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Abstract: Isocitrate dehydrogenase (IDH) mutant gliomas are a primary malignancy of the central
nervous system (CNS) malignancies, most commonly affecting adults under the age of 55. Stan-
dard of care therapy for IDH-mutant gliomas involves maximal safe resection, radiotherapy, and
chemotherapy. However, despite good initial responses to multimodality treatment, recurrence is
virtually universal. IDH-mutant gliomas represent a life-limiting prognosis. For this reason, there
is a great need for novel treatments that can prolong survival. Uniquely for IDH-mutant gliomas,
the IDH mutation is the direct driver of oncogenesis through its oncometabolite 2-hydroxygluterate.
Inhibition of this mutated IDH with a corresponding reduction in 2-hydroxygluterate offers an attrac-
tive treatment target. Researchers have tested several IDH inhibitors in glioma through preclinical
and early clinical trials. A phase III clinical trial of an IDH1 and IDH2 inhibitor vorasidenib yielded
promising results among patients with low-grade IDH-mutant gliomas who had undergone initial
surgery and no radiation or chemotherapy. However, many questions remain regarding optimal use
of IDH inhibitors in clinical practice. In this review, we discuss the importance of IDH mutations in
oncogenesis of adult-type diffuse gliomas and current evidence supporting the use of IDH inhibitors
as therapeutic agents for glioma treatment. We also examine unresolved questions and propose
potential directions for future research.
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1. Introduction

Gliomas represent the most common primary brain malignancies in adults [1]. As
our understanding of tumor biology improves, the classification of adult-type gliomas has
increasingly included molecular features such as the presence of isocitrate dehydrogenase
(IDH) mutations or the co-occurring presence of whole-arm deletions in chromosome
1p and 19q [2–5]. Accordingly, the World Health Organization Classification of Tumors
of the Central Nervous System (WHO CNS) 2021 separates adult-type diffuse gliomas
into three groups, defined as astrocytoma, IDH-mutant; oligodendroglioma, IDH-mutant
and 1p/19q co-deleted; and glioblastoma, IDH-wildtype [6]. Historically, IDH-mutant
adult-type diffuse gliomas have been characterized by more indolent behavior and a better
response to conventional therapies when compared to IDH-wildtype tumors [7].

Standard of care therapy for IDH-mutant gliomas involves maximal safe resection,
radiotherapy, and chemotherapy, either with temozolomide or a combination of procar-
bazine, lomustine, and vincristine (PCV) [8]. Patients are classically stratified into high-risk
or low-risk categories based on a variety of factors including tumor grade, patient age at
diagnosis, and the extent of resection achieved [9]. Patients with grade 2 IDH-mutant astro-
cytomas or oligodendrogliomas who are younger than 40 and receive a gross total resection
are often managed with expectant surveillance until tumor recurrence [10]. Otherwise,
patients who are older than 40, have had a subtotal resection, or those with higher grade
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tumors are typically managed with irradiation and chemotherapy [9]. Systemic therapy
with either temozolomide or PCV are acceptable [11–13]. However, despite initial good
responses to multimodality treatment, recurrence is universal and IDH-mutant gliomas are
life-limiting malignancies. Additionally, treatment with radiation therapy and conventional
chemotherapy is associated with potentially serious toxicities including cognitive decline,
accelerated atherosclerosis, fatigue, weight loss, liver injury, and myelosuppression. There
is a great need for novel treatments that can prolong survival and mitigate the toxicities
associated with conventional approaches.

In this review, we discuss the role of IDH mutations in the oncogenesis of adult-type
diffuse gliomas and the current evidence supporting the use of IDH inhibitors as therapeutic
agents for glioma treatment. We also discuss unresolved questions and potential directions
for future research.

2. The Biological Effects of IDH Mutations on Gliomagenesis

The IDH enzyme family is made up of three isoforms which play a critical role in
cellular metabolism. IDH1 is located in the cytoplasm and peroxisome, whereas IDH2 and
IDH3 are located in the mitochondria [14]. IDH1 and IDH2 mutations have been recognized
as oncogenic drivers [15]. In the mitochondria, isocitrate molecules undergo catalysis
by nicotinamide adenine dinucleotide phosphate (NADP)-dependent IDH2, producing
NADPH (the reduced form of NADP) and α-ketoglutarate (αKG).

IDH mutations result in a gain of neomorphic function, with the mutated enzyme
demonstrating a decreased affinity for isocitrate and an increased affinity for αKG [16–18].
Consequently, this leads to the production of the oncometabolite D-2-hydroxygluterate
(2HG) from αKG in a NADPH-dependent manner [19]. D-2-hydroxygluterate functions
as an oncometabolite by influencing cellular metabolism, epigenetic modification, redox
regulation, and DNA repair.

Given that αKG serves as the substrate for glycolysis in the Krebs cycle, the on-
cometabolite 2HG subsequently leads to a reduction in glycolysis by depleting αKG. To
compensate, non-Krebs cycle sources of carbohydrates are needed. This compensation is
achieved by glutaminolysis, which is a key mechanism maintaining metabolic balance by
restoring αKG levels [20,21]. The consumption of NADPH by mutated IDH undermines de
novo lipogenesis. Glutamine-driven lipogenesis also fulfills the need for lipid production,
along with exogenous lipid sources [22]. Furthermore, lactate dehydrogenase activity is
suppressed as the promoter region of its gene is silenced in response to 2HG, resulting in
diminished rates of glycolysis [23].

Neomorphic IDH activity results in epigenetic reprogramming through both global
DNA hypermethylation and histone methylation. DNA hypermethylation is driven by
2HG, which blocks the activity of the DNA demethylation enzyme, and a glioma-specific
DNA methylation pattern occurs over time, leading to transcriptional silencing of tumor
suppressor genes [24]. Ten-eleven translocation (TET) 5′ methylcytosine hydroxylase
enzyme activity, which catalyzes a key step in the removal of DNA methylation, is blocked
by 2HG. Thus, IDH mutations manifest a CpG island methylator phenotype (G-CIMP),
leading gene expression programs of IDH-mutant glioma [25]. In addition, IDH mutations
cause hypermethylation of CCCTC binding factor (CTCF) binding sites genome-wide,
leading to reduced CTCF binding [26]. CTCF insulator protein is responsible for the
partition of “contact domains” of the genome, which are discrete structural and regulatory
units. Loss of CTCF at a domain boundary is linked to altered gene insulations, which
contribute to gliomagenesis by activating oncogenes that are normally insulated. In mouse
oligodendrocyte progenitor cells, disruption of CTCF insulator near the platelet-derived
growth factor receptor A (PDGFRA), a prominent glioma oncogene, has been demonstrated
to be related to increased proliferation [27]. Histone lysine demethylases (KDMs) are
also inhibited by 2HG, which compromises cellular differentiation and contributes to
the glioma cells’ regression to a more “primitive” developmental state [28]. Histone
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methylation by KDM inhibiton contributes to oncogenesis in IDH-mutant tumors through
glial transformation in IDH-mutant cells [29,30].

The presence of IDH mutation also leads to the accumulation of reactive oxygen
species (ROS), which are detrimental to DNA, lipids, and proteins. The mutated IDH
depletes cellular NADPH, which impairs important activities that remove ROS, such as
reducing glutathione disulfide [31,32]. Therefore, the accumulation of oxidative stress
is a characteristic feature of cancer biology in IDH mutated tumors [33]. Glioma cells
counterbalance excessive oxidative stress by increased production of manganese superox-
ide dismutase and protein carbonylation, which contributes to oncogenic transformation
through genomic instability, loss of growth control, and invasiveness [34,35].

Overall, IDH mutations are a direct driver of oncogenesis in IDH-mutant glioma
through the oncometabolite 2HG (Figure 1). Such IDH mutations have been demonstrated
in a variety of cancers including glioma, cholangiocarcinoma, acute myeloid leukemia,
and chondrosarcoma [36–41]. Given the central role of IDH mutation in gliomagene-
sis, inhibition of mutated IDH with resultant reduction in 2HG represents an attractive
treatment target.
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3. IDH Inhibitors in Glioma
3.1. Preclinical Evidence and Early Phase Studies

IDH inhibitors have been studied in a variety of human cancers, including glioma [2,4].
In 2013, Rohle et al. reported on the use of AGI-5198, a potent inhibitor of the IDH1 R132
mutated homodimer in an oligodendroglioma cell line [42]. AGI-5198 administration
suppressed tumor cell growth in both low and high dosages (150 mg/kg and 450 mg/kg).
At the higher dosage, 2HG reduction was accompanied by gliogenic differentiation, evi-
denced by increased RNA levels of astrocytic markers such as glial fibrillary acidic protein
(GFAP) and aquaporin 4, along with decreased RNA levels of nestin, a marker for undif-
ferentiated neuroprogenitor cells [42]. Importantly, these RNA expression changes did
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not correlate with DNA methylation changes. Therefore, the authors concluded that in-
hibiting mutated IDH would lead to impaired glioma growth even in the absence of DNA
methylation. This suggested that mutated IDH promotes glioma growth through epigentic-
independent mechanisms. Similar results were obtained with AGI-6780, an IDH2 inhibitor,
which induced cellular differentiation in human leukemia cells, and an IDH1 inhibitor,
which restored cellular differentiation of IDH1-mutant mouse hepatoblasts [43,44]. Clinical
studies evaluating enasidenib, an IDH2 inhibitor, and ivosidenib, an IDH1 inhibitor, in
IDH-mutant acute myeloid leukemia (AML) patients with recurrent or refractory disease
showed durable remission, with some patients achieving full remission [45,46]. Similarly,
ivosidenib was demonstrated to be related to improved progression-free survival (PFS)
and overall survival (OS) in cholangiocarcinoma patients with the IDH1 mutation [38,47].
The FDA approved enasidenib and ivosidenib for IDH-mutant AML in 2017 and 2018,
respectively, and ivosidenib for IDH-mutant cholangiocarcinoma in 2021 [48–50]. Signifi-
cant progress has been made in implementing IDH inhibitors for the treatment of glioma
as well.

Ivosidenib (AG-120), an IDH1 inhibitor, was tested in IDH1-mutant (mIDH1) solid
tumors including glioma in a multicenter, open-label, phase I clinical study [51]. Among the
168 patients with solid tumors enrolled in the study, 66 had progressive glioma that recurred
or did not respond to standard of care surgery, radiation therapy, or chemotherapy. Patients
were classified according to the WHO 2007 classification and IDH1 mutation status [52].
Glioma patients were separated into two cohorts based on whether the tumor demonstrated
contrast enhancement on MRI imaging. The non-enhancing glioma cohort was comprised
of patients who experienced tumor progression evidenced by progressive increase in tumor
size on at least 3 sets of pre-treatment MRIs completed at least 2 months apart. Of the
66 participants with glioma, 20 were treated in the dose-escalation phase of the trial. No
dose-limiting toxicities (DLTs) were observed. Ivosidenib 500 mg once daily (QD) was
selected for expansion based on the data from all solid tumors [53]. Treatment-related
adverse events (AEs) occurred in 59.1% (39/66) of patients, mostly grade 1/2 fatigue,
neutropenia, or diarrhea. Two patients had grade ≥ 3 treatment-related AEs (neutropenia,
weight loss, arthralgia, hyponatremia). In the glioma cohort, 35 patients had non-enhancing
glioma and 31 patients had enhancing glioma. Median PFS was 13.6 months (95% CI, 9.2
to 33.2 months) for patients with non-enhancing tumors and 1.4 months (95% CI, 1.0 to
1.9 months) for patients with enhancing tumors. Patients with non-enhancing tumors had
a median treatment duration of 18.4 months (range, 1.4–47.2 months) compared with a
treatment duration of 1.9 months (range, 0.4–39.9 months) for patients with enhancing
tumors. Best response of stable disease was observed in 30 of 35 patients with non-
enhancing tumors (85.7%) and 14 of 31 patients with enhancing tumors (45.2%) according
to the Response Assessment in Neuro-Oncology (RANO) criteria [54,55]. The estimated
tumor growth rate per 6 months for the non-enhancing cohort was 26% (95% CI, 9% to 46%)
during the pretreatment period, compared to 9% (95% CI, 1% to 20%) during ivosidenib
treatment. This study demonstrated ivosidenib was well-tolerated among patients with
IDH-mutant glioma and had potentially greater activity against non-enhancing gliomas
compared to enhancing gliomas. A potential explanation for this observation is that
non-enhancing gliomas generally represent an earlier disease stage with fewer genetic
alterations and less chromosomal complexity [56].

Vorasidenib (AG-881), a dual inhibitor of mIDH1/2, was tested in mIDH1/2 solid
tumors including glioma in a multicenter, open-label, phase I clinical study [57]. Among
93 mIDH1/2 solid tumors, 52 were gliomas (22 non-enhancing and 30 enhancing tu-
mors). DLT in the form of transaminitis was observed at doses ≥100 mg. A total of
50 mg daily was ultimately determined as the maximum tolerated dose. Treatment-related
AEs were reported in 73.1% (38/93) of patients with glioma. The most common grade
>3 AE were seizures [4 (7.7%)], elevated alanine aminotransferase (ALT) [3 (5.8%)], and
aspartate aminotransferase (AST) levels [2 (3.8%)]. In patients with non-enhancing glioma,
the median PFS was 36.8 months (95% CI, 11.2–40.8), compared to 3.6 months (95% CI,
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1.8–6.5) among patients with enhancing glioma. The median treatment duration was 26.8
(1.0–50.9) months for patients with non-enhancing glioma and 3.3 (0.2–53.6) months for
patients with enhancing glioma. Sixteen (72.7%) patients with non-enhancing glioma had
stable disease as their best response. No patients with enhancing glioma had a confirmed ra-
diographic response and 17 of 30 (56.7%) had stable disease as their best response. Overall,
vorasidenib was well-tolerated among patients with IDH-mutant glioma with potentially
greater disease activity for patients with non-enhancing tumors compared to patients with
enhancing tumors. [58]. Inefficacy of vorasidenib in treatment of enhancing glioma was
hypothesized to be related to the presence of additional genetic alterations in those tumors
with pathways other than gliomagenesis related to the IDH mutation supporting tumor
maintenance and growth.

With both ivosidenib and vorasidenib demonstrating evidence of activity in progres-
sive non-enhancing glioma, a randomized phase I perioperative comparative study was
subsequently conducted to determine which of the two agents should proceed to phase
IIItesting in mIDH glioma. Here, patients with recurrent mIDH glioma were randomized
in a 2:2:1 fashion to either the vorasidenib or ivosidenib arm or the untreated arm before
surgery [59]. Following the surgery, patients in the untreated arm were re-randomized
1:1 to either vorasidenib or ivosidenib. Tumor 2HG and drug concentrations as well as
IDH-pathway related molecular and cellular changes were compared between on-treatment
tissue samples and previous surgery tissue samples whenever possible. A total of 24 pa-
tients received at least one dose of vorasidenib and 25 patients received at least one dose
of ivosidenib. Reduction in mean tumor 2HG levels was greatest with vorasidenib 50 mg
daily, compared to low-dose vorasidenib and either dose level of ivosidenib included in the
clinical trial. The objective response rate (ORR) was 42.9% (95% CI, 17.7−71.1) for vorasi-
denib 50 mg daily and 35.7% (95% CI, 12.8−64.9) for ivosidenib 500 mg daily. The median
postoperative treatment durations were similar between drugs. Due to superior reduction
in tumor 2HG levels with vorasidenib, this mIDH1/2 was selected for a phase III clinical
trial. Importantly, evaluation of IDH-pathway related molecular and cellular changes
demonstrated that 2HG reduction was associated with reduced tumor cell proliferation,
increased DNA 5-hydroxy-methylcitosine content (mediated by TET 5-methylcitosine hy-
droxylase activity), reversal of gene expression programs of IDH-mutant glioma, induction
of genes associated with antitumor immunity, and increase in tumor infiltration with CD8+
T cells. These changes might imply future potential combinatorial targets.

Other IDH inhibitors have also been under investigation for treatment of IDH-mutant
glioma. In preclinical studies, the IDH1 inhibitor BAY 1436032 reduced 2HG levels ef-
fectively and was linked to reduced cell proliferation and induced glial differentiation,
consequently resulting in survival benefit in animal models [60,61]. Accordingly, BAY
1436032 was tested in IDH1-mutant solid tumors including glioma with a multicenter,
open-label, phase I clinical study [62]. Among 81 patients, 55 had progressive glioma,
with at least one measurable target lesion for the expansion cohort. While near complete
(98%) target inhibition was achieved with BAY 1436032 at dosages > 1200 mg, both the
1200 and 1500 mg twice daily doses of the compound were safe and tolerable. Due to
the dose-dependent nature of serum 2HG suppression, a dosage of BAY 1436032 1500 mg
twice a day was selected for the dose expansion phase. No DLTs were observed during
dose escalation phase and a grade 3 maculopapular rash was observed as a DLT during
dose expansion phase. Treatment-related adverse events (TRAEs) were reported in 33%
of patients, with only one patient experiencing a grade 4 TRAE of elevated lipases. Of
55 patients, 39 had lower grade gliomas, and 16 had secondary glioblastomas, according to
the WHO 2016 classification [63]. A total of 35 of 39 patients with IDH-mutant astrocytoma
or oligodendroglioma were evaluable via RANO criteria. A best response of stable disease
was achieved by 15/35 (43%), and ORR was 4/35 (11%). Five patients achieved a treatment
duration longer than 6 months. A total of 14 of 16 patients with IDH-mutant glioblastoma
were evaluable via RANO. There were no objective responses, and the best response of
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stable disease was achieved by 29% (4/14). The efficacy of BAY1436032 among patients
with non-enhancing glioma has not been well studied.

Another IDH1 inhibitor studied for treatment of IDH-mutant glioma is olitasidenib. In
a multicenter, open-label, nonrandomized phase Ib/II clinical trial, 26 patients with glioma
that had relapsed or that was refractory to standard therapy were treated [64]. Twenty-
three patients (88%) who participated in the study had enhancing glioma. Fifteen patients
(58%) had grade 3 tumors, whereas 7 (27%) had grade 4 tumors according to the WHO
2016 classification [63]. The median duration of olutasidenib treatment was 4.2 months
(1.5–15.2). Twenty-three patients (88%) reported TRAEs. One patient had treatment-
related acute hepatitis, and three patients had grade 3 treatment-related transaminitis.
The median PFS was 1.9 months (95% CI 1.8–4.6) for the whole study group, whereas the
median PFS was 16.9 (95% CI −0.9 to 27.1) months for patients with low-grade gliomas
(n = 4). Only 2 of 25 response-evaluable patients (8%) (95% CI 1.0–26.0%) demonstrated an
objective response. The disease control rate (objective response plus stable disease) was 48%
(12/25 patients). A best response of stable disease was observed in 10/25 (40%). A phase
IItrial of olutasidenib for patients with IDH1-mutant pediatric-type high-grade glioma is
ongoing (NCT06161974) [65].

An IDH1 inhibitor, DS-1001, has been linked to compromised tumor growth, reduced
levels of 2HG, and enhanced expression of GFAP in an orthotopic IDH-mutant glial tumor
model [66]. In a multicenter, phase I, open-label clinical trial, DS-1001 was studied in the
setting of recurrent or progressive grade 2–4 IDH-mutant glioma [67]. Among 47 patients
with glioma, 35 had enhancing, whereas 12 had non-enhancing tumors. One DLT was
observed (grade 3 leukopenia). Forty-three percent of patients had at least one grade
3 TRAE with transaminitis and neutropenia being the most common. The ORR was
17.1% for patients with enhancing tumors and 33.3% for patients with non-enhancing
tumors. The median treatment duration was 1.7 months for patients with enhancing
tumors and 21.3 months for patients with non-enhancing tumors. PFS was 2.4 months
for patients with enhancing tumors and not reached for patients with non-enhancing
gliomas. Among patients with measurable disease at baseline, 15/35 with enhancing
tumors and 11/12 with non-enhancing tumors experienced a decrease in tumor volume.
Two patients with enhancing tumors experienced a complete response, whereas three
patients with enhancing tumors experienced a partial response. Seven patients were given
DS-1001 in an exploratory arm before salvage surgery. Tissue drug concentrations were
high and 2HG levels were notably lower than those in archived tissue samples from their
previous operations, suggesting mechanisms other than 2HG-mediated gliomagenesis
contributed to disease progression in those patients. An open-label, randomized, phase II
clinical trial evaluating DS-1001 for IDH-mutant grade 2 and grade 3 progressive gliomas
is ongoing (NCT05303519) [68]. In a separate study, DS-1001 is being studied for patients
with treatment-naive grade 2 IDH1-mutant glioma (NCT04458272) [69].

Phase I clinical trials of IDH1 inhibitor LY3410738 and an IDH1/2 inhibitor HMPL-306
are ongoing (NCT04521686, NCT04762602) [70,71]. Table 1 summarizes results of early
phase glioma studies with IDH inhibitors.

3.2. Phase 3 Clinical Study of Vorasidenib in Glioma (The INDIGO Trial)

The efficacy of vorasidenib in residual or recurrent IDH-mutant grade 2 oligoden-
droglioma or astrocytoma patients was evaluated in a subsequent double-blind, random-
ized, placebo-controlled phase III clinical trial [72]. Patients were randomly assigned in
1:1 to either vorasidenib 40 mg/day or a placebo. To be eligible, patients had to be within
1 to 5 years of previous surgery for glioma resection before randomization. Measurable
disease, defined as a non-enhancing tumor >1 cm, had to be present. High-risk features
(uncontrolled seizures, brain-stem involvement, and clinically relevant functional or neu-
rocognitive deficits caused by the tumor) had to be absent. The primary endpoint was
PFS, and the secondary endpoints were time to next intervention, ORR, tumor growth rate
(TGR), health-related quality of life (HRQoL), and OS.
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Table 1. Comparison of the design and results of the early phase clinical trials of IDH inhibitors in glioma.

Title Study Type Drug Name Target Escalation
Range

Expansion
Dose

Eligibility
Criteria

No. of
Patients Safety Study Cohort mPFS,

Months BRSD, % mTD,
Months ORR

Ivosidenib in
Isocitrate De-
hydrogenase
1–Mutated
Advanced

Glioma

multicenter,
open-label,

phase I
clinical
study

ivosidenib mutant
IDH1

100–900 mg
once daily

500 mg once
daily

Progressive
glioma 66

No DLTs
TRAE 59.1%

Gr > 3
TRAE in
2 patients

Non-
enhancing: 35
vs. enhancing:

31
12/66 GBM *

13.6 vs. 1.4
mo

85.7% vs.
45.2%

18.4 vs.
1.9

2.9% vs.
0%

Vorasidenib, a
Dual Inhibitor

of Mutant
IDH1/2, in

Recurrent or
Progressive

Glioma;
Results of a

First-in-
Human Phase

I Trial

multicenter,
open-label,

phase I
clinical
study

vorasidenib mIDH1/2 25–300 mg
once daily

50 mg once
daily

Progressive
glioma 52

DLTs of
elevated

ALT/AST
TRAE 73.1%
Gr > 3 AE in
10 patients

Non-
enhancing: 22
vs. enhancing:

30

36.8 vs. 3.6 72.7% vs.
56.7%

26.8 vs.
3.3

18% vs.
0%

Vorasidenib
and

ivosidenib in
IDH1-mutant

low-grade
glioma: a

randomized,
perioperative
phase 1 trial

randomized
phase I peri-

operative
compara-
tive study

Ivosidenib
vs.

vorasidenib
-

Ivosidenib
250 mg or

500 mg
daily,

Vorasidenib
10 mg or

50 mg daily

Vorasidenib
50 mg daily

Recurrent
glioma
before

surgery

49

Gr >3 AE
24% with

ivosidenib
vs. 29.2%

with
vorasidenib

Ivosidenib: 25
vs.

vorasidenib:
24

- - 15.1 vs.
14.3

35.7% vs
42.9%

Phase I
assessment of

safety and
therapeutic
activity of

BAY1436032
in patients

with
IDH1-mutant

solid
tumors

multicenter,
open-label,

phase I
clinical
study

BAY
1436032

IDH1 (pan-
inhibitor)

150–
1500 mg

twice daily

1500 mg
twice daily

Progressive
glioma with

a target
lesion

55

DLT of Gr 3
macu-

lopapular
rash

TRAE in
33%

Gr 4 TRAE
of elevated

lipase

33/35
enhancing

LGG,
14 GBM **

- 43% - 15%
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Table 1. Cont.

Title Study Type Drug Name Target Escalation
Range

Expansion
Dose

Eligibility
Criteria

No. of
Patients Safety Study Cohort mPFS,

Months BRSD, % mTD,
Months ORR

Olutasidenib
(FT-2102) in

patients with
relapsed or
refractory

IDH1-mutant
glioma: A

multicenter,
open label,
phase Ib/II

trial

multicenter,
open-label,

nonrandom-
ized phase

Ib/II
clinical
study

Olutasidenib IDH1 - 150 mg
twice daily

Progressive
glioma 26

TRAE 88%
Gr 3 TRAE

in 3 patients
(elevated

ALT/AST)

23/26
enhancing,
4/26 LGG,

15/26 Grade
III,

7/26 Grade 4

1.9 vs.
16.9 *** 40% - 8%

The first-in-
human phase

I study of a
brain-

penetrant
mutant IDH1

inhibitor
DS-1001 in

patients with
recurrent or
progressive

IDH1-mutant
gliomas

multicenter,
open-label,

phase I
clinical
study

DS-1001 IDH1
125–

1400 mg
twice daily

250 mg
twice daily

Progressive
glioma 47

DLT of Gr 3
WBC

decrease
Gr 3 TRAE

42.6%

35 enhancing
vs. 12 non-
enhancing

not-reached
vs. 2.4

66.7% vs.
31.4%

21.3 vs.
1.7

33.3% vs.
17.1%

IDH, isocitrate dehydrogenase; DLT, dose limiting toxicities; LGG, low grade glioma; TRAE, treatment-related adverse events; ALT, alanine transaminase; AST, aspartate transaminase;
Gr, grade; AE, adverse event; GBM, glioblastoma; No, number; mPFS, median progression-free survival; mTD, median treatment duration; ORR, overall response rate; BRSD, best
response of stable disease. * according to the WHO 2007 classification. ** 35/39 LGG and 14/16 GBM were evaluable via RANO. IDH-mutant GBM according to the WHO classification
2016 edition. *** 1.9 months for whole study group vs. 16.9 months for LGG patients.
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A total of 331 patients were enrolled, 168 in the vorasidenib arm and 163 in the placebo
arm. Imaging-based progression, assessed by blinded independent review, was observed
in 47 of 168 patients (28.0%) in the vorasidenib group and in 88 of 163 patients (54.0%) in
the placebo group. In the vorasidenib group, the median PFS was 27.7 months (95% CI,
17.0 to not estimated), compared to 11.1 months (95% CI, 11.0 to 13.7) in the placebo group
(p < 0.001). In the vorasidenib group, 19 patients (11.3%) received another anticancer
therapy, whereas in the placebo group, 58 patients (35.6%) received another anticancer
intervention. For 52 of these 58 patients, the next intervention represented crossover
to vorasidenib. The likelihood of being alive and not receiving a subsequent treatment
intervention by 18 months was 85.6% (95% CI, 77.8 to 90.8) in the vorasidenib group, as
compared with 47.4% (95% CI, 35.8 to 58.2) in the placebo group (p < 0.001). TGRs before
and after vorasidenib therapy (n = 56) were 13.2% (95% CI, 10.3, 16.3) and −3.3% (95%
CI, −5.2, −1.2) among patients with available imaging data. Vorasidenib was associated
with reduced TGR and decreased tumor volume compared to the placebo [73]. HRQoL
was better maintained with vorasidenib [74]. The study is ongoing, with reports of other
secondary endpoints forthcoming [75].

Subgroup analyses of PFS and time to next intervention favored vorasidenib across
most of the subgroups. The most favorable subgroups for both PFS and time to next
intervention were tumors with 1p/19q co-deletion and tumors with the longest diameter of
more than 2 cm (Hazard ratio for PFS (95% CI): 1p/19q co-deletion status, 0.32 (0.18–0.57)
longest diameter of tumor at baseline ≥ 2 cm 0.32 (0.21–0.48). Hazard ratio for next
intervention (95% CI): 1p/19q co-deletion status, 0.14 (0.05–0.40); longest diameter of tumor
at baseline ≥ 2 cm 0.21 (0.12–0.38).)

Serious AEs occurred in 1.8% of patients in the vorasidenib arm, the most common
grade 3 or higher AE being elevated ALT levels. Following initial analysis, the trial
was unblinded, and all patients receiving the placebo had the opportunity to crossover
to vorasidenib treatment. An expanded access program to provide vorasidenib for IDH-
mutant glioma patients was initiated (NCT05592743) [76]. Based on the promising results of
the placebo-controlled double-blinded phase III clinical trial, FDA approval of vorasidenib
for IDH-mutant glioma is anticipated [77,78]. Development of vorasidenib for treatment of
IDH-mutant glioma is illustrated in Figure 2.

3.3. IDH Inhibitors Combined with Immunotherapy in Glioma

The IDH mutation and its oncometabolite 2HG interfere with the tumor microenviron-
ment (TME) through several mechanisms. Immune cell migration to TME is compromised
in IDH-mutant gliomas compared to IDH-wildtype due to down-regulation of chemotaxis-
associated genes, leading to significantly lower tumor-infiltrating lymphocytes (TILs) [79].
Similarly, genes associated with natural killer (NK) cell ligands were silenced in IDH-
mutant glioma, allowing the glioma cells to escape from NK-cell surveillance [80]. A
comprehensive RNA-sequencing analysis involving 1008 patients with glioma revealed a
correlation between mutated IDH and an immune system-related gene signature in glioma.
This correlation led to a significantly diminished immune response in IDH-mutant glioma
compared to IDH-wildtype [81]. Evidence suggests that 2HG also acts as a paracrine
oncometabolite, as T-cells are capable of efficiently taking up 2HG in vitro, leading to
impaired T cell activation [82]. The expression of programmed death ligand 1 (PD-L1)
was reduced in IDH-mutant gliomas as a result of methylation in the promoter region
of the PD-L1 gene [83]. Collectively, mutated IDH can influence several aspects of TME,
contributing to immune escape mechanisms. Inhibition of mutated IDH may mitigate
its immunosuppressive effects on TME. Therefore, combined use of IDH inhibitors with
immunotherapies might enhance their effectiveness through a synergistic effect [84]. In a
preclinical study, the combination of a PD-L1 inhibitor and an IDH inhibitor with radio-
therapy and temozolomide was shown to be superior to any individual treatment. Clinical
trial NCT04056910 is evaluating ivosidenib in combination with nivolumab for patients
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with IDH-mutant tumors, including glioma. NCT05484622 is evaluating vorasidenib in
combination with pembrolizumab (Table 2) [85,86].

Non-

Enhancing
Enhancing

mPFS, months 36.8 3.6
mTD, months 26.8 3.3
Best response 

of stable 

disease, %

72.7 56.7

Non-

Enhancing
Enhancing

mPFS, months 13.6 1.9
mTD, months 18.4 1.9
Best response 

of stable 

disease, %

85.7 45.2

Ivosidenib Vorasidenib
2HG 

reduction, %
91.9 92.6

ORR, % 35.7 42.9

Figure 2. The timeline of events leading to availability of ivosidenib in clinical practice in neuro-
oncology is summarized.

Table 2. Ongoing clinical trials of IDH inhibitors in glioma.

Study Name NCT Number Drug Name Target Phase Eligibility Criteria No. of Patients

Study of
Olutasidenib and
Temozolomide in

HGG

NCT06161974 olutasidenib IDH1 II

pediatric and young adult
patients newly diagnosed
with a high-grade glioma
(HGG) that have a genetic

mutation in IDH1

65

Safusidenib Phase 2
Study in IDH1
Mutant Glioma

NCT05303519 safusidenib IDH1 II

recurrent or progressive
histologically confirmed

IDH1 mutant WHO grade
2/3 glioma

95

A Study of
DS-1001b in

Patients with
Chemotherapy-

and Radiotherapy-
Naive IDH1

Mutated WHO
Grade II Glioma

NCT04458272 DS-1001b IDH1 II

chemotherapy- and
radiotherapy-naive IDH1

mutated WHO grade 2
glioma

25
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Table 2. Cont.

Study Name NCT Number Drug Name Target Phase Eligibility Criteria No. of Patients

Study of LY3410738
Administered to

Patients With
Advanced Solid

Tumors With IDH1
or IDH2 Mutations

NCT04521686 LY3410738 IDH1 I
IDH1 R132-mutant

advanced solid tumors,
including glioma

NA

A Study of
HMPL-306 in

Advanced Solid
Tumors With IDH

Mutations

NCT04762602 HMPL-306 dual
IDH1/2 I

solid tumors including
low-grade glioma,

perioperative low-grade
glioma

NA

Vorasidenib
Expanded Access

Program
NCT05592743 Vorasidenib dual

IDH1/2
Expanded

access
IDH1- or IDH2-mutated

glioma NA

Ivosidenib
(AG-120) With
Nivolumab in
IDH1 Mutant

Tumors

NCT04056910 Ivosidenib +
Nivolumab

IDH1 +
PD-1 II

advanced solid tumors
(nonresectable or

metastatic) or enhancing
gliomas

NA

Study of
Vorasidenib and
Pembrolizumab
Combination in

Recurrent or
Progressive

Enhancing IDH-1
Mutant

Astrocytomas

NCT05484622
Vorasidenib +

Pem-
brolizumab

Dual
IDH1/2
+ PD-1

I

recurrent or progressive
enhancing isocitrate

dehydrogenase-1 (IDH-1)
mutant astrocytomas

72

In glioma, the most common IDH mutation is IDH1-R132H [4]. A peptide vaccine
targeting IDH1 R132H was demonstrated to be safe and effective in inducing antitumor
T cell responses [87]. Several other vaccine trials targeting IDH mutation in glioma are
ongoing [88–90].

4. Future Perspectives

The INDIGO trial specifically focused on patients with grade 2 IDH-mutant astrocy-
tomas and oligodendrogliomas, demonstrating early evidence of efficacy with increased
PFS compared to the placebo. However, trial data is maturing and the OS benefit for
vorasidenib has not yet been confirmed in this patient population. Importantly, 31.9% of
patients in the control arm crossed over to the vorasidenib arm after the second interim
analysis, which will need to be considered during future survival analysis [91]. Given the
relatively long-term survival associated with these low-grade malignancies, survival data
will take years to mature.

Notably, it is uncertain if patients with grade 2 tumors who experience progres-
sion after vorasidenib treatment would derive similar benefit from radiation therapy
and chemotherapy compared to patients who have not had first-line IDH inhibitor treat-
ment. Furthermore, the role of upfront IDH inhibitor treatment for patients with high-risk,
low-grade oligodendroglioma or astrocytoma who would be traditionally considered for
radiation therapy and chemotherapy following surgery remains unclear. Thus, it is essential
to assess the combined and/or sequential use of vorasidenib and chemoradiotherapy in
IDH-mutated gliomas. In an in vivo orthotopic IDH-mutant glioma model, researchers
demonstrated that radiotherapy and vorasidenib act synergistically, which requires further
study in humans [92]. The acquired resistance mechanisms of ivosidenib and vorasidenib
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are also unknown and need to be addressed, which might include but are not limited to
secondary IDH mutations, additional oncogene mutations, and clonal selection [93].

While the INDIGO study offers compelling evidence of the efficacy of vorasidenib for
patients with non-enhancing low-grade IDH-mutant glial tumors, the role of vorasidenib
in enhancing IDH-mutant astrocytomas and oligodendrogliomas remains unanswered.
The data from both phase I studies of vorasidenib and ivosidenib demonstrated that the
non-enhancing tumor population had greater PFS than the enhancing tumor population.
Also, both studies demonstrated that non-enhancing tumors tend to have more tumor
shrinkage than enhancing ones [56–58]. Non-enhancing tumors likely represent an earlier
disease stage with fewer genetic alterations, more susceptible to IDH inhibition compared
to enhancing tumors potentially harboring additional genetic complexity. However, con-
trast enhancement itself is a prognostic factor in glioma and associated with significantly
decreased rates of PFS with different growth rates [94]. In the phase I study of DS-1001,
two patients with enhancing tumors did experience a complete response, suggesting there
may be a subgroup of patients who would benefit from IDH inhibitors in the setting of
enhancing tumors. [67]. Combinatorial strategies for IDH inhibitors and conventional treat-
ments such as radiation therapy and alkylator chemotherapy for patients with high-grade
IDH-mutant astrocytomas and oligodendrogliomas require further study.

The perioperative study of vorasidenib and ivosidenib demonstrated that patients
with abnormal cell cycle genes have shorter PFS independent from contrast enhance-
ment status [59]. Early phase studies to date suggest potential limited benefit of IDH
inhibitor monotherapy in the setting of higher-grade tumors. However, distinguishing
grade 2 from grade 3 tumors is not always straightforward. Indeed, a number of studies
have demonstrated that the disparities in survival rates between IDH-mutant tumors of
grades 2 and 3 are, in fact, quite limited [95]. In the era of IDH inhibitors, the question
of what precisely distinguishes an IDH-mutant CNS WHO grade 2 glioma from a grade
3 glioma may become increasingly relevant for treatment decision-making [96]. Tech-
niques to improve the accuracy of tumor grading of diffuse gliomas—for example, DNA
methylation profiling or addition of molecular markers—require further investigation and
may in time further define patient populations who benefit from administration of IDH
inhibitors [97,98].

Combinatorial strategies beyond IDH inhibitor monotherapy are already under inves-
tigation. Trials combining ivosidenib with immune checkpoint inhibitors are underway.
Other areas of interest include the metabolic vulnerabilities associated with IDH-mutant tu-
mors and DNA damage repair pathways. As an example, given the DNA hypermethylation
phenotype driven by 2HG, demethylating agents may achieve tumor control. Currently,
5-azacytidine and ASTX727, a fixed-dose combination of cedazuridine and decitabine, is
being tested in IDH-mutated glial tumors (NCT03666559, NCT03922555) [99,100]. Dimin-
ished NAD+ levels were associated with elevated DNA damage in IDH-mutant glioma,
as poly ADP ribose polymerase (PARP)-mediated DNA repair is dependent on NAD+
levels. Several clinical trials testing PARP inhibitors in IDH-mutated gliomas are ongoing
(NCT03212274, NCT03991832, NCT03914742, and NCT05076513) [101–104]. Combination
of these approaches with IDH inhibitors can be considered.

The initial positive results from the INDIGO trial represent a significant step forward
for treatment of IDH-mutant glioma. The data so far suggest efficacy of IDH inhibitors in
the setting of low-grade, non-enhancing glioma. Upon approval, vorasidenib is likely to be
broadly used as first-line treatment for low-grade glioma, representing a strategy to delay
radiation therapy and chemotherapy until first progression. Whether upfront use of IDH
inhibitors is associated with an overall survival benefit remains unclear and represents a
critical question that will be answered with maturation of INDIGO data. As these novel
therapeutics enter clinical practice, we will also need to determine whether there is a role
for the combination of IDH inhibitors with conventional treatments. Elucidating the role
of IDH inhibitors as maintenance therapy following completion of radiation therapy and
alkylator chemotherapy represents another area of interest. Upon disease progression,
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identification of resistance mechanisms to IDH inhibitors may uncover additional vulnera-
bilities exploited by novel therapeutics, similar to the development of multiple generations
of EGFR and ALK inhibitors currently available for clinical use. Despite current unknowns,
encouraging results from early phase IDH inhibitor studies and the phase III vorasidenib
trial underscore that there is a clear and important role for precision oncology in brain
tumor care.

5. Conclusions

IDH inhibitors are becoming increasingly a part of clinical practice in neuro-oncology.
Initial results of the phase III clinical trial with vorasidenib are highly encouraging, repre-
senting a significant advancement in IDH-mutant glioma treatment. Ongoing and future
studies will further define groups of patients most likely to benefit from IDH inhibitors,
either as monotherapy or as part of combinatorial strategies.

Funding: This publication was supported by Grant Number UL1 TR002377 from the National Center
for Advancing Translational Sciences (NCATS) awarded to Ugur Sener. Its contents are solely the
responsibility of the authors and do not necessarily represent the official views of the NIH.
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List of Acronyms

2HG D-2-hydroxygluterate
5hmC 5-hydroxy-methylcitosine
AEs adverse events
ALT alanine aminotransferase
AML acute myeloid leukemia
AST aspartate aminotransferase
BRSD best response of stable disease
CTCF CCCTC binding factor
CNS central nervous system
CpG 5′-C-phosphate-G-3′

DLTs dose-limiting toxicities
FDA U.S. Food and Drug Administration
GFAP glial fibrillary acidic protein
HRQoL health-related quality of life
IDH isocitrate dehydrogenase
KDMs histone lysine demethylases
LGG low-grade glioma
mTD median treatment duration
NADP nicotinamide adenine dinucleotide phosphate
NK natural killer
ORR objective response rate
OS overall survival
PARP poly ADP ribose polymerase
PCV a combination of procarbazine, lomustine, and vincristine
PDGFRA platelet-derived growth factor receptor A
PD-L1 programmed death ligand 1
PFS progression-free survival
QD once daily
RANO Response Assessment in Neuro-Oncology
ROS reactive oxygen species
TET ten-eleven translocation
TGR tumor growth rate
TILs tumor-infiltrating lymphocytes
TME tumor microenvironment
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TRAE treatment-related adverse events
WHO CNS World Health Organization Classification of Tumors of the Central Nervous System
αKG α-ketoglutarate
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