Hz, 2H),
7.54 (d, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 2H), 6.48 (s, 1H), 6.44 (s, 1H), 6.31 (s, 1H),
6.21 (d, J = 4.4 Hz, 1H), 5.82 (d, J = 4.0 Hz, 2H), 4.55 (d, J = 4.4 Hz, 1H); 13C NMR (100 MHz,
CDCl3) δ 199.0, 149.3, 148.6, 141.8, 134.1, 133.3, 129.0, 128.7, 116.7, 107.4, 101.3, 99.6, 71.7;
HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C15H12NaO5 295.0577, found 295.0592.

1-(4-Bromophenyl)-2-hydroxy-2-(6-hydroxybenzo[d][1,3]dioxol-5-yl)ethan-1-one (7o).
Ivory solid, mp: 108.1–108.8 ◦C (81 mg, 70%); 1H NMR (400 MHz, (CD3)2SO) δ 9.62 (s, 1H),
7.87 (d, J = 6.8 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H), 6.62 (s, 1H), 6.40 (s, 1H), 6.12 (s, 1H), 5.88 (s, 1H),
5.84 (s, 1H), 5.68 (s, 1H); 13C NMR (100 MHz, (CD3)2SO) δ 198.6, 149.4, 147.7, 140.4, 134.4,
132.1, 130.6, 127.7, 118.0, 107.5, 101.3, 98.1, 69.7; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for
C15H11BrNaO5 372.9682, found 372.9685.

2-Hydroxy-2-(2-hydroxynaphthalen-1-yl)-1-phenylethan-1-one (7p). White solid,
mp: 114.8–115.5 ◦C (84 mg, 92%); 1H NMR (400 MHz, (CD3)2CO) δ 8.04 (d, J = 6.8 Hz,
1H), 7.90–7.75 (m, 4H), 7.47 (t, J = 6.8 Hz, 1H), 7.42–7.29 (m, 4H), 7.21 (d, J = 8.0 Hz, 1H),
6.25 (s, 1H); 13C NMR (100 MHz, (CD3)2CO) δ 155.3, 135.1, 132.5, 131.0, 129.4, 128.6, 128.5,
128.2, 127.6, 126.8, 126.1, 123.0, 122.8, 118.3, 117.7, 108.8; HRMS (ESI-QTOF) m/z [M+Na]+

calcd for C18H14NaO3 301.0835, found 301.0854.
2-Hydroxy-2-(1-hydroxynaphthalen-2-yl)-1-phenylethan-1-one (7q). Ivory solid, mp:

118.8–119.2 ◦C (73 mg, 80%); 1H NMR (400 MHz, (CD3)2CO) δ 8.23 (s, 1H), 8.06 (s, 2H),
7.76 (s, 1H), 7.56–7.51 (m, 1H), 7.49–7.41 (m, 4H), 7.36 (s, 2H), 6.54 (s, 1H); 13C NMR
(100 MHz, CDCl3) δ 198.9, 151.2, 134.4, 134.1, 133.6, 129.0, 128.7, 127.5, 126.9, 125.7, 125.6,
125.5, 121.9, 120.7, 117.0, 74.2; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C18H14NaO3
301.0835, found 301.0855.

3.1.2. General Procedure for the Synthesis of 8

A reaction mixture of 7 (0.08 mmol, 1 equiv), indole (1.5 equiv), and PTSA (0.2 equiv)
in CHCl3 (2.0 mL) was stirred at 60 ◦C for 18 h. The reaction mixture was concentrated in
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vacuo to give the crude residue, which was purified by silica gel column chromatography
(hexane/ethyl acetate/dichloromethane = 30:1:2) to afford 8.

3-(6-Methoxy-2-phenylbenzofuran-3-yl)-1H-indole (8a). Ivory solid, mp: 69.5–70.1 ◦C (26 mg,
97%); 1H NMR (400 MHz, CDCl3) δ 8.36 (s, 1H), 7.72 (d, J = 7.2 Hz, 2H), 7.49 (d, J = 7.6 Hz,
1H), 7.37 (s, 1H), 7.32 (t, J = 8.8 Hz, 2H), 7.25–7.21 (m, 3H), 7.14 (s, 1H), 7.06 (t, J = 6.8 Hz, 1H),
6.86 (d, J = 8.8 Hz, 1H), 3.91 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 158.3, 155.0, 150.0, 136.4, 131.3,
128.3, 127.6, 126.6, 126.2, 124.7, 123.5, 122.5, 120.8, 120.7, 112.0, 111.6, 111.3, 110.2, 107.9, 95.7, 55.8;
HRMS (ESI-QTOF) m/z [M+H]+ calcd for C23H18NO2 340.1332, found 340.1316.

3-(6-Methoxy-2-phenylbenzofuran-3-yl)-4-methyl-1H-indole (8b). Brown solid, mp:
74.8–75.2 ◦C (27 mg, 97%); 1H NMR (400 MHz, CDCl3) δ 8.34 (s, 1H), 7.67 (d, J = 8.0 Hz, 2H),
7.35 (d, J = 8.0 Hz, 1H), 7.25–7.21 (m, 2H), 7.20–7.14 (m, 4H), 7.12 (s, 1H), 6.88–6.81 (m, 2H),
3.90 (s, 3H), 2.18 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 158.3, 154.4, 150.7, 136.6, 131.7,
131.3, 128.4, 127.4, 126.6, 126.3, 125.6, 123.6, 122.6, 121.3, 120.8, 112.0, 111.8, 109.1, 107.6, 95.5,
55.8, 18.8; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C24H20NO2 354.1489, found 354.1472.

5-Chloro-3-(6-methoxy-2-phenylbenzofuran-3-yl)-2-methyl-1H-indole (8c). Yellow solid,
mp: 94.2–94.8 ◦C (30 mg, 96%); 1H NMR (400 MHz, CDCl3) δ 8.13 (s, 1H), 7.64 (d, J = 7.6 Hz, 2H),
7.32–7.27 (m, 3H), 7.25–7.21 (m, 2H), 7.18–7.12 (m, 3H), 6.85 (d, J = 8.4 Hz, 1H), 3.91 (s, 3H), 2.17 (s,
3H); 13C NMR (100 MHz, CDCl3) δ 158.4, 155.0, 150.5, 134.6, 134.1, 131.4, 129.4, 128.4, 127.6, 125.6,
124.3, 121.8, 120.8, 118.9, 111.7, 111.4, 109.2, 107.5, 104.5, 95.8, 55.8, 12.6; HRMS (ESI-QTOF) m/z
[M+H]+ calcd for C24H19ClNO2 388.1099, found 388.1025.

6-Chloro-3-(6-methoxy-2-phenylbenzofuran-3-yl)-1H-indole (8d). Brown solid, mp:
128.5–128.9 ◦C (29 mg, 98%); 1H NMR (400 MHz, CDCl3) δ 8.35 (s, 1H), 7.66 (d, J = 6.8 Hz,
2H), 7.48 (s, 1H), 7.37 (s, 1H), 7.29 (d, J = 8.8 Hz, 2H), 7.25–7.22 (m, 2H), 7.20 (d, J = 8.4 Hz,
1H), 7.13 (s, 1H), 7.01 (d, J = 8.8 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 3.90 (s, 3H); 13C NMR
(100 MHz, CDCl3) δ 158.4, 155.0, 150.2, 136.7, 131.1, 128.4, 128.4, 127.7, 126.2, 125.1, 124.4,
124.1, 121.6, 120.8, 120.5, 111.8, 111.2, 109.5, 108.2, 95.8, 55.8; HRMS (ESI-QTOF) m/z
[M+H]+ calcd for C23H17ClNO2 374.0942, found 374.0922.

5-Bromo-3-(6-methoxy-2-phenylbenzofuran-3-yl)-1H-indole (8e). Brown solid, mp:
183.5–184.6 ◦C (31 mg, 92%); 1H NMR (400 MHz, CDCl3) δ 8.38 (s, 1H), 7.69–7.65 (m, 2H),
7.46 (s, 1H), 7.35 (s, 3H), 7.30–7.27 (m, 3H), 7.25–7.24 (m, 1H), 7.16–7.13 (m, 1H), 6.87 (d,
J = 8.4 Hz, 1H), 3.91 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 158.4, 155.0, 150.4, 135.0, 131.1,
128.5, 128.4, 127.8, 126.2, 125.5, 124.6, 124.4, 123.1, 120.5, 113.4, 112.7, 111.8, 109.3, 107.8, 95.8,
55.8; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C23H17BrNO2 418.0437, found 418.0437.

7-Bromo-3-(6-methoxy-2-phenylbenzofuran-3-yl)-1H-indole (8f). Brown solid, mp:
107.2–107.9 ◦C (23 mg, 69%); 1H NMR (400 MHz, CDCl3) δ 8.55 (s, 1H), 7.68 (d, J = 7.2 Hz,
2H), 7.43–7.39 (m, 2H), 7.32–7.27 (m, 2H), 7.25–7.22 (m, 3H), 7.14 (s, 1H), 6.93 (t, J = 8.0 Hz,
1H), 6.86 (d, J = 8.4 Hz, 1H), 3.90 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 158.4, 155.0, 150.2,
135.1, 131.1, 128.3, 127.7, 126.2, 125.9, 124.8, 124.4, 124.0, 121.2, 120.5, 120.0, 111.8, 109.6,
109.3, 104.8, 95.8, 55.8; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C23H17BrNO2 418.0437,
found 418.0415.

5-Iodo-3-(6-methoxy-2-phenylbenzofuran-3-yl)-1H-indole (8g). Brown solid, mp:
135.1–135.9 ◦C (35 mg, 94%); 1H NMR (400 MHz, CDCl3) δ 8.39 (s, 1H), 7.65 (s, 3H),
7.50 (d, J = 8.4 Hz, 1H), 7.32–7.27 (m, 4H), 7.25–7.23 (m, 2H), 7.13 (s, 1H), 6.87 (d, J = 7.6 Hz,
1H), 3.90 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 158.4, 155.0, 150.4, 135.4, 131.1, 130.9, 129.4,
129.2, 128.3, 127.8, 126.2, 124.4, 124.2, 120.5, 113.2, 111.8, 109.3, 107.4, 95.8, 83.5, 55.8; HRMS
(ESI-QTOF) m/z [M+H]+ calcd for C23H17INO2 466.0298, found 466.0244.

3-(6-Methoxy-2-phenylbenzofuran-3-yl)-1-methyl-1H-indole (8h). Ivory solid, mp:
148.9–149.5 ◦C (15 mg, 54%); 1H NMR (400 MHz, CDCl3) δ 7.72 (d, J = 6.4 Hz, 2H),
7.42 (d, J = 7.6 Hz, 1H), 7.35–7.27 (m, 3H), 7.26–7.21 (m, 4H), 7.12 (s, 1H), 7.04 (t, J = 7.2 Hz,
1H), 6.85 (d, J = 8.4 Hz, 1H), 3.90–3.87 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 158.3, 155.0,
149.8, 137.2, 131.4, 128.2, 128.0, 127.5, 127.0, 126.2, 124.7, 121.9, 120.9, 120.8, 119.5, 111.6,
110.2, 109.4, 106.2, 95.7, 55.8, 33.0; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C24H20NO2
354.1489, found 354.1474.
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3-(6-Methoxy-2-(3-methoxyphenyl)benzofuran-3-yl)-1H-indole (8i). White solid, mp:
136.5–136.9 ◦C (19 mg, 65%); 1H NMR (400 MHz, CDCl3) δ 8.37 (s, 1H), 7.48 (d, J = 7.2 Hz,
1H), 7.40 (s, 1H), 7.32 (d, J = 8.4 Hz, 3H), 7.24 (s, 2H), 7.16 (d, J = 7.6 Hz, 1H), 7.13 (s, 1H),
7.06 (t, J = 7.6 Hz, 1H), 6.86 (d, J = 8.4 Hz, 1H), 6.76 (d, J = 7.6 Hz, 1H), 3.90 (s, 3H), 3.51 (s,
3H); 13C NMR (100 MHz, CDCl3) δ 159.3, 158.4, 154.9, 149.8, 136.3, 132.5, 129.3, 126.4, 124.6,
123.6, 122.5, 120.8, 120.7, 120.0, 118.6, 114.1, 111.7, 111.2, 110.7, 107.9, 106.4, 95.6, 55.8, 54.9;
HRMS (ESI-QTOF) m/z [M+H]+ calcd for C24H20NO3 370.1438, found 370.1427.

3-(6-Methoxy-2-(naphthalen-2-yl)benzofuran-3-yl)-1-methyl-1H-indole (8j). Ivory
solid, mp: 110.5–110.9 ◦C (21 mg, 65%); 1H NMR (400 MHz, CDCl3) δ 8.30 (s, 1H), 7.80–7.70
(m, 3H), 7.61 (d, J = 8.8 Hz, 1H), 7.47–7.42 (m, 3H), 7.36 (t, J = 8.4 Hz, 2H), 7.31–7.27 (m, 2H),
7.17 (s, 1H), 7.02 (t, J = 7.6 Hz, 1H), 6.87 (t, J = 8.4 Hz, 1H), 3.91 (s, 6H); 13C NMR (100 MHz,
CDCl3) δ 158.4, 155.1, 149.7, 137.2, 133.3, 132.6, 128.9, 128.3, 128.2, 127.6, 127.6, 127.1, 126.2,
126.0, 125.0, 124.7, 124.2, 122.0, 121.0, 120.9, 119.6, 111.6, 110.9, 109.4, 106.2, 95.6, 55.8, 33.1;
HRMS (ESI-QTOF) m/z [M+H]+ calcd for C28H22NO2 404.1645, found 404.1626.

3-(2-(3-Chlorophenyl)-6-methoxybenzofuran-3-yl)-1H-indole (8k). Ivory solid, mp:
140.3–140.8 ◦C (26 mg, 87%); 1H NMR (400 MHz, CDCl3) δ 8.38 (s, 1H), 7.78 (s, 1H),
7.49 (d, J = 8.0 Hz, 2H), 7.37 (s, 1H), 7.34–7.28 (m, 2H), 7.26–7.23 (m, 1H), 7.18–7.14 (m, 1H),
7.12–7.05 (m, 3H), 6.85 (d, J = 8.4 Hz, 1H), 3.89 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 158.7,
155.1, 148.3, 136.3, 134.3, 133.0, 129.5, 128.7, 127.4, 126.3, 125.8, 124.3, 124.1, 123.5, 122.6,
121.0, 120.6, 120.1, 111.9, 111.3, 107.5, 95.6, 55.8; HRMS (ESI-QTOF) m/z [M+H]+ calcd for
C23H17ClNO2 374.0942, found 374.0919.

4-Bromo-3-(2-(4-bromophenyl)-6-methoxybenzofuran-3-yl)-1H-indole (8l). Yellow
solid, mp: 207.5–207.9 ◦C (30 mg, 75%); 1H NMR (400 MHz, CDCl3) δ 8.47 (s, 1H), 7.47 (t,
J = 8.4 Hz, 3H), 7.34 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 7.6 Hz, 1H), 7.25–7.23 (m, 1H), 7.16–7.08
(m, 3H), 6.84 (d, J = 8.4 Hz, 1H), 3.89 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 158.4, 154.4,
150.4, 137.2, 131.5, 130.4, 127.2, 126.6, 125.9, 125.2, 124.7, 123.6, 121.4, 121.0, 114.5, 111.9,
110.9, 110.7, 108.0, 95.4, 55.8; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C23H16Br2NO2
495.9542, found 495.9517.

3-(2-(5-Bromothiophen-2-yl)-6-methoxybenzofuran-3-yl)-1H-indole (8m). Brown
solid, mp: 74.8–75.2 ◦C (18 mg, 54%); 1H NMR (400 MHz, CDCl3) δ 8.40 (s, 1H), 7.50 (d,
J = 8.4 Hz, 1H), 7.45 (d, J = 2.0 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.30–7.27 (m, 2H),
7.17 (d, J = 4.4 Hz, 1H), 7.13–7.07 (m, 2H), 6.94 (t, J = 4.8 Hz, 1H), 6.84 (dd, J = 8.4, 1.6 Hz,
1H), 3.89 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 158.4, 154.8, 146.6, 136.3, 133.2, 127.2,
126.6, 125.0, 124.7, 124.4, 124.1, 122.5, 120.6, 120.6, 120.0, 111.7, 111.3, 109.4, 107.0, 95.7, 55.8;
HRMS (ESI-QTOF) m/z [M+H]+ calcd for C21H15BrNO2S 424.0001, found 424.0004.

3-(5,6-Dimethoxy-2-phenylbenzofuran-3-yl)-1H-indole (8n). Brown solid, mp: 183.7–184.2 ◦C
(24 mg, 80%); 1H NMR (400 MHz, CDCl3) δ 8.39 (s, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 8.0 Hz,
1H), 7.38–7.34 (m, 2H), 7.27–7.19 (m, 4H), 7.15 (s, 1H), 7.07 (t, J = 8.0 Hz, 1H), 6.85 (s, 1H), 3.98 (s,
3H), 3.80 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 150.2, 148.7, 148.3, 146.6, 136.4, 131.4, 128.2, 127.4,
126.6, 126.0, 123.4, 123.2, 122.5, 120.7, 120.0, 111.3, 110.4, 108.1, 101.7, 95.1, 56.4; HRMS (ESI-QTOF)
m/z [M+H]+ calcd for C24H20NO3 370.1438, found 370.1428.

3-(5,6-Dimethoxy-2-(3-methoxyphenyl)benzofuran-3-yl)-1H-indole (8o). Brown solid,
mp: 128.9–129.4 ◦C (28 mg, 89%); 1H NMR (400 MHz, CDCl3) δ 8.44 (s, 1H), 7.49 (d, J = 7.2 Hz,
1H), 7.42–7.34 (m, 2H), 7.32–7.27 (m, 1H), 7.22–7.12 (m, 4H), 7.08 (t, J = 7.2 Hz, 1H), 6.86 (s, 1H),
6.76 (d, J = 5.2 Hz, 1H), 3.99 (s, 3H), 3.81 (s, 3H), 3.51 (s, 3H); 13C NMR (100 MHz, CDCl3) δ
159.3, 150.0, 148.6, 148.4, 146.6, 136.3, 132.5, 129.3, 126.6, 123.5, 123.2, 122.5, 120.7, 120.1, 118.4,
113.9, 111.3, 110.7, 110.6, 108.0, 101.7, 95.1, 56.4, 54.9; HRMS (ESI-QTOF) m/z [M+H]+ calcd
for C25H22NO4 400.1543, found 400.1550.

6-Bromo-3-(5,6-dimethoxy-2-(4-methoxyphenyl)benzofuran-3-yl)-1H-indole (8p).
Brown solid, mp: 249.9–250.4 ◦C (31 mg, 81%); 1H NMR (400 MHz, CDCl3) δ 8.43 (s, 1H),
7.64 (s, 1H), 7.56 (d, J = 8.4 Hz, 2H), 7.34 (s, 1H), 7.21–7.13 (m, 3H), 6.79 (s, 2H), 6.77 (s, 1H),
3.97 (s, 3H), 3.81 (s, 3H), 3.78 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.1, 150.5, 148.4,
147.9, 146.5, 137.1, 127.4, 125.5, 124.0, 123.9, 123.4, 123.1, 121.9, 116.1, 114.2, 113.8, 108.5,
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108.0, 101.3, 95.1, 56.4, 55.2; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C25H20BrNNaO4
500.0468, found 500.0473.

3-(2-(3-Chlorophenyl)-5,6-dimethoxybenzofuran-3-yl)-5-iodo-1H-indole (8q). Brown
solid, mp: 230.7–231.0 ◦C (42 mg, 99%); 1H NMR (400 MHz, CDCl3) δ 8.48 (s, 1H), 7.71
(s, 2H), 7.53 (d, J = 8.4 Hz, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.34–7.28 (m, 2H), 7.20–7.12 (m,
3H), 6.79 (s, 1H), 3.99 (s, 3H), 3.83 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 148.8, 148.7, 146.8,
135.4, 134.3, 132.8, 131.1, 129.6, 129.3, 129.0, 127.5, 125.7, 124.2, 123.9, 122.6, 113.4, 110.8,
107.0, 101.5, 95.1, 83.7, 56.4; HRMS (ESI-QTOF) m/z [M+Na]+ calcd for C24H17ClINNaO3
551.9834, found 551.9838.

3-(4,6-Dimethoxy-2-phenylbenzofuran-3-yl)-6-methyl-1H-indole (8r). Brown solid, mp:
154.9–155.5 ◦C (25 mg, 80%); 1H NMR (400 MHz, CDCl3) δ 8.10 (s, 1H), 7.58 (d, J = 8.0 Hz, 2H),
7.24–7.17 (m, 6H), 6.86 (d, J = 8.0 Hz, 1H), 6.76 (s, 1H), 6.30 (s, 1H), 3.89 (s, 3H), 3.58 (s, 3H),
2.47 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.0, 156.0, 155.0, 149.2, 136.4, 131.6, 131.4, 128.1,
127.2, 126.1, 125.3, 123.8, 121.4, 120.6, 114.0, 110.9, 109.5, 108.3, 94.5, 87.9, 55.8, 55.5, 21.8; HRMS
(ESI-QTOF) m/z [M+H]+ calcd for C25H22NO3 384.1594, found 384.1590.

3-(5-(Benzyloxy)-6-methoxy-2-phenylbenzofuran-3-yl)-1H-indole (8s). Brown solid,
mp: 162.7–163.2 ◦C (35 mg, 99%); 1H NMR (400 MHz, CDCl3) δ 8.38 (s, 1H), 7.68 (d, J = 6.8 Hz,
2H), 7.48 (d, J = 8.0 Hz, 1H), 7.43–7.39 (m, 2H), 7.37–7.22 (m, 9H), 7.18 (s, 1H), 7.05 (t, J = 7.2 Hz,
1H), 6.95 (s, 1H), 5.05 (s, 2H), 3.98 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 150.1, 149.2, 149.2,
145.6, 137.2, 136.3, 131.4, 128.4, 128.2, 127.8, 127.6, 127.4, 126.5, 126.1, 123.4, 123.2, 122.4, 120.7,
120.1, 111.2, 110.4, 108.0, 105.4, 95.6, 71.9, 56.5; HRMS (ESI-QTOF) m/z [M+H]+ calcd for
C30H24NO3 446.1751, found 446.1755.

2-(6-(Benzyloxy)-5-methoxy-2-(4-methoxyphenyl)benzofuran-3-yl)-3-methyl-1H-indole
(8t). Brown solid, mp: 194.8–195.2 ◦C (25 mg, 65%); 1H NMR (400 MHz, CDCl3) δ 7.98 (s, 1H),
7.67 (d, J = 7.6 Hz, 1H), 7.53 (d, J = 8.8 Hz, 2H), 7.49 (d, J = 7.6 Hz, 2H), 7.43–7.37 (m, 3H),
7.36–7.31 (m, 1H), 7.25–7.18 (m, 2H), 7.12 (s, 1H), 6.83 (d, J = 8.8 Hz, 2H), 6.80 (s, 1H), 5.24
(s, 2H), 3.85 (s, 3H), 3.79 (s, 3H), 2.20 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 159.5, 151.7,
148.1, 147.5, 147.0, 136.9, 136.3, 129.4, 128.6, 127.9, 127.3, 126.0, 123.3, 122.9, 122.1, 119.3, 118.9,
114.1, 110.9, 107.0, 101.7, 97.9, 71.5, 56.6, 55.2, 9.5; HRMS (ESI-QTOF) m/z [M+H]+ calcd for
C32H28NO4 490.2013, found 490.2007.

3-(6-Phenyl-[1,3]dioxolo[4,5-f ]benzofuran-7-yl)-1H-indole (8u). Brown solid, mp:
193.9–194.4 ◦C (19 mg, 68%); 1H NMR (400 MHz, CDCl3) δ 8.33 (s, 1H), 7.66 (d, J = 8.0 Hz,
2H), 7.47 (d, J = 8.0 Hz, 1H), 7.34–7.30 (m, 2H), 7.25–7.18 (m, 4H), 7.08–7.03 (m, 2H),
6.79 (s, 1H), 5.97 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 150.6, 149.2, 146.4, 144.5, 136.3,
131.3, 128.3, 127.5, 126.5, 126.0, 124.7, 123.4, 122.5, 120.6, 120.0, 111.3, 110.7, 107.9, 101.3, 99.1,
93.3; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C23H16NO3 354.1125, found 354.1118.

7-Methyl-3-(6-phenyl-[1,3]dioxolo[4,5-f ]benzofuran-7-yl)-1H-indole (8v). Brown
solid, mp: 185.8–186.4 ◦C (27 mg, 92%); 1H NMR (400 MHz, CDCl3) δ 8.27 (s, 1H),
7.69 (d, J = 7.6 Hz, 2H), 7.31 (s, 1H), 7.25–7.20 (m, 4H), 7.11–7.05 (m, 2H), 7.00 (t, J = 6.4 Hz,
1H), 6.82–6.80 (m, 1H), 5.99 (s, 2H), 2.58 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 150.5, 149.2,
146.3, 144.5, 136.0, 131.3, 128.3, 127.5, 126.1, 126.0, 124.7, 123.2, 123.0, 120.5, 120.2, 118.4,
110.9, 108.3, 101.3, 99.1, 93.3, 16.7; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C24H18NO3
368.1281, found 368.1259.

3-(6-(4-Bromophenyl)-[1,3]dioxolo[4,5-f ]benzofuran-7-yl)-5-methyl-1H-indole (8w).
Brown solid, mp: 205.4–206.0 ◦C (32 mg, 89%); 1H NMR (400 MHz, CDCl3) δ 8.28 (s, 1H),
7.53 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.8 Hz, 1H), 7.35 (d, J = 8.8 Hz, 2H), 7.13–7.09 (m, 2H),
7.06 (s, 1H), 6.78 (s, 1H), 5.99 (s, 2H), 2.36 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 149.5, 149.2,
146.6, 144.6, 134.6, 131.4, 130.2, 129.6, 127.3, 126.7, 124.7, 124.3, 123.5, 121.3, 119.9, 111.5,
111.0, 106.9, 101.3, 99.1, 93.3, 21.5; HRMS (ESI-QTOF) m/z [M+H]+ calcd for C24H16BrNO3
445.0314, found 445.0315.

3-(2-Phenylnaphtho[2,1-b]furan-1-yl)-1H-indole (8x). Brown solid, mp: 148.2–148.9 ◦C
(25 mg, 88%); 1H NMR (400 MHz, CDCl3) δ 8.41 (s, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.79 (s,
2H), 7.67–7.61 (m, 3H), 7.57 (d, J = 8.4 Hz, 1H), 7.43 (d, J = 7.6 Hz, 1H), 7.39–7.32 (m, 2H),
7.31–7.29 (m, 1H), 7.25–7.19 (m, 3H), 7.15 (t, J = 7.6 Hz, 1H), 7.09 (t, J = 7.2 Hz, 1H); 13C
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NMR (100 MHz, CDCl3) δ 151.69, 151.66, 136.5, 131.1, 130.8, 128.7, 128.6, 128.3, 127.8, 127.7,
126.1, 125.9, 125.7, 124.6, 124.2, 123.6, 123.2, 122.7, 120.5, 120.4, 112.3, 111.3, 111.2, 109.2;
HRMS (ESI-QTOF) m/z [M+H]+ calcd for C26H18NO 360.1383, found 360.1370.

2-Methyl-3-(2-phenylnaphtho[1,2-b]furan-3-yl)-1H-indole (8y). Brown solid, mp:
95.3–95.9 ◦C (19 mg, 62%); 1H NMR (400 MHz, CDCl3) δ 8.51 (d, J = 8.4 Hz, 1H), 8.13 (s, 1H),
7.96 (d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 2H), 7.69–7.61 (m, 2H), 7.53 (t, J = 7.6 Hz, 1H),
7.43 (d, J = 7.6 Hz, 2H), 7.37 (d, J = 8.0 Hz, 1H), 7.32 (t, J = 7.2 Hz, 2H), 7.28–7.27 (m, 1H),
7.25–7.21 (m, 1H), 7.09 (t, J = 8.0 Hz, 1H), 2.23 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 150.6,
149.5, 135.8, 133.1, 131.7, 131.6, 130.1, 129.2, 128.5, 128.3, 127.6, 126.7, 126.5, 126.3, 125.8,
125.1, 123.2, 121.6, 121.4, 120.2, 119.9, 119.7, 119.6, 110.4, 12.7; HRMS (ESI-QTOF) m/z
[M+H]+ calcd for C27H20NO 374.1539, found 374.1544.

5-Chloro-3-(6-methoxy-2-phenylbenzofuran-3-yl)-1H-indole (8z). Ivory solid, mp:
88.2–88.9 ◦C (28 mg, 92%); 1H NMR (400 MHz, CDCl3) δ 8.40 (s, 1H), 7.67 (d, J = 8.0 Hz,
2H), 7.42–7.36 (m, 2H), 7.31–7.27 (m, 3H), 7.25–7.19 (m, 3H), 7.14 (s, 1H), 6.87 (d, J = 8.4 Hz,
1H), 3.91 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 158.4, 155.0, 150.3, 134.7, 131.1, 128.4, 127.8,
126.1, 125.8, 124.8, 124.4, 122.9, 120.5, 120.0, 112.3, 111.8, 109.4, 107.8, 95.7, 55.8; HRMS
(ESI-QTOF) m/z [M+H]+ calcd for C23H17ClNO2 374.0942, found 374.0951.

5-Bromo-3-(5,6-dimethoxy-2-phenylbenzofuran-3-yl)-1H-indole (8aa). White solid, mp:
100.2–100.5 ◦C (29 mg, 81%); 1H NMR (400 MHz, CDCl3) δ 8.46 (s, 1H), 7.63 (d, J = 7.6 Hz,
2H), 7.49 (s, 1H), 7.37–7.31 (m, 3H), 7.25–7.21 (m, 3H), 7.15 (s, 1H), 6.79 (s, 1H), 3.97 (s, 3H),
3.81 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 150.4, 148.6, 148.3, 146.6, 134.9, 131.1, 128.5, 128.3,
127.6, 125.9, 125.5, 124.6, 123.0, 122.9, 113.4, 112.8, 109.5, 107.8, 101.4, 95.1, 56.4, 56.3; HRMS
(ESI-QTOF) m/z [M+Na]+ calcd for C24H18BrNNaO3 470.0362, found 470.0356.

5-Bromo-3-(5,6-dimethoxy-2-(4-methoxyphenyl)benzofuran-3-yl)-1H-indole (8ab).
Ivory solid, mp: 92.2–92.9 ◦C (34 mg, 89%); 1H NMR (400 MHz, (CD3)2CO) δ 7.67 (s, 1H),
7.59–7.55 (m, 2H), 7.52 (d, J = 8.4 Hz, 1H), 7.30–7.28 (m, 1H), 7.26–7.24 (m, 1H), 6.88 (s, 1H),
6.84 (d, J = 8.8 Hz, 3H), 3.90 (s, 3H), 3.77 (s, 3H), 3.73 (s, 3H); 13C NMR (100 MHz, (CD3)2CO)
δ 159.4, 150.0, 148.8, 148.5, 147.2, 135.6, 128.3, 127.2, 126.2, 126.0, 124.4, 124.0, 122.9, 122.2,
113.8, 112.1, 108.5, 106.5, 102.0, 95.5, 55.68, 55.65, 54.7; HRMS (ESI-QTOF) m/z [M+Na]+

calcd for C25H20BrNNaO4 500.0468, found 500.0454.
5-Bromo-3-(6-phenyl-[1,3]dioxolo[4,5-f ]benzofuran-7-yl)-1H-indole (8ac). Ivory solid,

mp: 110.2–110.9 ◦C (33 mg, 96%); 1H NMR (400 MHz, CDCl3) δ 8.38 (s, 1H), 7.63–7.59 (m, 2H),
7.44 (s, 1H), 7.34 (s, 2H), 7.31–7.29 (m, 1H), 7.25–7.21 (m, 3H), 7.07 (s, 1H), 6.73 (s, 1H), 5.98 (s,
2H); 13C NMR (100 MHz, CDCl3) δ 150.9, 149.2, 146.5, 144.6, 134.9, 131.0, 128.4, 128.3, 127.7,
125.9, 125.5, 124.6, 124.5, 122.9, 113.4, 112.8, 109.9, 107.6, 101.3, 98.8, 93.4; HRMS (ESI-QTOF)
m/z [M+H]+ calcd for C23H15BrNO3 432.0230, found 423.0211.

5-Iodo-3-(6-phenyl-[1,3]dioxolo[4,5-f ]benzofuran-7-yl)-1H-indole (8ad). Ivory solid,
mp: 113.9–114.2 ◦C (36 mg, 94%); 1H NMR (400 MHz, CDCl3) δ 8.38 (s, 1H), 7.63 (s, 1H),
7.60 (d, J = 8.0 Hz, 2H), 7.49 (d, J = 8.8 Hz, 1H), 7.28–7.21 (m, 5H), 7.07 (s, 1H), 6.72 (s, 1H),
5.98 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 151.0, 149.2, 146.5, 144.6, 135.4, 131.0, 130.9,
129.2, 129.1, 128.3, 127.7, 125.9, 124.5, 124.2, 113.3, 109.8, 107.3, 101.3, 98.7, 93.4, 83.6; HRMS
(ESI-QTOF) m/z [M+H]+ calcd for C23H15INO3 480.0091, found 480.0061.

3.2. Bioassay
3.2.1. Cell Culture

A549, HT29, MCF7, HepG2, PC3, and HEK293T cells were purchased from the Korean
Cell Line Bank (Seoul, Republic of Korea). HaCaT, H1975, and PC9 cells were obtained
from Prof. Sohee Kwon (Yonsei University, Incheon, Republic of Korea), Prof. Dosik Min,
and Daegu Gyeongbuk Medical Innovation Foundation, respectively. The hepatocellular
carcinoma cells (HepG2), breast adenocarcinoma cells (MCF-7), human keratinocyte cells
(HaCaT), and human embryonic kidney cells (HEK293T) were cultured in high-glucose
DMEM (Welgene Inc., Gyeongsan, Republic of Korea), and the non-small-cell lung car-
cinoma cells (PC9, A549, H1975), colorectal adenocarcinoma cells (HT29), and prostate
adenocarcinoma cells (PC3) were grown in RPMI 1640 medium (Welgene Inc., Gyeongsan,
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Republic of Korea). In addition, 10% fetal bovine serum (FBS), 100 µg/mL streptomycin,
and 100 Units/mL penicillin were supplemented in all media. All cells were grown at 5%
CO2, 37 ◦C, and 95% humidity.

3.2.2. Cell Proliferation Assay

Our cell proliferation assay was performed using the Cell Titer 96® AQueous One
Solution Cell proliferation Assay kit (Promega, Madison, WI, USA). All cells were grown
in 96-well microplates in RPMI1640 medium containing 10% fetal bovine serum (FBS)
for 24 h. After 24 h incubation, the cells were treated with DMSO and test compounds.
The medium and test compounds were changed every 24 h. To estimate cell viability, the
cells were incubated with MTS solution for 50 min. The absorbance was quantified by
using an Infinite M200 microplate reader (Tecan, Männedorf, Switzerland) at 490 nm.

3.2.3. In Vitro Wound Healing Assay

The inhibitory effect of 8aa on cell migration was measured through an in vitro wound
healing assay. PC9 and A549 cells were cultured to approximately 100% confluence in a
96-well microplate for 24 h to form a monolayer. After 24 h, wounds were formed through
96-well wound maker (Essen BioScience, Ann Arbor, MI, USA). Then, the growth medium
was washed out three times with phosphate-buffered saline (PBS) and replaced with 200 µL
of DMEM and RPMI 1640 medium containing 8aa or DMSO. Images of the wound area
were acquired by using IncuCyte ZOOM (Essen BioScience, Ann Arbor MI, USA), and
wound closure rate was measured using IncuCyte software (2018A).

3.2.4. Caspase-3 Activity Assay

PC9 and A549 cells were grown in 96-black well plates to approximately 50% conflu-
ence, and then the cells were incubated with 8aa for 24 h. To measure caspase-3 activity,
the growth medium was replaced with 100 µL of PBS containing 1 µM of caspase-3 sub-
strate and NucView 488 and incubated at room temperature for 30 min. Then, the cells
were stained with 1 µM of Hoechst 33342. Caspase-3 activity was completely inhibited
by Ac-DEVD-CHO, a potent caspase-3 inhibitor. The FLUOstar Omega microplate reader
(BMG Labtech, Ortenberg, Germany) was used to measure the fluorescence of Hoechst
33342 and NucView 488, and a Lionheart FX Automated Microscope (BioTek, Winooski,
VT, USA) was used to obtain the fluorescence microscopy images.

3.2.5. Immunoblot Analysis

The preparation of the protein sample was conducted as described previously [5].
The samples were centrifuged at 13,000 RPM for 20 min at 4 ◦C to eliminate cell debris,
and the samples were separated using 4–12% Tris Glycine Precast Gel (KOMA BIOTECH,
Seoul, Republic of Korea) for 60 min at 130 V. After 60 min, the samples were transferred
onto a polyvinylidene Fluoride membrane (PVDF) (Millipore, Billerica, MA, USA) for
90 min at 30 V. Membrane blocking was conducted using Tris-buffered saline with 0.1%
Tween 20 (TBST) containing 5% bovine serum albumin (BSA) at room temperature for
60 min. After membrane blocking, the membranes were incubated overnight at 4 ◦C
with the following primary antibodies: anticleaved PARP (BD Biosciences, Franklin Lakes,
NJ, USA), anti-β-actin (Santa Cruz Biotechnology, Dallas, TX, USA), anti-phospho-EGFR
(Tyr1068) (Cell Signaling, Danvers, MA, USA), anti-EGFR (Santa Cruz Biotechnology,
Dallas, TX, USA), anti-phospho-AKT (Santa Cruz Biotechnology, Dallas, TX, USA), anti-
AKT (Santa Cruz Biotechnology, Dallas, TX, USA), anti-phospho-p42/44 (Cell Signaling,
Danvers, MA, USA), and anti-p42/44 (Cell Signaling, Danvers, MA, USA). Then, the mem-
branes were washed out three times every five minutes with 0.1% TBST and incubated
with horseradish peroxidase (HRP) conjugated secondary IgG antibodies at room temper-
ature for 60 min. After washing three times, the membranes were visualized using the
EzWestLumi Plus (mid-femto-grade ECL) (ATTO, Amherst, NY, USA) immunoblot analysis
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detection system (GE Healthcare, Piscataway, NJ, USA). All experiments were repeated
three times independently.

3.2.6. Cell Cycle Analysis

PC9 and A549 cells were grown to ~60% confluence in a 6-well plate; then, the cells
were treated with 10 µM of 8aa for 24 h. After 24 h, the PC9 and A549 cells were washed
out twice with phosphate-buffered saline (PBS) and trypsinized using 0.5% trypsin-EDTA
before the cells were centrifuged at 1000 RPM for 2 min at room temperature. Finally, the
cells were stained with propidium iodide (PI) for 30 min, and then cell cycle phases were
measured by using FACS (Beckman Coulter, Fullerton, CA, USA).

3.3. Molecular Docking Analysis

Molecular docking was studied using Maestro (Schrödinger Release 2022-1). The X-ray
crystal structures of the EGFR (1M17.pdb) and EGFRL858R/T790M (4I22.pdb) were prepared
by removing all water and hydrogen assignments at pH 7.0 using the Protein Preparation
Wizard module. Compounds were minimized by using the conjugate gradient algorithm
and the OPLS2005 force field with Minimization module in Maestro. The Glide module
was used to generate the receptor grid and carry out ligand docking. The docking model
figures were generated using PyMOL version 1.8.6.1. The amino acid numbers of 1M17.pdb
were corrected based on other published X-ray cocrystal structures (7UKV, 7U99.pdb).

3.4. EGFR Kinase Activity Assay

The inhibitory effect of 8aa on EGFR kinase activity was evaluated using an EGFR
kinase assay kit (BPS Bioscience, San Diego, CA, USA) according to the manufacturer’s in-
structions. Briefly, a mixture of 5X kinase buffer 1, ATP (500 µM), PTK substrate (10 mg/mL),
and water was prepared. Subsequently, 8aa was treated at various concentrations, and the
reaction was initiated by adding the EGFR (1 ng/µL). After a 40-min incubation period at
30 ◦C, each well was treated with Kinase-Glo Max reagent (Promega, Madison, WI, USA)
and incubated for 15 min at room temperature. Luminescence was measured using an
Infinite M200 microplate reader (Tecan, Männedorf, Switzerland).

4. Conclusions

In summary, we established highly efficient modular access to a range of 2-arylbenzofurans
with an indole at the C3 position via the HFIP-catalyzed hydroxyalkylation of phenols with
(hetero) arylglyoxals, followed by PTSA-catalyzed substitution–cyclodehydration with indoles,
enabling the installation of two distinct substituents at the C2 and C3 sites of benzofuran with
the formation of two C-C bonds and one C-O bond. Biological evaluations and structure–
activity relationship (SAR) studies of these products against the EGFR in NSCLC cells led
us to identify 8aa as a novel EGFR inhibitor. Notably, 8aa potently inhibited the EGFR and
EGFR-mediated signaling pathways such as AKT and ERK1/2 in a dose-dependent manner,
and it also showed selective reductions in cell viability against human NSCLC cell lines PC9
and A549. 8aa exhibited limited impact on cell viability in other cancer cell lines, including
MCF7, HepG2, PC3, and HT29 cells, as well as non-tumorigenic cells such as HaCaT and
HEK293T cells. Moreover, 8aa significantly inhibited cell migration and induced apoptosis
via increasing caspase-3 activity and PARP cleavage in PC9 and A549 cells. Of interest, 8aa
exhibited significant efficacy in suppressing the EGFRL858R/T790M resistance mutation, which
frequently occurs in NSCLC. Molecular docking analysis suggests that this results from a
hydrogen bonding interaction between 8aa and Asp855 of EGFRL858R/T790M. Overall, 8aa has
the potential to be developed as a novel EGFR inhibitor to treat NSCLC patients in general, as
well as those with L858R and T790M mutations that are resistant to conventional EGFR-TKIs.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph17020231/s1, Supplementary Materials: NMR spectra (1H and
13C NMR) and HRMS of synthesized compounds and HPLC chromatogram of 8aa.
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