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Abstract: Purpose: This study aimed to evaluate the feasibility of using [68Ga]-fibroblast-activating
protein inhibitor (FAPI) positron emission tomography (PET) imaging for diagnosing pulmonary
fibrosis in a mouse model. We also examined its value in monitoring treatment response and
compared it with traditional [18F]-fluorodeoxyglucose (FDG) PET and computed tomography (CT)
imaging. Methods: A model of idiopathic pulmonary fibrosis was established using intratracheal
injection of bleomycin (BLM, 2 mg/kg) into C57BL/6 male mice. For the treatment of IPF, a daily oral
dose of 400 mg/kg/day of pirfenidone was administered from 9 to 28 days after the establishment
of the model. Disease progression and treatment efficacy were assessed at different stages of the
disease every week for four weeks using CT, [18F]FDG PET, and [68Ga]FAPI PET (baseline imaging
performed at week 0). Mice were sacrificed and lung tissues were harvested for hematoxylin-
eosin staining, picrosirius red staining, and immunohistochemical staining for glucose transporter
1 (GLUT1) and FAP. Expression levels of GLUT1 and FAP in pathological sections were quantified.
Correlations between imaging parameters and pathological quantitative values were analyzed.
Results: CT, [18F]FDG PET and [68Ga]FAPI PET revealed anatomical and functional changes in the
lung that reflected progression of pulmonary fibrosis. In untreated mice with pulmonary fibrosis,
lung uptake of [18F]FDG peaked on day 14, while [68Ga]FAPI uptake and mean lung density peaked
on day 21. In mice treated with pirfenidone, mean lung density and lung uptake of both PET
tracers decreased. Mean lung density, [18F]FDG uptake, and [68Ga]FAPI uptake correlated well with
quantitative values of picrosirius red staining, GLUT1 expression, and FAP expression, respectively.
Conclusions: Although traditional CT and [18F]FDG PET reflect anatomical and metabolic status in
fibrotic lung, [68Ga]FAPI PET provides a means of evaluating fibrosis progression and monitoring
treatment response.

Keywords: fibroblast activating protein inhibitor; idiopathic pulmonary fibrosis; positron emission
tomography; diagnosis; treatment monitoring

1. Introduction

Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by abnormal
activation of myofibroblasts, which induces injury of lung epithelium or endothelium via
excessive deposition of collagen and extracellular matrix proteins. The resulting interstitial
fibrosis eventually leads to dyspnoea, serious pulmonary dysfunction, and even death [1–3].
Survival of late-stage IPF patients ranges from 2 to 4 years. The only effective treatment for
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late-stage disease is lung transplantation; although pirfenidone and nintedanib have been
approved for IPF treatment, they can only delay its progress [4].

Early diagnosis and intervention can improve outcomes [5]. However, this can be
difficult because the disease is frequently clinically silent in the early stages and no reliable
IPF biomarkers have been identified. IPF is currently diagnosed via lung biopsy, which is
associated with procedural risks, and high-resolution computed tomography (HRCT) [6].
Usual interstitial pneumonia (UIP) can be diagnosed with HRCT; however, imaging does
not provide data regarding molecular alterations and can just show the anatomical changes
of organ structure with high spatial resolution, it cannot distinguish active and quiescent
lesions [7,8]. For patients with non-typical IPF, lung biopsy is advised [9]. Identification
of molecular imaging biomarkers of IPF could preclude the need for biopsy and assist
with diagnosis.

Positron emission tomography (PET) can visualize biological processes at the molecu-
lar level in a real-time quantitative manner. [18F]-fluorodeoxyglucose ([18F]FDG) imaging
can reveal glucose uptake and metabolism in the lung, which is increased in patients
with IPF [10–13]. The increase in lung density on HRCT is proportional to the increase in
lung uptake of [18F]FDG [12,14,15]. However, background [18F]FDG uptake in the lung
can cause false-positive results. In addition, anti-fibrotic drugs such as pirfenidone and
nintedanib can affect [18F]FDG PET and CT imaging. Treatment selection and monitoring
the patient’s response must be individualized.

The use of new probes targeting predominant cells and specific cell products involved
in the pathogenesis of pulmonary fibrosis and reflecting the microenvironment change in the
pulmonary fibrosis may overcome the deficiencies of [18F]FDG PET/CT and CT in disease
diagnosis and monitoring antifibrosis efficacy. Collagen binding probes [68Ga]Ga-CBP7 [16],
[68Ga]Ga-CBP8 [17] targeting to collagen, [177Lu]Lu-DOTA-RGD targeting to integrin αvβ3 [18],
[18F]FMISO revealing the hypoxic microenvironment development [19], and [177Lu]Lu-DOTA-
NOC targeting to somatostatin receptors on inflammatory cells [18], [99mTc]Tc-rhAnnexin
V-128 [20], and [18F]F-ML-10 [21] targeting to apoptotic cells, and [18F]F-AzaFol [22] targeting to
folic acid receptors to display macrophages have been investigated.

Fibroblast activation protein (FAP), a non-classical serine protease, is highly expressed
in cancer-associated fibroblasts [23] and up-regulated in remodeling tissues in autoimmune
and fibrotic diseases [24]. Therefore, fibroblast activation and proliferation might be closely
related to the occurrence and development of these diseases. [68Ga]-fibroblast activating
protein inhibitor ([68Ga]FAPI), a PET tracer that specifically targets to FAP, has been widely
used for imaging of tumors; fibrotic diseases of the heart [25], liver [26] and kidney [27]; and
autoimmune diseases [27,28]. However, limited studies of radionuclide labelled FAPI PET
in pulmonary fibrosis have been reported, such as the study of Cong-Ying Song et al. [29].

FAP-α is selectively induced in areas of IPF undergoing tissue remodeling [30]. More-
over, in a mouse model of pulmonary fibrosis, FAP is involved in matrix metalloproteinase-
mediated extracellular matrix remodeling [31]. Of note, FAP is expressed almost exclusively
in collagen-producing fibroblasts [32]. Therefore, we hypothesized that [68Ga]FAPI can be
used to monitor fibroblast activation and infiltration in the pulmonary fibrosis setting. This
study aimed to evaluate the feasibility of using [68Ga]FAPI PET for diagnosing pulmonary
fibrosis in a mouse model of pulmonary fibrosis, examine its value in monitoring treatment
response, and compare it with traditional [18F]FDG PET and CT imaging.

2. Results

2.1. [68Ga]FAPI PET Detects BLM-Induced Lung Fibrosis

CT and PET imaging using either [18F]FDG or [68Ga]FAPI enabled detection of pul-
monary fibrosis. Initially, lung uptake and the pulmonary exudation and consolidation
regions in the BLM group increased then decreased slowly (Figure 1a,d,g). Significant
differences in lung density and [18F]FDG or [68Ga]FAPI uptake were found between the
control and IPF groups (Figure 1b,e,h). Mean lung density (MLD), non-aerated lung area
percentage, and [68Ga]FAPI lung uptake peaked on day 21, while [18F]FDG lung uptake
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peaked on day 14. These results confirmed that CT can visualize interstitial infiltrates in the
lung and that [18F]FDG and [68Ga]FAPI PET imaging can detect IPF. Presumably, [18F]FDG
shows metabolic changes during IPF progression, while [68Ga]FAPI reflects changes in
fibrosis. Although the uptake of both tracers increased as IPF progressed, the different peak
times suggest different pathological processes (Figure 1e,h). [18F]FDG and [68Ga]FAPI lung
uptake correlated well with MLD (Figure 1f,i), and MLD values increased in conjunction
with increased area of non-aerated lung (Figure 1c).
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respectively. (e) The mean [18F]FDG lung uptake (%ID/g) quantified on [18F]FDG PET/CT images at 
different time points. (f) Correlation between mean lung density (HU) measured on CT images and 
[18F]FDG lung uptake (%ID/g) of measured on PET. (g) Lung CT and [68Ga]FAPI and the fusion 
images at day 0, 7, 14, 21, and 28 in the control group and BLM group, respectively. (h) The mean 
[68Ga]FAPI lung uptake (%ID/g) quantified on [68Ga]FAPI PET/CT images at different time points. 
(i) Correlation between mean lung density (HU) measured on CT images and [68Ga]FAPI lung up-
take (%ID/g) measured on PET. NS means control group, and the mean value of the control group 
was obtained at day 28. The results are presented as mean ± SEM (n = 4 for NS and n = 3–4 for BLM 
groups). * p < 0.05 and ** p < 0.01, *** p < 0.001. 

Figure 1. CT, [18F]FDG and [68Ga]FAPI PET imaging could detect BLM-induced lung fibrosis.
(a) Representative lung CT images of different mice on day 0, 7, 14, 21, and 28 in the control group
and BLM group, respectively. (b) Mean lung density quantified on CT images at different time points.
(c) The percentage of aerated lung area (HU < −100) on CT images. (d) Lung CT and [18F]FDG and
the fusion images ([18F]FDG PET/CT) day 0, 7, 14, 21, and 28 in the control group and BLM group,
respectively. (e) The mean [18F]FDG lung uptake (%ID/g) quantified on [18F]FDG PET/CT images
at different time points. (f) Correlation between mean lung density (HU) measured on CT images
and [18F]FDG lung uptake (%ID/g) of measured on PET. (g) Lung CT and [68Ga]FAPI and the fusion
images at day 0, 7, 14, 21, and 28 in the control group and BLM group, respectively. (h) The mean
[68Ga]FAPI lung uptake (%ID/g) quantified on [68Ga]FAPI PET/CT images at different time points.
(i) Correlation between mean lung density (HU) measured on CT images and [68Ga]FAPI lung uptake
(%ID/g) measured on PET. NS means control group, and the mean value of the control group was
obtained at day 28. The results are presented as mean ± SEM (n = 4 for NS and n = 3–4 for BLM
groups). * p < 0.05 and ** p < 0.01, *** p < 0.001.

2.2. [68Ga]FAPI PET Correlates with Pathological Findings

Degree of inflammatory cell infiltration, alveolar epithelial cell hyperplasia, and alveo-
lar collapse differed between the control and IPF groups (Figure 2a). PSR staining demon-
strated a broad distribution of collagen in the lung starting on day 14. GLUT1 was mainly
expressed on inflammatory cells and some fibroblasts. Fibroblasts stained positive for FAP.
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Figure 2. CT, [18F]FDG and [68Ga]FAPI PET correlated with the pathological findings of pulmonary
fibrosis. (a) Lung hematoxylin-eosin (H&E) staining, picrosirius red (PSR) staining, immunohisto-
chemical staining (IHC) of glucose transporters 1 (GLUT1), and fibroblast-activation protein (FAP) in
the control group (NS) and BLM group at day 0, 7, 14, 21, and 28, and pathological sections of the con-
trol group were obtained at day 28. (b) Correlation between the lung [18F]FDG uptake (%ID/cc) with
percentage positive area (%Area) of GLUT1 IHC. (c) Correlation between the lung [18Ga]FAPI uptake
(%ID/cc) with percentage positive area (%Area) of FAP IHC. (d–f) Correlation between the mean
lung density (MLD), [18F]FDG and [68Ga]FAPI lung uptake (%ID/cc) and picrosirius red staining
(%Area). (n = 4 for NS and n = 3–4 for BLM groups, p < 0.05 represents statistically significant).

Similar to the uptake of [18F]FDG and [68Ga]FAPI, collagen concentration and levels
of GLUT1 and FAP expression initially increased then decreased (Supplemental Materials
Figure S1a–c). Notably, lung uptake of [18F]FDG and [68Ga]FAPI correlated well with
levels of GLUT1 (Figure 2b) and FAP (Figure 2c) expression, respectively; in addition,
[18F]FDG and [68Ga]FAPI uptake and MLD correlated with PSR staining (Figure 2d–f).
These correlations suggest that the imaging findings truly reflect pathological alterations.
[68Ga]FAPI lung uptake correlated especially well with PSR staining (r2 = 0.819; p < 0.0001,
Figure 2f), suggesting it may be the most accurate indicator of fibrosis.

2.3. [68Ga]FAPI and [18F]FDG PET Reflects Different Pathological Changes of Pulmonary Fibrosis

Figure 3a shows a representative image of IPF consolidation lesions that exhibited
different location and degrees on [18F]FDG and [68Ga]FAPI PET images. FAP expression
did not significantly correlate with [18F]FDG lung uptake (Figure 3b). Similarly, GLUT1
expression did not correlate with [68Ga]FAPI uptake (Figure 3c). These results further
confirm that different images reflect different changes of diseases at the molecular level.
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consolidation was visualized on day 7, peaked on day 21, and then decreased. In contrast, 
lung consolidation was less and remained relatively stable from day 14 to 28 in the BLM 
+ pirfenidone group (Figure 4a). MLD was highest on day 21 in the BLM group (−232.833 
± 24.190 HU); in the BLM + pirfenidone group, it was highest on day 14 (−335.6 ± 23.961 
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Figure 3. CT, [18F]FDG and [68Ga]FAPI reflect different pathological changes of pulmonary fibro-
sis. (a) The same consolidation foci displayed on the CT in same mice at 21 days after modelling
demonstrated different location and degree uptake on [68Ga]FAPI and [18F]FDG PET images. Red
arrows point to the high [68Ga]FAPI uptake lesion; whereas, yellow arrows mark the relatively
high [18F]FDG uptake lesion. (b) Correlation between [18F]FDG lung uptake (%ID/cc mean) and
percentage positive area (%Area) of FAP immunohistochemistry (IHC) in BLM groups. (c) Correlation
between [68Ga]FAPI lung uptake (%ID/cc mean) and percentage positive area (%Area) of GLUT1 in
BLM groups. p < 0.05 represents statistically significant.

2.4. CT Imaging Confirms Effective Pirfenidone Treatment

Figure 4 shows the serial lung CT images in different groups. In the BLM group, lung
consolidation was visualized on day 7, peaked on day 21, and then decreased. In contrast, lung
consolidation was less and remained relatively stable from day 14 to 28 in the BLM + pirfenidone
group (Figure 4a). MLD was highest on day 21 in the BLM group (−232.833 ± 24.190 HU);
in the BLM + pirfenidone group, it was highest on day 14 (−335.6 ± 23.961 HU; Figure 4b).
Aerated lung area percentage over time demonstrated the same trend as seen in the CT images
(Figure 4c). These findings indicate that pirfenidone reduces fibrosis progression.
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Figure 4. Serial lung CT images in different modelling groups. (a) Representative serial lung CT images
of mice on day 0, 7, 14, 21, and 28 in the control group, BLM group, and treatment group. (b) Mean
lung density quantified on CT images at different time points. (c) The percentage of aerated lung area
in the control group (shown as NS), BLM, and BLM+ pirfenidone groups. (#) represents the statistical
comparison with day 0 for each group; * (#) p < 0.05, ** (##) p < 0.01, *** p < 0.001, and #### p < 0.0001.
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2.5. [18F]FDG PET Reflects Pirfenidone Treatment

Serial lung [18F]FDG-PET/CT images are shown in Figure 5. The peak of [18F]FDG
lung uptake was observed in the BLM (3.745 ± 0.413 %ID/cc) and BLM + pirfenidone
(2.887 ± 0.477 %ID/cc) groups on day 14 (Figure 5a,b). [18F]FDG lung uptake significantly
correlated with MLD in both groups (Figure 5c,d). The lower degree of [18F]FDG uptake
in the BLM + pirfenidone group and the excellent correlation between uptake and MLD
demonstrates that [18F]FDG PET can reflect the response to pirfenidone treatment.
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Figure 5. Serial lung [18F]FDG-PET/CT images in different groups. (a) Representative serial lung
[18F]FDG-PET/CT images on day 0, 7, 14, 21, and 28 in the control group (NS), BLM group, and
BLM + pirfenidone treatment group. (b) The lung uptake of [18F]FDG at different time points in different
groups. The correlation between mean lung density (MLD) and [18F]FDG lung uptake in the BLM (c)
and BLM + pirfenidone group (d). (*) represents the statistical comparison with the control group, and
(#) represents the statistical comparison with day 0. * (#) p < 0.05; ** p < 0.01; *** p < 0.001; #### p < 0.0001.

2.6. [68Ga]FAPI PET Accurately Reflects Efficacy of Pirfenidone

Figure 6 shows the [68Ga]FAPI PET/CT images in different groups at different time points.
[68Ga]FAPI lung uptake in the BLM group showed the same trend as lung consolidation on CT.
Uptake peaked on day 21 (0.749 ± 0.062 %ID/cc; Figure 6a). In the BLM + pirfenidone group,
peak [68Ga]FAPI lung uptake was lower and occurred on day 14 (0.602 ± 0.088 %ID/cc). More-
over, uptake declined and then remained significantly lower on days 21 and 28 (Figure 6b).
[68Ga]FAPI lung uptake significantly correlated with MLD in both groups (Figure 6c,d).
p-values for statistical comparisons of tracer uptake values at different times have been
included in the Supplemental Materials Information (Supplemental Materials Table S2).
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(a) Representative serial lung [68Ga]FAPI PET/CT images of mice on day 0, 7, 14, 21, and 28 in
the control group, BLM group, and BLM + pirfenidone treatment group. (b) The lung uptake
of [68Ga]FAPI at different time points. The correlation between mean lung density (MLD) and
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The biodistribution study results agreed with these findings (Figure 7). [68Ga]FAPI
lung uptake, lung-to-blood ratio, and lung-to-muscle ratio were significantly higher in
the BLM group than the control group (Figure 7a–d). However, they did not significantly
differ between the BLM + pirfenidone and control groups (Figure 7e–h). These findings
suggest that [68Ga]FAPI is a feasible tracer for lung fibrosis diagnosis, and the response to
pirfenidone can be monitored using [68Ga]FAPI PET.
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and 28 in the control group (NS) group and BLM group. (d) Biodistribution of [68Ga]FAPI of different
organs of mice in NS group and BLM group. (e–g) [68Ga]FAPI lung uptake (e), the uptake ratio
of lung-to-blood (f) and the uptake ratio of lung-to-muscle (g) at day 28 in the control group (NS),
BLM group, and BLM + pirfenidone group. (h) Biodistribution of [68Ga]FAPI at day 28 in different
groups. The value of the control group was obtained at day 28. Results are presented as mean ± SEM.
* p < 0.05; ** p < 0.01; *** p < 0.001.

2.7. Pathological Findings Confirm Imaging Results and Validate Pirfenidone Therapy

Figure 8a shows substantial epithelial hyperplasia and strong collagen staining in
tissue sections of BLM group mice, confirming successful establishment of the IPF model. In
contrast, epithelial hyperplasia and collagen staining were mild in the BLM + pirfenidone
group. Interestingly, increased GLUT1 staining was observed in inflamed areas of diseased
lungs, and increased FAP staining was seen in fibrotic foci (Figure 8a). Quantitative
values for PSR staining and GLUT1 and FAP expression were significantly higher in the
BLM group than the BLM + pirfenidone and control groups (Figure 8d–f). However, no
significant differences were observed between the control and BLM + pirfenidone groups
(Supplemental Materials Figure S1d–f). Strong correlations were found between imaging
findings and quantitative values in the BLM + pirfenidone group, suggesting that CT
and [18F]FDG and [68Ga]FAPI PET can reflect corresponding pathological changes of lung
fibrosis during its onset, progression, and remission (Figure 8b–f). [68Ga]FAPI PET appears
particularly able to assess FAP expression level and collagen content and monitor treatment
response to pirfenidone.
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Figure 8. Pathological findings and the relationships with CT, [18F]FDG, and [68Ga]FAPI PET images.
(a) Lung hematoxylin-eosin (HE) staining, picrosirius red staining, immunohistochemical staining of
glucose transporters 1 (GLUT1), and fibroblast-activation protein (FAP) in the control group (NS),
BLM group, and BLM + pirfenidone group. The pathological sections of the control group were
obtained at day 28. (b) Correlation between [18F]FDG lung uptake (%ID/cc) and the percentage
positive area (% Area) of GLUT1 immunohistochemistry staining of the mice in the treatment group.
(c) Correlation between [68Ga]FAPI lung uptake (%ID/cc) and percentage positive area (% Area) of
FAP immunohistochemistry staining of the mice in the treatment group. (d–f) Correlation between
mean lung density, lung [18F]FDG and [68Ga]FAPI uptake (%ID/cc), and picrosirius red staining
(%Area) of the mice in the treatment group.
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3. Discussion

Idiopathic pulmonary fibrosis (IPF) is a silent but progressive disease which is not
easy to diagnose and monitor. In this study, we prepared IPF animal models, and treated
with commonly used anti-fibrotic drugs. Three imaging modalities were continuously
performed to monitor the lung changes during the development and treatment of IPF. The
results of imaging and pathological findings showed that CT, [18F]FDG PET, and [68Ga]FAPI
PET could be used for diagnosis and treatment evaluation of IPF from anatomical changes,
glucose metabolism, and fibrosis, respectively. Because of selectively targeting FAP in
remodeling tissues in IPF, [68Ga]FAPI PET could be used to diagnose IPF in the fibrosis
stage and effectively assess treatment response.

CT imaging is widely used to diagnose pulmonary fibrosis and monitor its treatment.
[18F]FDG PET may also have a role. Although [18F]FDG PET has prognostic value in
fibrotic interstitial lung diseases [33–35], it only reflects metabolic status, not the response to
treatment [35]. [68Ga]FAPI PET/CT is also a promising imaging modality [36]; however, its
value in treatment monitoring has not been well-studied. Uptake of [68Ga]FAPI is associated
with disease progression in patients with systemic sclerosis-associated interstitial lung
disease. Furthermore, treatment of these patients with the antifibrotic drug nintedanib
results in decreased [68Ga]FAPI uptake [37]. [68Ga]FAPI appears to be superior to [18F]FDG
for therapeutic monitoring.

In our BLM-induced pulmonary fibrosis mouse model, CT was able to monitor disease
severity and progression. As in previous studies, CT imaging was in good agreement with
histological findings [38,39]. The highest MLD and lowest aerated lung area appeared on
day 21, when histological examination showed inflammatory cell infiltration and alveolar
collapse were greatest. These increases and decreases in MLD and aerated lung area
reflected lung consolidation changes, which were caused by the progression of pulmonary
inflammation and fibrosis from mild to severe. Of note, the high correlation between MLD
and PSR staining also demonstrated that MLD and aerated lung areas can quantify disease
progression over time.

Several previous studies have reported that [18F]FDG PET has a role in pulmonary
fibrosis diagnosis and prognostication [8,33,35]. In our study, [18F]FDG uptake and GLUT1
expression were strongly correlated. [18F]FDG lung uptake initially increased and then
decreased, which has been previously reported [40]. A large number of inflammatory
cells with a high expression level of GLUT1 were observed in the lungs of BLM group
mice. Then, between day 21 and 28, fibroblasts with relatively lower GLUT1 expression
became the major component. This finding is consistent with previous studies that reported
inflammatory cells and myofibroblasts expressed GLUT1 in pulmonary fibrosis [41,42].
[18F]FDG PET appears to demonstrate changes in GLUT1 expression levels that reflect
inflammatory cell infiltration. Therefore, it may be useful to detect pulmonary fibrosis in
the inflammatory stages.

Our PSR staining results identified the course of collagen deposition over time in
the BLM-induced pulmonary fibrosis model. Many previous studies have shown that
activated fibroblasts play a pivotal role in the production and deposition of interstitial
collagen and other extracellular matrix materials [43]. FAP is a specific surface biomarker
of active fibroblasts in fibrotic tissue [30,36]. In our study, the number of fibroblasts with
high expression levels of FAP were highest on day 21. Furthermore, FAP expression and
[68Ga]FAPI lung uptake were positively correlated, indicating that [68Ga]FAPI can reflect
the number and distribution of fibroblasts expressing FAP. Peak uptake occurred when the
largest number of activated fibroblasts appeared, suggesting that [68Ga]FAPI can visualize
fibroblasts in mid- and late-stage pulmonary fibrosis.

Lung consolidation areas showed varying degrees of [68Ga]FAPI and [18F]FDG uptake.
Areas with high [18F]FDG uptake might have been in an inflammatory phase dominated
by inflammation cells with a high level of GLUT1 expression. In contrast, areas with high
[68Ga]FAPI uptake might have been in a fibrosis phase dominated by activated fibroblasts
expressing FAP. However, CT is sensitive to reflect morphological changes in which it is



Pharmaceuticals 2024, 17, 726 10 of 14

difficult to accurately distinguish two pathological changes at the cellular level. GLUT1 is
expressed in inflammatory cells and fibroblasts, both of which are associated with collagen
deposition. This may explain the correlation between [18F]FDG uptake and PSR staining
and why [18F]FDG PET did not accurately reflect fibroblast changes. Because [68Ga]FAPI
and [18F]FDG have different targets, it is not difficult to understand the lack of correlation
between [68Ga]FAPI lung uptake and GLUT1 expression and between [18F]FDG lung
uptake and FAP expression. The two imaging tracers appear to specifically detect different
pathological changes.

Pirfenidone ameliorates lung fibrosis via its actions on inflammatory cells and fi-
broblasts and inhibition of inflammatory cytokines and growth factors [44,45]. Our study
demonstrated that CT and [18F]FDG and [68Ga]FAPI PET could show changes in pulmonary
fibrosis after pirfenidone treatment. Suppression of inflammatory cells and fibroblasts
resulted in lower collagen deposition, as shown by PSR staining. As shown in studies com-
paring [18F]FDG and [68Ga]FAPI PET/CT before and after immunosuppressive treatment
in patients with IgG4-related disease [28], [68Ga]FAPI PET/CT can demonstrate changes
in fibrotic activity that are not detected by [18F]FDG. Therefore, [68Ga]FAPI PET/CT can
provide data relevant to treatment decision-making, particularly for patients in the middle
and advanced stages of pulmonary fibrosis.

This study has several limitations. The BLM-induced pulmonary fibrosis mouse model
does not accurately reflect chronic lung fibrosis in humans [46,47], and the pathological
changes differ between mice and humans. Therefore, human studies are needed to confirm
our findings. In addition, our sample size was small. Another limitation is insufficient
histopathological investigation on the inflammatory cells and fibroblasts, the further mul-
tiplex immunofluorescence staining of biomarkers of inflammatory cells and fibroblasts
will show more unequivocal mapping of immunocytes and fibroblasts and then help us
realize a more accurate location and identification of FAP-positive and GLUT1-positive
cells. Meanwhile, the further combination of autoradiography and immunostaining studies
will effectively reveal the relationship between intrapulmonary distribution of tracers and
pathologic changes. Furthermore, due to the finite resolution of CT in murine models, some
imaging features of pulmonary fibrosis, such as honeycomb changes, were ignored, which
decreases its detecting power in pulmonary fibrosis.

4. Materials and Methods
4.1. Animal Experiments

All animal experiments were performed in accordance with the Guidelines for the Care
and Use of Laboratory Animals and approved by the Institutional Animal Care and Use
Committee of the Union Hospital, Tongji Medical College, Huazhong University of Science
and Technology. Eight-week-old male C57/Bl6 mice were randomly allocated into one of
three experimental groups: control, bleomycin (BLM), and BLM + pirfenidone. On day
(D) 0, the mice in the BLM and BLM + pirfenidone groups received a single intratracheal
injection of BLM (2 mg/kg) to establish the IPF model, while the control group received
saline. The BLM and BLM + pirfenidone groups collectively comprised the IPF group.
Mice in the BLM + pirfenidone group also received oral pirfenidone (400 mg/kg/day)
from days 9 after bleomycin instillation until the end of the experiment on day 28. Figure 9
shows the experimental schedule.
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Figure 9. Animal grouping and experimental design. NS denotes control group; BLM denotes mice
receiving bleomycin for IPF model establishment; another group of mice with IPF were treated with
pirfenidone for treatment.

4.2. PET Imaging and Biodistribution Studies

CT and PET were performed using a small-animal PET/CT scanner (Novel Medical,
Beijing, China). Briefly, mice were anaesthetized using 1.5% isoflurane. Static PET imag-
ing (10 min; energy window, 250–750 keV; time window, 1.2 ns; resolution, 1.3 mm) was
obtained about 50 min after intravenous injection of 6.0 MBq of [68Ga]FAPI or 4.0 MBq of
[18F]FDG. Then, CT was performed (50 kV; 100 µA; 180 µm resolution). All mice received
baseline CT and PET scans with [18F]FDG and [68Ga]FAPI before BLM or saline administra-
tion. After model initiation at day 0 (D0), the mice underwent longitudinal [18F]FDG and
[68Ga] PET/CT at D6/D7, D13/D14, D20/D21, and D27/D28. In the BLM group, some of
the mice were sacrificed after [68Ga] PET/CT scan, n = 4 at D7/D14/D28, n = 3 at D21. And
in the control and treatment group, 4 mice were sacrificed at D28. Their blood, lung, heart,
liver, spleen, kidney, and muscle were harvested for ex vivo measurement of radioactivity
using a γ-counter (2470 Automatic Gamma Counter WIZARD; PerkinElmer, Norwalk, CT,
USA). Radioactivity is expressed as percentage of injected dose per cubic centimeter of
tissue (%ID/cc).

4.3. Imaging Analysis

Imaging analysis was performed using Carimas 2.10 software (Turku PET Centre,
Turku, Finland) to draw three-dimensional regions of interest (ROIs) in CT and PET images.
To quantify the radioactivity of [18F]FDG and [68Ga]FAPI in aerated and non-aerated
lung areas, normal lung density areas (less than −100 Hounsfield units [HU]) and high
lung density areas (−100 to 300 HU) were drawn using the software’s semi-automatic
segmentation function.

4.4. Hematoxylin-Eosin (HE) Staining, Immunohistochemistry, and Quantification

The lungs were fixed in 4% paraformaldehyde, dehydrated using gradient alcohol,
embedded in paraffin, and cut into 4-µm slices for HE, picrosirius red (PSR), and FAP and
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GLUT1 immunohistochemistry (IHC) staining. Staining results were observed under a
slide scanner (Pannoramic DESK, P-MIDI, P250; 3D HISTECH, Budapest, Hungary). Image
J 1.8.0 software was used to quantify the percentage of area that stained positive. Detailed
steps are provided in the Supplemental Materials.

4.5. Statistical Analysis

Statistical analyses were performed using Prism 8.0 software (GraphPad Software, San
Diego, CA, USA). Data were compared using parametric analysis of variance. p < 0.05 was
considered significant.

5. Conclusions

CT, [18F]FDG PET, and [68Ga]FAPI PET can monitor disease progression and treatment
response in a preclinical mouse model of pulmonary fibrosis. [68Ga]FAPI PET/CT reflects
expression of FAP in fibrotic lungs, which enables precise assessment of fibrosis and
response to treatment.

Supplementary Materials: The supporting information can be downloaded at: https://www.mdpi.
com/article/10.3390/ph17060726/s1. Figure S1. The quantitative values of pathological sections.
Table S1. The p values of the multiple comparisons of the max values of MLD, [18F]FDG and
[68Ga]FAPI lung uptake, the positive area (%) of picrosirius red staining, GLUT1 IHC staining and
FAP IHC staining of mice in BLM group with values in NS group and values at other timepoints in
BLM group. Table S2. The p values of the multiple comparisons of the max values of MLD, [18F]FDG
and [68Ga]FAPI lung uptake of mice in BLM group and BLM + pirfenidone group with values at
other timepoints.
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