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Abstract: Optimized syntheses of (E)-5-(2-ethoxyphenyl)-N-(3-(methylsulfonyl)allyl)-1H-pyrazole-3-
carboxamide (RA-0002034, 1), a promising antiviral covalent cysteine protease inhibitor lead, were
developed. The syntheses avoid the contamination of 1 with the inactive cyclic dihydropyrazolo[1,5-
a]pyrazin-4(5H)-one 2, which is formed by the intramolecular aza-Michael reaction of the vinyl
sulfone warhead under basic conditions and slowly at pH 7.4 in phosphate buffer. The pure cysteine
protease inhibitor 1 could be synthesized using either modified amide coupling conditions or through
the introduction of a MOM-protecting group and was stable as a TFA or HCl salt. Although acyclic 1
demonstrated poor pharmacokinetics with high in vivo clearance in mice, inactive cyclic 2 showed
improved plasma exposure. The potential use of cyclic dihydropyrazolo[1,5-a]pyrazin-4(5H)-ones as
prodrugs for the acyclic β-amidomethyl vinyl sulfone warhead was demonstrated by GSH capture
experiments with an analog of 2.

Keywords: cysteine protease; covalent inhibitor; vinyl sulfone; antiviral; prodrug

1. Introduction

Alphaviruses, a group of widespread, enveloped, single-stranded positive sense RNA
viruses, are transmitted by Aedes aegypti and Aedes albopictus mosquitoes, posing a signifi-
cant threat to public health [1]. These viruses are divided into two categories based on their
geographical emergence: Old World alphaviruses, including Chikungunya virus (CHIKV),
Ross River virus (RRV), and O’nyong-nyong virus (ONNV) that typically present with rash,
fever, and prolonged arthralgia that can persist for months post-infection [2]; and New
World alphaviruses, including Venezuelan (VEEV), Western (WEEV), and Eastern (EEEV)
Equine Encephalitis viruses and Mayaro virus (MAYV), that often result in encephalitis-like
neurological symptoms, accompanied by fever, headache, and nausea, which can be fatal,
with 30–50% of EEEV cases resulting in mortality [3]. Despite the severity of these diseases,
there are currently no FDA-approved drugs for any alphavirus-caused disease, highlighting
the urgent need for the development of alphavirus therapeutics.

The largest non-structural protein in the alphavirus genome, nsP2, is essential for viral
replication [4]. nsP2 contains a C-terminal cysteine protease that uses a catalytic dyad of
cysteine and histidine residues to catalyze substrate cleavage. Two covalent inhibitors of
alphavirus nsP2 protease that contain a common β-amidomethyl vinyl sulfone warhead
have been recently disclosed (Figure 1). Compound #11 was reported as a micromolar
inhibitor of VEEV nsP2 protease activity with antiviral activity [5]. Likewise, we reported
the discovery of RA-0002034 (1) as a potent covalent inhibitor of the CHIKV nsP2 protease
with IC50 = 60 nM [6]. Vinyl sulfone 1 inhibited VEEV and CHIKV replication with
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EC50 = 0.3 and 0.01 µM, respectively, and decreased viral titer across a wide range of New
and Old World alphaviruses [6]. Notably, the 5-arylpyrazole in 1 conferred an increase in
potency for nsP2 protease inhibition compared to the 1,2-dihydroquinoline in Compound
#11, demonstrating the importance of the heterocyclic amide substituent in molecular
recognition by the viral protease.
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Figure 1. Alphavirus nsP2 protease inhibitors. The vinyl sulfone covalent warhead in compound #11
(ref. [5]) and RA-0002034 (1) is highlighted in blue. Potencies for inhibition of alphavirus replication
are indicated.

Vinyl sulfones have broad utility as covalent inhibitors of cysteine proteases beyond
viral nsP2 [7]. However, the cysteine reactivity of these warheads must be balanced with
concerns of toxicity due to off-target activity or poor pharmacokinetics due to systemic
GSH reactivity [8]. During the resynthesis of 1, we observed the formation of a cyclic
byproduct 2 that effectively masked the vinyl sulfone warhead, rendering it inactive as
an nsP2 protease inhibitor. In this report, we document methods to synthesize pyrazole-
substituted β-amidomethyl vinyl sulfones, such as 1, devoid of contamination from cyclic
dihydropyrazolo[1,5-a]pyrazin-4(5H)-ones. We also explored the reversibility of the cycliza-
tion reaction as a potential prodrug strategy for the cysteine-reactive acyclic β-amidomethyl
vinyl sulfone.

2. Results and Discussion
2.1. Identification of a Cyclic Product of Pyrazole-Substituted β-Amidomethyl Vinyl Sulfone 1

Synthesis of an nsP2 protease inhibitor (E)-5-(2-ethoxyphenyl)-N-(3-(methylsulfonyl)allyl)-
1H-pyrazole-3-carboxamide (1) from 3-carboxypyrazole (3) was attempted by amide cou-
pling with (E)-3-(methylsulfonyl)prop-2-en-1-amine 4 using hexafluorophosphate benzotri-
azole tetramethyl uronium (HBTU), 1-hydroxybenzotriazole (HOBt), and diisopropylethy-
lamine (DIPEA) in dimethylformamide (DMF). 1H NMR analysis of the isolated product
indicated an approx. 1:1 mixture of the expected product 1 together with a byproduct 2
that was inseparable by thin layer and column chromatography (Scheme 1).
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Scheme 1. (i) HBTU, HOBt, DIPEA, DMF, 25 ◦C, 16 h.

LCMS analysis using an Ultrahigh Performance Liquid Chromatography (UPLC)
reverse phase C18 column with an extended run time achieved baseline separations of 1
and 2 (Figure 2A). The mass spectra of the respective peaks showed predicted molecular
weights of 349 Da for both compounds (Figure 2B,C), indicating that they were likely to
be constitutional isomers. Preparative HPLC separation using a reverse phase Luna 5 µm
phenyl-hexyl column (Phenomenex, Torrance, CA, USA) provided high purity (>99%)
samples of 1 and 2 as their TFA salts. CHIKV nsP2 protease inhibition was found to reside
exclusively in 1 (IC50 = 60 nM), with the byproduct 2 devoid of activity in the enzyme assay
at 200 µM (Table S1).
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Figure 2. LCMS analysis of 1 and byproduct 2. (A) Analytical UPLC separation of 1 and 2 using a
reverse-phase C18 2.7 µm column (Agilent (Santa Clara, CA, USA)). (B) Positive ion mass spectrum
of 1, m/z: [M + H]+ = 350. (C) Positive ion mass spectrum of 2, m/z: [M + H]+ = 350.

Using a combination of 1H and 13C NMR spectroscopy, the chemical structure of 2
was determined to be a dihydropyrazolo[1,5-a]pyrazin-4(5H)-one (Figure 1) arising from
intramolecular cyclization of 1. 1H NMR analysis of 1 showed characteristic olefinic
protons corresponding to the (E)-vinyl sulfone at δ 6.69 ppm (dt, J = 15.3, 1.8 Hz, H14) and
δ 6.82 ppm (dt, J = 15.3, 4.4 Hz, H13) (Figure 3A). These olefin resonances were absent in
2 (Figure 3B) and were replaced by a multiplet at δ 5.07 ppm (m, J = 8.9, 4.5 Hz, H9) and
signals for two protons at δ 3.76–3.72 ppm (m, H11) and δ 3.98 ppm (dd, J = 14.4, 3.9 Hz,
H11). Other resonances consistent with the cyclic structure of 2 were the non-equivalent
methylene protons at δ 3.70 ppm (td, J = 6.3, 3.5 Hz, H8) and δ 3.93 ppm (ddd, J = 13.3,
4.4, 2.3 Hz, H8) (Figure 3B), which appeared as a single multiplet at δ 4.11 ppm in acyclic
1 (Figure 3A, H12). Additional evidence for the cyclic structure of 2 was provided by
a 1H-13C heteronuclear multiple bond correlation (HMBC) experiment (Figure 3C) that
indicated a three-bond correlation between atoms H9 and C4 in 2 that was absent in the
acyclic 1.

Formation of 2 is proposed to occur under the basic conditions of the amide coupling
by a formal aza-Michael conjugate addition [9,10] of the pyrazole N2 into the β-carbon
of the vinyl sulfone (Scheme 2). The resulting dihydropyrazolo[1,5-a]pyrazin-4(5H)-one
2, which masks the reactive vinyl sulfone warhead within its cyclic structure, was stable
under normal laboratory conditions with no propensity to revert to the acyclic 1 upon
storage as a solid or as a 10 mM DMSO stock solution. Unsurprisingly, 2 was inactive as an
nsP2 protease inhibitor at concentrations up to 200 µM (Table S1).
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2.2. Stability of 1 in Neutral Phosphate Buffer

To assess if cyclization of 1 into 2 could occur during the assessment of cellular antiviral
activity, the stability of 1 in neutral pH phosphate buffer was investigated. To achieve
this, a stock solution of 1 was prepared in DMSO-d6 and diluted into pH 7.4 phosphate
buffer (with 10% D2O) to a final concentration of 2 mM in the presence of maleic acid as
an internal standard. The solution was analyzed by 1H NMR spectroscopy over 48 h at
room temperature (Figure 4). At t = 1 h, vinyl sulfone 1 was present in solution at the
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expected 2 mM concentration. After 24 h, a reduction in the abundance of 1 by 10% and the
appearance of approximately 9% of its cyclic isomer 2 were observed. After 48 h, 81% of 1
remained, with approximately 19% of 2 present in the phosphate buffer.
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are indicated.

These results demonstrated that partial cyclization of 1 into 2 might occur under
standard cell culture conditions. Whether this decrease in the effective concentration of 1
would influence its efficacy as an antiviral nsP2 inhibitor would depend on the frequency
of dosing and the time course of the bioassay.

2.3. Optimized Synthesis of β-Amidomethyl Vinyl Sulfone 1

Alternative amide coupling conditions [11] were explored for the synthesis of acyclic
β-amidomethyl vinyl sulfone 1 that would avoid the formation of cyclic byproduct 2 and
the subsequent preparative HPLC separation (Table 1). The original conditions using
HBTU as the coupling agent and DIPEA as the base in DMF yielded a 60:40 mixture of
1 and 2 by analytical UPLC analysis (entry 1, Table 1). Switching the coupling agent to
hexafluorophosphate azabenzotriazole tetramethyl uronium (HATU) or benzotriazol-1-
yl-oxytripyrrolidino-phosphonium hexafluorophosphate (PyBOP) resulted in a similar
ratio of 1 and 2 (entries 2 and 3). Use of n-propanephosphonic acid anhydride (T3P)
as the coupling agent with triethylamine (TEA) as the base also yielded a 60:40 ratio
of 1 and 2, as did N,N′-diisopropylcarbodiimide (DIC) with 4-dimethylaminopyridine
(DMAP) (entries 4 and 5). Each of these amide coupling reactions (entries 1–5) occurred
in the presence of strongly basic amines with pKa 9.7–10.9. Switching to 1-ethyl-3-(3-
dimethylaminopropyl)carbodiimide (EDC) in combination with hydroxybenzotriazole
(HOBt), where amide coupling occurs without the addition of an amine base, resulted in
an improved 70:30 ratio of 1 and 2 (entry 6). This result prompted us to trial the amide
synthesis with the original benzotriazole tetramethyl uronium coupling agent but as a
tetrafluoroborate salt (TBTU) in pyridine as a solvent. Under these less basic conditions
(entry 7), exclusive formation of 1 was observed by UPLC analysis.
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Table 1. Optimization of Amide Coupling between 3 and 4 a.

Entry Coupling Agent Base pKa Solvent Temp (◦C) Time (h) Ratio of 1:2 b

1 HBTU DIPEA 10.9 DMF 25 16 60:40
2 HATU DIPEA 10.9 DMF 25 2 60:40
3 PyBOP DIPEA 10.9 DMF 25 16 60:40
4 T3P TEA 10.7 DMF 25 2 60:40
5 DIC DMAP 9.7 DMF 25 16 60:40
6 EDC HOBt 4.6 MeCN 25 2 70:30
7 TBTU Pyridine 5.2 Pyridine 25 2 100:0

a Reaction conditions: 3 (1.0 eq.), 4 (1.2 eq.), solvent (0.2 M). b Quantified by analytical UPLC analysis.

An alternate synthesis of β-amidomethyl vinyl sulfone 1 was also developed to avoid
the liability of cyclization during the amide bond formation (Scheme 3). MOM-protection of
pyrazole 3 occurred exclusively at the N1 position as expected [12,13] and was confirmed by
1H-13C HMBC NMR analysis. The coupling of MOM-protected pyrazole 5 using the TBTU-
pyridine protocol gave exclusively amide 6 with no byproducts resulting from cyclization.
Acid-mediated cleavage of the MOM protecting group yielded pure 1 as an HCl salt without
the need for chromatography. The HCl salt of 1 was stable upon storage as a solid or as
a 10 mM DMSO stock solution and was routinely checked for purity prior to bioassay.
However, researchers are cautioned that commercial samples of 1 or other heterocyclic β-
amidomethyl vinyl sulfones (ChemSpace, Enamine) may contain undetermined quantities
of the respective dihydropyrazolo[1,5-a]pyrazin-4(5H)-ones unless careful quality control
by 1H NMR and UPLC analysis has been performed.
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2.4. Optimized Synthesis of Dihydropyrazolo[1,5-a]pyrazin-4(5H)-one 2

Conditions for controlled cyclization of the HCl salt of β-amidomethyl vinyl sulfone 1
to dihydropyrazolo[1,5-a]pyrazin-4(5H)-one 2 by intramolecular aza-Michael reaction were
explored (Table 2). Reactions were performed at room temperature for 2 h in the presence
of different bases, with the conversion to 2 monitored by UPLC. K2CO3 in ethanol gave
efficient cyclization (entry 1). However, no cyclization occurred with K2CO3 in water due
to the limited aqueous solubility of 1 (entry 2). Na2CO3 in an aqueous dioxane mixture
resulted in clean cyclization to 2 (entry 3). The less basic NaHCO3 in methanol or water
was not as effective as K2CO3 (entries 4 and 5) within the 2 h reaction time. The amine base
TEA in methanol was also less effective (entry 6). The stronger amine bases, DIPEA or DBU,
showed faster conversion to 2 but were still not as rapid as the inorganic bases (entries
7 and 8). Na2CO3 in an aqueous dioxane (entry 3) was chosen as the optimal cyclization
conditions for the synthesis of 2 since it was fast, resulted in a simple work-up, and avoided
the need for chromatography.
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Table 2. Optimization of Intramolecular Cyclization of 1 to 2 a.

Entry Base Eq. Solvent Ratio of 1:2 b

1 K2CO3 3.5 EtOH 0:100
2 K2CO3 3.5 H2O 100:0
3 Na2CO3 3.0 Dioxane/H2O 0:100
4 NaHCO3 3.0 MeOH 12:88
5 NaHCO3 3.0 H2O 47:53
6 TEA 3.0 MeOH 51:49
7 DIPEA 3.0 DMF 4:96
8 DBU 0.5 ACN 8:92

a Reaction conditions: 25 ◦C, 2 h. b Quantified by analytical UPLC analysis.

2.5. Pharmacokinetic Properties of 1 and 2

Although vinyl sulfones have been used as covalent warheads for inhibition of a wide
range of cysteine proteases [7,8], there are relatively few reports of their use in vivo [14].
To explore the potential of 1 as a drug lead for the treatment or prevention of alphavirus
infections, pharmacokinetic experiments were performed in mice following a 10 mg/kg i.v.
dose (Figure 5).
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Unfortunately, β-amidomethyl vinyl sulfone 1 had very rapid clearance in mice, with
plasma levels falling below the limit of MS detection after 1 h and a half-life of only ~10 min.
As a control, the pharmacokinetics of the cyclic dihydropyrazolo[1,5-a]pyrazin-4(5H)-one
2 were determined (Figure 2). In comparison to 1, the cyclic pyrazole 2 showed reduced
plasma clearance with an i.v. half-life of ~30 min and a 4-fold greater plasma exposure.
Reanalysis of the plasma samples from the dosing of 1 showed no detectable levels of 2,
demonstrating that the rapid clearance of 1 in vivo was not due to extensive cyclization
to 2. Instead, the rapid clearance of 1 was likely due to its β-amidomethyl vinyl warhead,
which appeared to be a liability for in vivo exposure in mice. Despite the fact that extensive
interconversion between 1 and 2 was not observed in vivo, the improved pharmacokinetics
of the cyclic dihydropyrazolo[1,5-a]pyrazin-4(5H)-one raised the question of whether it
might still function as a prodrug if low levels of the reactive vinyl sulfone could be formed
in the presence of the viral enzyme.

2.6. Reversibility of the Aza-Michael Reaction

Cyclization of 1 to 2 was favored under basic conditions but occurred only slowly at
physiological pH. We were eager to determine if the cyclization was reversible and under
what conditions the dihydropyrazolo[1,5-a]pyrazin-4(5H)-one 2 could revert to the acyclic
β-amidomethyl vinyl sulfone 1 by a retro-Michael reaction (Scheme 4).
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The stability of the dihydropyrazolo[1,5-a]pyrazin-4(5H)-one 2 under standard labora-
tory conditions suggested that equilibrium with the acyclic β-amidomethyl vinyl sulfone 1
lay almost entirely toward the cyclic form. For example, 1 was below the limits of UPLC
detection in 10 mM DMSO stock solutions of 2 even after prolonged storage over several
months. Since low levels of the electrophilic β-amidomethyl vinyl sulfone could theoret-
ically still be present, we decided to test whether 1 could be captured using glutathione
(GSH). Incubation of 1 with a 100-fold excess of GSH in phosphate buffer at 30 ◦C led to com-
plete conversion to GSH adduct 9 within 8 h, as monitored by LCMS (Table 3 and Figure S1).
In contrast, incubation of dihydropyrazolo[1,5-a]pyrazin-4(5H)-one 2 with excess GSH
did not result in the formation of the GSH adduct 9 even after 24 h. The GSH capture
data demonstrated that no detectable level of the acyclic β-amidomethyl vinyl sulfone 1
was present in phosphate buffer, making it extremely unlikely that dihydropyrazolo[1,5-
a]pyrazin-4(5H)-one 2, despite its improved pharmacokinetic properties, would be useful
as a prodrug for 1.

Table 3. Reversibility of the aza-Michael cyclization by GSH capture of the acyclic vinyl sulfones.

Time (h)

GSH-Adduct Formation (%) a

Acyclic Cyclic

1 7 2 8

8 100 93 0 3
24 100 100 0 6

a Reaction conditions: GSH (100×), phosphate buffer, 30 ◦C.

Notably, during structure-activity studies of the pyrazole β-amidomethyl vinyl sul-
fones [15], a phenylsulfonamide-5-substituted pyrazole analog 7 was synthesized that
appeared to be less prone to intramolecular cyclization. Under cyclization conditions
of NaHCO3 (1.0 eq.) in MeOH, 1 was 100% converted to 2 in 36 h, but under the same
conditions, only ~50% of 7 cyclized to 8. These results suggested that the structure of the
pyrazole could influence the rate of aza-Michael cyclization and possibly the propensity
for the reverse reaction. To explore this hypothesis, an additional series of GSH capture
experiments was performed. Incubation of β-amidomethyl vinyl sulfone 7 with a 100-fold
excess of GSH in phosphate buffer at 30 ◦C led to the formation of its corresponding
GSH adduct 10, although conversion was slower than was seen with 1 and required 24 h
to complete. More importantly, incubation of the corresponding dihydropyrazolo[1,5-
a]pyrazin-4(5H)-one 8 with GSH resulted in the formation of 3% of the GSH adduct 10 after
8 h and 6% after 24 h (Figure S1). These GSH capture experiments demonstrate that the
cyclic dihydropyrazolo[1,5-a]pyrazin-4(5H)-one 8 exists in equilibrium with the acyclic
β-amidomethyl vinyl sulfone 7 in phosphate buffer. Unfortunately, the vinyl sulfone 7 was
not sufficiently active as an nsP2 protease inhibitor (IC50~4 µM [15]) to allow us to test
whether its formation from the cyclic form 8 would result in antiviral activity. However,
our demonstration of the reversibility of the aza-Michael reaction at physiological pH adds
credence to the potential use of dihydropyrazolo[1,5-a]pyrazin-4(5H)-ones as prodrugs for
their corresponding cysteine reactive β-amidomethyl vinyl sulfones.

In conclusion, (E)-5-(2-ethoxyphenyl)-N-(3-(methylsulfonyl)allyl)-1H-pyrazole-3-
carboxamide (RA-0002034, 1) is a covalent inhibitor of nsP2 cysteine proteases with potent
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antiviral activity against New and Old World alphaviruses. Although 1 was prone to
intramolecular cyclization to a cyclic dihydropyrazolo[1,5-a]pyrazin-4(5H)-one 2 under
basic conditions, two modified procedures were developed for the synthesis of the pure
acyclic β-amidomethyl vinyl sulfones as their TFA or HCl salts that can be employed in
analog development for structure-activity studies of nsP2 protease inhibitors. The primary
liability of 1 as an anti-alphavirus drug lead was its very high clearance in mice, which
prompted us to explore the use of the inactive dihydropyrazolo[1,5-a]pyrazin-4(5H)-one 2
as a potential prodrug. Although cyclic 2 showed no evidence for a retro aza-Michael reac-
tion to give 1, the phenylsulfonamide-5-substituted pyrazole analog 8 formed detectable
levels of its acyclic β-amidomethyl vinyl sulfone 7, as evidenced by capture with GSH.
These results demonstrate that the dihydropyrazolo[1,5-a]pyrazin-4(5H)-one chemotype
can function as a masked form of the cysteine-reactive β-amidomethyl vinyl sulfone. Syn-
thesis of dihydropyrazolo[1,5-a]pyrazin-4(5H)-one analogs with substituents that further
favor equilibrium with their acyclic vinyl sulfones may provide a new prodrug strategy for
covalent inhibition of viral nsP2 cysteine proteases.

3. Materials and Methods
3.1. General Methods

All reactions were performed in oven-dried glassware under an atmosphere of dry N2
unless otherwise stated. All reagents and solvents used were purchased from commercial
sources and were used without further purification. No unexpected safety hazards were
encountered during chemical synthesis. Analytical thin layer chromatography (TLC) was
performed on pre-coated silica gel plates, 200 µm, with an F254 indicator. TLC plates
were visualized by fluorescence quenching under UV light or by staining with iodine and
KMnO4. Column chromatography was performed using Teledyne ISCO’s RediSep Rf

®

pre-loaded silica gel cartridges on a Biotage (Uppsala, Sweden) automated purification
system. NMR spectra were collected in DMSO-d6 on Bruker 400 MHz and 500 MHz
spectrometers. All chemical shifts are reported in parts per million (ppm, δ units) and are
referenced to the residual protons in the deuterated solvent. Coupling constant units are
in hertz (Hz). Splitting patterns are indicated as follows: s (singlet), d (doublet), t (triplet),
q (quartet), m (multiplet), dd (doublet of doublets), dt (doublet of triplets), td (triplet of
doublets), ddd (doublet of doublets of doublets). Water suppressed 1H NMR spectra were
recorded at 298 K on a Bruker Avance Neo 600 MHz NMR spectrometer equipped with a
QCI-F cryoprobe using a solvent suppression pulse sequence with pre-saturation and spoil
gradients (1D spectra, noesygppr1d, Bruker (Billerica, MA, USA)) and chemical shifts (δ
units) referenced to the residual water signal at 4.7 ppm. HRMS samples were analyzed
with a Q Exactive HF-X (ThermoFisher, Bremen, Germany) mass spectrometer. Samples
were introduced by a heated electrospray source (HESI) at a flow rate of 10 µL/min. HESI
source conditions were set as follows: nebulizer temperature 400 ◦C, sheath gas (nitrogen)
20 arb, auxiliary gas (nitrogen) 0 arb, sweep gas (nitrogen) 0 arb, capillary temperature
320 ◦C, RF voltage 45 V. The mass range was set to 100–1000 m/z. All measurements
were recorded at a resolution setting of 120,000. Solutions were analyzed at 0.1 mg/mL
or less based on responsiveness to the ESI mechanism. Xcalibur (ThermoFisher, Breman,
Germany) was used to analyze the data. Molecular formula assignments were determined
with the Molecular Formula Calculator (v 1.3.0). All observed species were singly charged,
as verified by the unit m/z separation between mass spectral peaks corresponding to the
12C and 13C12Cc-1 isotopes for each elemental composition. Analytical LCMS data were
obtained using a Waters Acquity UPLC system equipped with a photodiode array detector
using the following method: solvent A = water + 0.2% FA, solvent B = ACN + 0.1% FA, flow
rate = 1 mL/min. The gradient started at 95% A for 0.05 min. Afterwards, it was ramped to
100% B over 2 min and held for an additional minute at this concentration before returning
to 95% A. For extended LCMS runs, separations were conducted on an Agilent 1290 Infinity
II LC System using an Agilent Infinity Lab PoroShell 120 EC-C18 column (30 ◦C, 2.7 µm,
2.1 × 50 mm). LC conditions were set at 95% water with 0.1% formic acid (A), ramped
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linearly over 15.1 min to 100% acetonitrile with 0.1% formic acid (B), and held until 15.3 min.
At 15.4 min, the gradient was switched back to 95% A and allowed to re-equilibrate until
18.0 min. The injection volume for all samples was 4 µL. Preparative HPLC was performed
using an Agilent 1260 Infinity II LC System equipped with a Phenomenex C18 column
(PhenylHexyl, 30 ◦C, 5 µm, 75 × 30 mm) using the following method: Solvent A: water
+ 0.05% TFA; Solvent B: acetonitrile; flow rate: 30.00 mL/min. LC conditions were set at
95% A ramped linearly over 26 min to 100% B and held until 28 min at 100% B. At 30 min,
the gradient was switched back to 95% A. The final compounds were determined to have
≥95% purity by analytical LCMS.

3.2. Optimized Synthesis Pyrazole Vinyl Sulfones (1, 7) and Dihydropyrazolo[1,5-a]pyrazin-4(5H)-
ones (2, 8)
3.2.1. (E)-5-(2-Ethoxyphenyl)-N-(3-(methylsulfonyl)allyl)-1H-pyrazole-3-carboxamide (1)

Method A: To a stirred solution of 5-(2-ethoxyphenyl)-1H-pyrazole-3-carboxylic acid
(3, 100 mg, 0.43 mmol, 1.0 eq.) and TBTU (207 mg, 0.65 mmol, 1.5 eq.) in pyridine (3 mL),
(E)-3-(methylsulfonyl)prop-2-en-1-amine (4, 89 mg, 0.52 mmol, 1.2 eq.) was added, and
the reaction was stirred at 25 ◦C for 2 h. On completion of the reaction based on TLC
and LCMS analysis, the reaction was poured into water and extracted with EtOAc. The
combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated
to give the crude compound. Column chromatography (eluting with 0–100% EtOAc in
hexanes) followed by preparative HPLC purification afforded the TFA salt of (E)-5-(2-
ethoxyphenyl)-N-(3-(methylsulfonyl)allyl)-1H-pyrazole-3-carboxamide (1) as a white solid
(140 mg, 70%): m.p. 70 ◦C; 1H NMR (DMSO-d6, 500 MHz): δ 8.62 (t, J = 5.9 Hz, 1H), 7.74
(dd, J = 7.6, 1.8 Hz, 1H), 7.34 (ddd, J = 8.5, 7.4, 1.7 Hz, 1H), 7.16–7.10 (m, 2H), 7.03 (td,
J = 7.5, 1.1 Hz, 1H), 6.82 (dt, J = 15.2, 4.4 Hz, 1H), 6.69 (dt, J = 15.2, 1.8 Hz, 1H), 4.16 (q,
J = 6.9 Hz, 2H), 4.11 (ddd, J = 6.1, 4.4, 1.8 Hz, 2H), 3.01 (s, 3H), 1.41 (t, J = 6.9 Hz, 3H); 13C
NMR (DMSO-d6, 126 MHz): δ 161.5, 155.0, 143.5, 130.0, 129.7, 127.8, 120.6, 112.8, 105.6, 63.7,
42.2, 38.7, 14.6; HRMS (ESI) m/z: [M + H]+ calculated for C16H20N3O4S: 350.1175; found
350.1172; HPLC purity > 99%.

Method B: To a stirred solution of 5-(2-ethoxyphenyl)-1H-pyrazole-3-carboxylic acid
(3, 1.0 g, 4.3 mmol, 1.0 eq.) in DMSO (10 mL) at 0 ◦C, K2CO3 (1.8 g, 13 mmol, 3.0 eq.) and
chloromethyl methyl ether (0.39 mL, 5.2 mmol, 1.2 eq.) were added, and the reaction was
stirred at 25 ◦C for 1 h. On completion of the reaction based on TLC and LCMS analysis, the
reaction was poured into water and extracted with Et2O. The combined organic layers were
washed with brine, dried over anhydrous Na2SO4, filtered, and concentrated to give the
crude compound. Column chromatography (eluting with 10% MeOH in CH2Cl2) afforded
5-(2-ethoxyphenyl)-1-(methoxymethyl)-1H-pyrazole-3-carboxylic acid (5) as a white solid
(350 mg, 29%); 1H NMR (DMSO-d6, 500 MHz): δ 13.52 (s, 1H), 7.93 (dd, J = 7.7, 1.8 Hz,
1H), 7.37 (s, 1H), 7.33 (ddd, J = 8.3, 7.3, 1.8 Hz, 1H), 7.11 (dd, J = 8.4, 1.1 Hz, 1H), 7.01 (td,
J = 7.4, 1.1 Hz, 1H), 5.77 (s, 2H), 4.15 (q, J = 6.9 Hz, 2H), 3.28 (s, 3H), 1.41 (t, J = 7.0 Hz, 3H);
13C NMR (DMSO-d6, 126 MHz): δ 160.4, 155.8, 146.7, 134.0, 129.6, 127.7, 120.5, 120.3, 112.9,
112.8, 80.2, 63.6, 56.3, 14.7; m/z [M + H] + 277.

To a stirred solution of 5 (200 mg, 724 µmol, 1.0 eq.) and TBTU (349 mg, 1.09 mmol,
1.5 eq.) in pyridine (5.0 mL), (E)-3-(methylsulfonyl) prop-2-en-1-amine (4, 149 mg, 869 µmol,
1.2 eq.) was added, and the reaction was stirred at 25 ◦C for 2 h. On completion of
the reaction based on TLC and LCMS analysis, the reaction was poured into water and
extracted with EtOAc. The combined organic layers were dried over anhydrous Na2SO4,
filtered, and concentrated to give the crude compound. Column chromatography (eluting
with 0–100% EtOAc in hexanes) afforded (E)-5-(2-ethoxyphenyl)-1-(methoxymethyl)-N-(3-
(methylsulfonyl)allyl)-1H-pyrazole-3-carboxamide (6) as a white solid (210 mg, 74%); 1H
NMR (DMSO-d6, 500 MHz): δ 9.00 (t, J = 5.7 Hz, 1H), 7.90 (dd, J = 7.7, 1.8 Hz, 1H), 7.46 (s,
1H), 7.33 (ddd, J = 8.2, 7.3, 1.8 Hz, 1H), 7.12 (dd, J = 8.5, 1.1 Hz, 1H), 7.00 (td, J = 7.5, 1.1 Hz,
1H), 6.82 (dt, J = 15.3, 4.2 Hz, 1H), 6.74 (dt, J = 15.2, 1.6 Hz, 1H), 5.79 (s, 2H), 4.20–4.11 (m,
4H), 3.27 (s, 3H), 3.01 (s, 3H), 1.44 (t, J = 6.9 Hz, 3H); 13C NMR (DMSO-d6, 126 MHz): δ
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159.2, 155.7, 146.6, 142.9, 136.0, 130.3, 129.5, 127.9, 120.8, 120.5, 112.9, 109.5, 79.9, 63.7, 56.3,
42.2, 38.9, 14.6; m/z [M + H]+ 394.

To a stirred solution of 6 (100 mg, 254 µmol, 1.0 eq.) in CH2Cl2 was added 4M HCl
in dioxane (1.3 mL, 5.1 mmol, 20.0 eq.), and the reaction was stirred at 25 ◦C for 3 h. On
completion of the reaction based on TLC and LCMS analysis, the reaction was concentrated.
The resulting solid was washed with Et2O and dried under high vacuum to obtain the HCl
salt of (E)-5-(2-ethoxyphenyl)-N-(3-(methylsulfonyl)allyl)-1H-pyrazole-3-carboxamide (1)
as a white solid (90 mg, 92%); m.p. 198 ◦C; HPLC purity > 99%.

3.2.2. 2-(2-Ethoxyphenyl)-7-((methylsulfonyl)methyl)-6,7-dihydropyrazolo[1,5-a]pyrazin-
4(5H)-one (2)

To a stirred solution of (E)-5-(2-ethoxyphenyl)-N-(3-(methylsulfonyl)allyl)-1H-pyrazole-
3-carboxamide (1, 100 mg, 286 µmol, 1.0 eq.) in 1,4-dioxane (1.5 mL) and water (1.5 mL),
sodium carbonate (91.0 mg, 859 µmol, 3.0 eq.) was added, and the reaction was stirred at
25 ◦C for 12 h. On completion of the reaction based on LCMS analysis, the reaction was
poured into water and extracted with EtOAc. The combined organic layers were dried
over anhydrous Na2SO4, filtered, and concentrated to give the crude product. Column
chromatography (eluting with 0–100% EtOAc in hexanes) afforded 2-(2-ethoxyphenyl)-7-
((methylsulfonyl)methyl)-6,7-dihydropyrazolo[1,5-a]pyrazin-4(5H)-one (2) as a white solid
(70 mg, 69%): m.p. 228 ◦C; 1H NMR (DMSO-d6, 500 MHz): δ 8.31 (t, J = 2.9 Hz, 1H), 7.95
(dd, J = 7.7, 1.8 Hz, 1H), 7.32 (ddd, J = 8.9, 7.4, 1.8 Hz, 1H), 7.23 (s, 1H), 7.11 (dd, J = 8.4, 1.0
Hz, 1H), 7.00 (td, J = 7.5, 1.0 Hz, 1H), 5.07 (dq, J = 9.0, 4.5 Hz, 1H), 4.15 (q, J = 7.0 Hz, 2H),
3.98 (dd, J = 14.4, 3.9 Hz, 1H), 3.93 (ddd, J = 13.3, 4.5, 2.4 Hz, 1H), 3.76–3.68 (m, 2H), 3.16
(s, 3H), 1.41 (t, J = 6.9 Hz, 3H); 13C NMR (DMSO-d6, 126 MHz): δ 158.1, 158.1, 155.7, 147.3,
134.8, 129.4, 127.8, 120.5, 120.4, 112.7, 107.9, 63.6, 53.8, 50.9, 43.0, 41.5, 14.7; HRMS (ESI) m/z:
[M + H]+ calculated for C16H20N3O4S: 350.1175; found 350.1177; HPLC purity > 99%.

3.2.3. (E)-N-(3-(Methylsulfonyl)allyl)-5-(phenylsulfonamido)-1H-pyrazole-3-carboxamide (7)

To a stirred solution of 5-(phenylsulfonamido)-1H-pyrazole-3-carboxylic acid (184 mg,
688 µmol, 1.0 eq.) and TBTU (332 mg, 1.03 mmol, 1.5 eq.) in pyridine (5.0 mL), (E)-
3-(methylsulfonyl) prop-2-en-1-amine (4, 142 mg, 0.83 mmol, 1.2 eq.) was added, and
the reaction was stirred at 25 ◦C for 2 h. On completion of the reaction based on TLC
and LCMS analysis, the mixture was poured into water and extracted with EtOAc. The
combined organic layers were dried over anhydrous Na2SO4, filtered, and concentrated
to give the crude compound. Column chromatography (eluting with 0–100% EtOAc in
hexanes), followed by preparative HPLC purification afforded the TFA salt of (E)-N-(3-
(methylsulfonyl)allyl)-5-(phenylsulfonamido)-1H-pyrazole-3-carboxamide (7) as a white
solid (125 mg, 36%): m.p. 181 ◦C; 1H NMR (DMSO-d6, 500 MHz): δ 13.17 (s, 1H), 10.64 (s,
1H), 8.86 (s, 1H), 7.80–7.77 (m, 2H), 7.63 (t, J = 7.3 Hz, 1H), 7.57 (t, J = 7.5 Hz, 2H), 6.82–6.69
(m, 3H), 4.07 (t, J = 4.7 Hz, 2H), 3.00 (s, 3H); 13C NMR (DMSO-d6, 126 MHz): δ 158.4, 145.9,
142.7, 140.1, 136.9, 132.8, 130.3, 129.1, 126.6, 97.3, 42.1, 38.7; HRMS (ESI) m/z: [M + H]+

calculated for C14H17N4O5S2 385.0640; found 385.0577; HPLC purity > 98%.

3.2.4. N-(7-((Methylsulfonyl)methyl)-4-oxo-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrazin-2-
yl)benzenesulfonamide (8)

To a stirred solution of (E)-N-(3-(methylsulfonyl)allyl)-5-(phenylsulfonamido)-1H-
pyrazole-3-carboxamide 2,2,2-trifluoroacetate (7, 50.0 mg, 100 µmol, 1.0 eq.) in 1,4-dioxane
(1.5 mL) and water (1.5 mL) NaHCO3 (25 mg, 300 µmol, 3.0 eq.) was added, and the reaction
was stirred at 25 ◦C for 12 h. On completion of the reaction based on LCMS analysis, the
mixture was poured into water and extracted with EtOAc. The combined organic extracts
were dried over anhydrous Na2SO4, filtered, and concentrated to give the crude compound.
Column chromatography (eluting with 0–100% EtOAc in hexanes), followed by preparative
HPLC purification afforded the TFA salt of N-(7-((methylsulfonyl)methyl)-4-oxo-4,5,6,7-
tetrahydropyrazolo[1,5-a]pyrazin-2-yl)benzenesulfonamide (8) as a white solid (20.0 mg,
39%): m.p 222 ◦C; 1H NMR (DMSO-d6, 500 MHz): δ 10.97 (s, 1H), 8.29 (t, J = 2.8 Hz, 1H),
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7.83–7.81 (m, 2H), 7.67–7.63 (m, 1H), 7.60–7.56 (m, 2H), 6.36 (d, J = 1.3 Hz, 1H), 4.82 (dq,
J = 9.2, 4.7 Hz, 1H), 3.81 (ddd, J = 13.4, 4.5, 2.2 Hz, 1H), 3.65 (dd, J = 14.5, 4.6 Hz, 1H),
3.62–3.56 (m, 2H), 2.99 (s, 3H); 13C NMR (DMSO-d6, 176 MHz): δ 157.3, 145.9, 139.9, 135.0,
133.0, 129.3, 126.7, 97.9, 53.9, 50.5, 42.9, 41.4; 13C NMR (DMSO-d6, 214 MHz): δ 157.3, 145.9,
139.9, 135.0, 133.1, 129.3, 126.7, 97.9, 53.9, 50.5, 42.9, 41.5. HRMS (ESI) m/z: [M + H]+

calculated for C14H17N4O5S2 385.0640; found 385.0584; HPLC purity > 98%.

3.3. 1H NMR Stability Assay

A 40 mM stock solution of 1 in DMSO-d6 was prepared. A 95 mM stock solution of
maleic acid was prepared in D2O. The stock solutions of 1 (27.5 µL, 1.1 µmol) and maleic
acid (5.8 µL, 0.55 µmol), were added to D2O (49.2 µL) and pH 7.4 phosphate buffer (467.5 µL,
200 mM). The mixture was analyzed periodically by 1H NMR (600 MHz, H2O/D2O 9:1,
noesygppr1d, 256 scans) and held at room temperature between NMR acquisitions.

3.4. Pharmacokinetic Methods

Male CD1 mice were dosed intravenously with 10 mg/Kg solutions of 1 in DMSO/PEG-
400/Water (v/v/v, 5/40/55) or 2 in NMP/Solutol/PEG-400/normal saline (10:5:40:45;
v/v/v/v). Blood was collected at intervals of 0.25, 0.5, 1, and 3 h (for 1) and 0.5, 1, 3, and 5 h
(for 2) post-dose from the dorsal metatarsal vein and transferred into plastic microcentrifuge
tubes containing anticoagulant EDTA-K2. Blood samples were centrifuged at 4000× g for
5 min at 4 ◦C to obtain plasma. The plasma samples from each time point were pooled and
then analyzed by LCMS/MS. The PK parameters were estimated by a non-compartmental
model using WinNonlin 8.3.

3.5. GSH Capture Assay

A 10 mM solution of GSH (Sigma Aldrich Cat# G4251 (St. Louis, MO, USA)) was
prepared in a pH 7.4 phosphate buffer. A 10 mM DMSO solution of the test compound was
diluted in phosphate buffer to give a solution at 100 µM with 1% DMSO. At time zero (t = 0),
50 µL of the 100 µM test compound solution was added to an Eppendorf tube containing
50 µL phosphate buffer and 50 µL of 10 mM GSH solution. The final concentrations of the
compound and GSH were maintained at 50 µM and 5 mM, respectively. The Eppendorf
tube was vortexed, and then the sample was transferred to a high-recovery autosampler vial
for LCMS analysis. Analysis was performed at 8 and 24 h time points, and the percentage
of GSH adduct formation was calculated using Agilent LCMS software (OpenLab CDS
Version 2.7).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph17070836/s1, Figure S1: GSH Capture Spectra. Analytical data
for 1, 2, 7 and 8. Figures S2–S28. NMR Spectra. Figures S29–S32. LCMS Spectra. Figures S33–S36.
HRMS Spectra. Table S1. nsP2 Protease Inhibition Data.
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