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Abstract: Alcoholic beverages play a significant role in social engagement worldwide.
Excessive alcohol causes a variety of health complications. Alcohol-induced liver disease
(ALD) is responsible for the bulk of linked fatalities. The activation of immune mechanisms
has a crucial role in developing ALD. No effective medication promotes liver function,
shields the liver from harm, or aids in hepatic cell regeneration. Alcohol withdrawal is one
of the most beneficial therapies for ALD patients, which improves the patient’s chances of
survival. There is a crucial demand for safe and reasonably priced approaches to treating
it. Exploring naturally derived phytochemicals has been a fascinating path, and it has
drawn attention in recent years to modulators of inflammatory pathways for the prevention
and management of ALD. In this review, we have discussed the roles of various immune
mechanisms in ALD, highlighting the importance of intestinal barrier integrity and gut
microbiota, as well as the roles of immune cells and hepatic inflammation, and other
pathways, including cGAS-STING, NLRP3, MAPK, JAK-STAT, and NF-kB. Further, this
review also outlines the possible role of phytochemicals in targeting these inflammatory
pathways to safeguard the liver from alcohol-induced injury. We highlighted that targeting
immunological mechanisms using phytochemicals or herbal medicine may find a place
to counteract ALD. Preclinical in vitro and in vivo investigations have shown promising
results; nonetheless, more extensive work is required to properly understand these com-
pounds’ mechanisms of action. Clinical investigations are very crucial in transferring
laboratory knowledge into effective patient therapy.

Keywords: alcohol; alcohol-induced liver diseases; immunological mechanisms; pro-
inflammatory response; phytochemicals

1. Introduction
Alcohol is a known and established liver toxin. The determination of safe limits

for alcohol consumption remains a topic of ongoing debate [1]. As stated by the World
Health Organization (WHO), having more than five standard drinks for males and four
for females in 2 h can be known as binge drinking [2]. At the same time, the amount of
alcohol consumed may not necessarily directly correlate with the severity of liver damage
caused by alcohol [3]. Alcohol causes a wide range of pathology in the body, but the
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majority of associated mortality is caused by alcohol-induced liver disease (ALD). It is the
most frequent cause of liver cirrhosis in Europe, America, Southeast Asia, and Central
Asia [4]. According to WHO, hazardous alcohol use contributed to almost 30 lakh fatalities
worldwide, which comprises 5.3% of all deaths. Globally, alcohol is the 7th most crucial
risk factor for early mortality and disability [1]. Disability-adjusted life years (DALYs)
are the number of years lost as a result of illness, disability, or premature death. It is the
measure of the overall burden of the particular disease. India has the highest DALYs of
alcohol-related liver cirrhosis, followed by the US, China, Nigeria, and Indonesia [5]. Men
were observed to be more affected by fatalities due to alcohol compared to women [6].
Alcohol consumption can lead to a broad clinical spectrum of liver diseases, ranging from
simple steatosis to cirrhosis and, ultimately, to fatal liver failure [7,8]. This process increases
the risk of hepatocellular carcinoma [9].

The pathophysiology of ALD involves an intricate interplay between various mecha-
nisms. The diverse clinical manifestations of ALD are furthermore complicated by genetic
factors, dietary and metabolic factors, lifestyle, and immunological factors that make a
person vulnerable to the course of the disease. The first condition that occurs due to excess
alcohol use is alcoholic fatty liver (AFL). It is distinguished by the buildup of fats and
triglycerides in more than 5% of hepatocytes. Some people will advance and develop
alcoholic steatohepatitis, which is characterized by additional inflammation and hepato-
cyte damage [7]. The exposure to alcohol consumption determines the development of
steatohepatitis, which can be reversed by abstinence [10]. Most people can develop liver
steatosis after consumption of more than 60 g (76.04 mL) of alcohol each day for more than
2 weeks [11]. Some individuals may acquire alcoholic hepatitis and cirrhosis, the most
severe form of ALD, if they continue to drink alcohol for a prolonged duration [10]. At
the same time, the risk of cirrhosis rises even with lower alcohol intake levels. There is no
clear-cut limit on alcohol intake deemed to be safe for the liver [11]. ALD is characterized
immunologically by inflammation, featuring local and recruited inflammatory cells [9]. In-
appropriate activation of resident immune cells, particularly Kupffer cells, is pivotal in the
pathogenesis of ALD [12]. Alcohol-induced generation of free radicals and oxidative stress
are also the main components influencing the progression of immunological consequences
of ALD. However, new research has unequivocally demonstrated that the immunological
response potentially plays a significant role in the onset of ALD, especially its inflammatory
condition, alcoholic steatohepatitis [13].

Management of liver disease has become a daunting task. Alcohol abstinence must
be the first step in treating ALD [14]. It is one of the most effective therapies for ALD
patients. It can cause the reversal of steatohepatitis and increase the chances of survival of
alcohol-induced cirrhotic patients [15]. It takes around 1.5 years of abstaining from alcohol
to improve the overall survival of alcoholic cirrhosis patients [16]. There is no effective
medication that promotes liver function and protects the liver from damage. The only
medications available in the market are immunosuppressants and corticosteroids. These
medications have numerous side effects. To name a few, pentoxifylline and prednisolone are
recommended treatments for people with alcoholic hepatitis. Regretfully, many individuals
do not react well to these medications [17]. Alcoholic steatohepatitis is a significant indicator
of the progression of ALD. Corticosteroids have been the most researched and likely the
most successful therapy option for steatohepatitis. However, the results of steroid therapies
have been inconsistent [18]. Patients with severe alcoholic hepatitis who do not respond
to corticosteroids can use pentoxifylline, a tumor necrosis factor (TNF)-α inhibitor [19],
although there could be harmful side effects [20]. A liver transplant is the only option if the
patient does not respond to the corticosteroid therapy [21]. In Western countries, ALD is the
leading cause of liver transplantation, whereas hepatitis C virus (HCV) and non-alcoholic
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fatty liver disease (NAFLD) are the second and third leading reasons, respectively [22].
Similar patterns are also observed in Eastern countries. In India, ALD is one of the main
signs of liver transplantation [23]. The current management of ALD with questionable
safety and efficacy must be replaced with desirable candidates with minimal side effects.
As a result, alternative, safe, and affordable treatment methods for ALD are desperately
needed. Herbal medicine is one of the main sources of natural medicines, and it may be
essential in developing hepatoprotective drugs [24]. Exploring natural products for ALD
treatment that are inexpensive and have few adverse effects is a further field of research.
Phytochemicals are abundant in bioactive constituents, which possess antioxidant, anti-
inflammatory, and immunomodulatory properties [25]. Therefore, it is essential to learn
more about the therapeutic role of these phytochemicals. Safer herbal remedies and having
multiple targets have drawn greater interest in the past few years as an approach to
prevent ALD.

Despite several interesting existing reviews [26], this review is distinct in its specific
focus on the immunological mechanisms driving ALD, and it systematically discusses
how phytochemicals modulate key inflammatory pathways, such as Cyclic GMP-AMP
Synthase–Stimulator of Interferon Genes (cGAS-STING), NOD-Like Receptor Family Pyrin
Domain Containing 3 (NLRP3), Nuclear Factor kappa-light-chain-enhancer of activated
B cells (NF-κB), Janus Kinase—Signal Transducer and Activator of Transcription (JAK-
STAT), and Mitogen-Activated Protein Kinase (MAPK). It uniquely integrates the role
of gut microbiota dysbiosis and innate immune responses in ALD progression, offering
a mechanistic and translational perspective for future phytomedicine development. A
diagrammatic overview of key pathways involved in ALD is depicted in Figure 1.
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Figure 1. A diagrammatic overview of key pathways involved in ALD. This illustration outlines the
principal signaling pathways activated during the progression of ALD. Chronic alcohol consumption
disrupts the gut–liver axis, facilitates the translocation of endotoxins (e.g., LPS), and activates liver-resident
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immune cells, such as Kupffer cells, via TLR signaling. This activation subsequently triggers down-
stream signaling cascades, including the NF-κB, MAPK, and JAK-STAT pathways, leading to en-
hanced production of pro-inflammatory cytokines, increased oxidative stress, and sustained hepatic
injury. Abbreviations: ADH, alcohol dehydrogenase; ALDH, aldehyde dehydrogenase; AMPK,
AMP-activated protein kinase; SREBP-1c, sterol regulatory element-binding protein 1c; PPAR-γ,
peroxisome proliferator-activated receptor gamma; FAS, fatty acid synthase; ACC, acetyl-CoA car-
boxylase; LDL-Chl, low density lipoprotein cholesterol; HDL-Chl, high density lipoprotein cholesterol.
↓: Downregulation; ↑: Upregulation.

2. Inflammation-Associated Signaling Pathways in ALD and Its
Modulation by Phytochemicals
2.1. Alteration of Intestinal Barrier Integrity and Gut Microbiota

The integrity of the intestinal barrier, control of gut homeostasis, and induction of
the host immune response depend on the gut microbiota. ALD is influenced by impaired
intestinal barrier integrity and the translocation of gut microbiota-derived products, which
are transported from the gut to the liver through the gut–liver axis [27]. Chronic alcohol
consumption alters the intestinal microbes’ makeup and encourages intestinal bacteria
proliferation [28]. The gut–liver axis is one of the most probable initiators of inflamma-
tion in ALD. Long-term alcohol use damages the intestinal barrier, increasing intestinal
permeability and stimulating the immune system ectopically. When gut homeostasis is
maintained, several barriers shield the human body from microorganisms that invade
it [29]. Both intestinal epithelial cells and the Paneth cells release antimicrobial proteins
to prevent bacteria from migrating to the inner mucus layer, preserving the first physical
barrier that separates the gut lumen from the host. Regenerating islet-derived 3 gamma
(REG3G), a C-type lectin, can also be secreted by these cells to preserve the host and mi-
crobiota’s spatial segregation. Long-term alcohol consumption lowers intestinal REG3G
expression, which is inversely correlated with the quality of bacteria associated with the
mucosa in human patients [30]. Alcohol exposure lowers the amounts of tight junction
proteins (such as occludin and ZO-1) and causes the death of epithelial cells at the tips of in-
testinal villi [31]. A crucial pathophysiological event underlying the change from alcoholic
steatosis to alcoholic steatohepatitis is the translocation of bacteria or microbial products
from the gastrointestinal mucosa to the liver [32]. Chronic alcohol consumption causes
intestinal epithelium damage, increasing its permeability and providing a way for bacte-
rial translocation from the intestine to the liver [33,34]. Various pathogens undergo liver
infiltration, activating liver-resident monocytes to release pro-inflammatory cytokines [31].
Chronic alcohol consumption also causes an increase in the Gram-negative bacteria-led
production of endotoxin that damages the integrity of the intestinal barrier. This process
also increases the intestinal barrier permeability and reduces the bacteria responsible for
the production of short-chain fatty acids [28]. Ethanol is metabolized in the liver with the
help of different enzymes. Acetaldehyde is produced when alcohol dehydrogenase (ADH)
oxidizes ethanol, and it is subsequently converted to acetic acid by aldehyde dehydroge-
nase (ALDH) [35,36]. Acetaldehyde, an ethanol metabolite, causes colonic epithelial injury
and tight junction disruption [37]. Alcohol increases the expulsion of pro-inflammatory
mediators like interleukin (IL)-1β and TNF-α in the small intestine and leads to intestinal
inflammation that, in turn, causes intestinal permeability. This will increase the patholog-
ical bacteria translocation, increasing the plasma level of gut-derived microbes. Kupffer
cells scavenge and phagocytose endotoxins to facilitate their elimination. However, when
endotoxin accumulation exceeds the cells’ capacity, their phagocytic potential becomes
overwhelmed, leading to endotoxin leakage into the bloodstream. Significantly higher lev-
els of endotoxins are more prominent in ALD patients compared to normal individuals [38].
Lipopolysaccharide (LPS), peptidoglycan, etc., are the parts of gut microbes and will act
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as pathogen-associated molecular patterns (PAMPs) [39,40]. LPS attaches to its receptor,
toll-like receptor (TLR)-4, in immune cells and other liver cells and starts an intracellular
downstream signaling cascade. Further, free radicals induced via ethanol sensitize the
hepatic stellate cells (HSC), and further endotoxin helps in their activation. HSC activation
leads to extracellular matrix deposition, cytokine release, inflammation, etc., which worsen
the alcoholic liver condition and progress toward chronic liver diseases [41,42] (Figure 2).
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Several natural products show their protective effect against alcohol-induced gut
microbiota dysbiosis and maintain the intestinal barrier integrity. These natural products in-
clude their bioactive compounds, extracts, or any other parts of the plant. Epigallocatechin-
3-gallate (EGCG) is a phenolic compound. It inhibits gut leakiness and reduces endotoxemia
caused by alcohol by blocking the activation of Kupffer cells. Endotoxins can trigger Kupf-
fer cells to release a variety of inflammatory mediators, like TNF-α, through CD14/TLR4.
EGCG suppresses the increase in both TNF-α and CD14 expressions in both serum and
liver and alleviates ALD [43]. Lychee pulp, obtained from the plant Litchi chinensis Sonn., is
rich in phenolic compounds. It attenuates the alcohol-induced liver injury via modulation
of the activation of the endotoxin-TLR4-NFκB pathway. It increases the expression of
mucus-protecting proteins and intestinal tight junction proteins and lowers the number
of endotoxins in the blood [44]. Similarly, Ginkgo biloba and Rosa roxburghii of the family
Rosaceae juice are rich in various bioactive compounds like quercetin, ginkgolide, rutin,
and many more. They restore tight junctions, hence protecting against the intestinal barrier
dysfunction that is caused by alcohol [45]. In another study, rice bran phenolic extract
comprising derivatives of protocatechuic aldehyde, quercitrin, ethyl caffeate, and ethyl
coumarate decreased pathogenic bacteria in the gut and protected the intestinal barrier,
function, and permeability from alcohol. It alleviated the LPS and TLR4-mediated liver
inflammation [46]. Caulerpa lentillifera, often called sea grapes, belongs to the green algae.
It is an edible green seaweed with several nutritious and pharmacological benefits [46].
According to the studies, Caulerpa lentillifera treatment decreased alcohol-induced hepatic
inflammation. Caulerpa lentillifera, when used as dietary supplementation in rats, reduced
dysbiosis, and through the TLR4 pathway, it improved ethanol-induced liver damage,
potentially slowing the course of ALD [47].

2.2. Hepatic Inflammation and the Role of Immune Cells in ALD

A multifactorial pathogenesis leads to the progression of ALD. Among these, the
imbalanced immune-mediated functions cause chronic inflammation. Liver inflammation
is mainly caused by gut-derived PAMPs, followed by the release of pro-inflammatory
cytokines by the Kupffer cells and damage-associated molecular patterns (DAMPs) [7,48].
TLRs, a class of pattern recognition receptors (PRRs), can recognize both exogenous and
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endogenous PAMPs and DAMPs, which start an inflammatory cascade [49]. Chronic
alcohol consumption causes gastrointestinal tract leaks and damages the intestinal barrier.
As it becomes more permeable, the pathogens in the gut are more readily translocated into
the circulation and lymphatic flow [50]. This causes the generation of microbial and toxic
substances from the dying cells, called PAMPs/DAMPs, respectively. PAMPs enter the
liver in this manner, where they stimulate the Kupffer cells, which, in turn, trigger the other
immune cells that have infiltrated the liver [50]. It triggers the release of pro-inflammatory
cytokines like TNF-α and IL-1β, further aggravating the ALD [51]. Cytokines, along with
inflammatory mediators, contribute to the pathogenesis of the disease [52]. A wide range
of cytokines that act in ALD are TNF-α, various ILs (IL-4, IL-6, IL-10, IL-1β), and interferon
(IFN)-γ. In ALD, Kupffer cells are activated by ethanol-induced LPS, which produces
inflammatory cytokines [53]. TNF-α is considered the major pro-inflammatory cytokine
in the liver for alcohol-induced injuries [54,55]. In the liver, TNF-α is mostly generated
by the activated Kupffer cells, and it also triggers the production of other cytokines. It
has been shown that both the soluble and membrane-bound forms of TNF-α contribute
to ALD [56]. It can bind to both receptors on the hepatocytes, TNFR-1 and TNFR-2.
However, only TNFR-1 has a death domain capable of carrying out apoptosis directly.
Contrarily, TNFR-2 lacks the death domain but is responsible for amplifying TNFR-1’s
ability to induce both inflammation and cell apoptosis. TNFR-1 is crucial for hepatocyte
proliferation because it activates the signal transducer and activator of transcription (STAT)
3 and NF-kB pathways [57]. Overall, ALD is characterized by increased production of
pro-inflammatory cytokines [54,55]. Collectively, these cytokines attract inflammatory
cells to the liver, kill hepatocytes, and start a healing reaction that involves scar tissue
development and fibrosis [58] (Figure 2).

A typical healthy liver has a sizable population of localized immune cells that are
distinct from the ones found in the peripheral circulation of the bloodstream. Kupffer
cells, natural killer T (NKT) cells, certain antigen-presenting cells (APCs), and natural
killer (NK) cells are among them. These specific immune cells are crucial for liver immune-
mediated homeostasis. NK cells and NKT cells, for example, engage in the inhibition of liver
metastases. Ethanol-fed mice exhibited a marked decrease in hepatic NK cell function [59].
NKT cells, which releases IL-10 upon activation, inhibit the protective action of NK cells in
cases of ALD, such as steatohepatitis [60]. Both NK and NKT cells are innate immunity cells.
Furthermore, ethanol-induced inhibition of precursor B-lymphocyte differentiation results
in a decrease in the B-lymphocytes, which affects the humoral defense system in ALD
patients [61]. In ALD, TLRs are abundantly expressed. Studies reported that an increase
in the expression of TLR2 and a decrease in TLR3 expression activate STAT3 and lead to
the generation of IL-10, which further promotes macrophage differentiation and, hence,
mitigates ALD [62]. Macrophages play a crucial role in innate immunity. Its activation is
crucial for immunological defense, responses to inflammatory agents, tissue repair, and
homeostasis. Hepatic macrophages comprise both resident macrophages, known as Kupffer
cells, and infiltrating macrophages. Collectively, they represent approximately 90% of the
total macrophage population in the human body [63]. Kupffer cells are the first to receive
signals and respond to invading hepatotoxic substances like alcohol by differentiating into
various phenotypes to release anti-inflammatory factors. Simultaneously, they recruit many
other macrophages, including Kupffer cells and circulating monocytes, which have similar
functions and plasticity to that of Kupffer cells, into the liver [64]. Consequently, in a study,
it is documented that gadolinium chloride (GdCl3) treatment leads to the inactivation of
Kupffer cells and reduces damage in alcohol-induced liver disease, thus proving its role [41].
Macrophage polarization is the differentiation of macrophages into various phenotypes
suitable for the particular microenvironment and condition when they are stimulated by
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particular stimuli, inflammatory agents, cytokines, or a pathogen [65]. According to Voican
et al. [66], an increase in M2 polarization of macrophages and a decrease in infiltration of
macrophages in adipose tissue were observed in alcohol withdrawal cases of ALD patients.
In the progression of ALD, M2 macrophages appear to aid in the improvement of ALD by
promoting hepatocyte senescence via IL-6 and preventing ALD [67]. Consuming alcohol
also encourages neutrophils to infiltrate the liver, which accentuates the inflammatory
process, encourages hepatic cell damage, and could be the cause of alcoholic hepatitis
(Figure 2) [68].

As mentioned earlier, ALD is associated with activation of several inflammatory sig-
naling pathways. Various innate immune cells facilitate the pro-inflammatory environment,
including neutrophils, monocytes, macrophages, and others [69]. Neutrophil infiltration
has become the hallmark of ALD and plays a crucial role in ALD progression, despite its
protective role [70]. In ALD, multiple CXC chemokines mediate the migration of innate
immune cells, such as interleukin (IL)-8 (CXCL8), CXCL6, CXCL1, CXCL10, and CXCL5.
Hepatocytes and Kupffer cells secrete the said chemokines [71]. Neutrophils are the first
innate immune cells to migrate to the environment. A recent study demonstrated that
IL-8+ neutrophils are specifically enriched in the livers of patients with ALD, but not in
their systemic circulation [72,73]. IL-8 is a key chemokine responsible for the recruitment
and activation of neutrophils, and it is significantly elevated in individuals with ALD and
correlates with disease severity [73]. Although rodents do not possess a direct homologue
of IL-8, they produce cytokine-induced neutrophil chemoattractant-1 (CINC-1), an IL-8
analogue, in response to ethanol exposure [74]. Neutrophils interact with platelets via P-
selectin–PSGL-1 binding, forming platelet–neutrophil aggregates that promote neutrophil
activation and the release of neutrophil extracellular traps (NETs), which exacerbate liver
inflammation and tissue damage [75]. In addition to neutrophils, other innate immune cells
are recruited into the site, including monocytes, macrophages, NK cells, and others, fol-
lowed by the recruitment of adaptive immune cells [71], which cumulatively contribute to
the development of ALD. ALD encompasses a wide range of liver conditions, starting from
simple alcoholic fatty liver (steatosis) and progressing to more severe forms such as steato-
hepatitis, fibrosis or cirrhosis, and hepatocellular carcinoma. These stages are typically
identified based on liver histology in affected individuals [76]. However, the pathological
features often overlap, rather than representing clearly separate disease stages [76].

In ALD, alcohol consumption increases the movement of endotoxins, such as LPS,
from the gut to the portal circulation and activates the Kupffer cells via binding to TLR4.
Another aspect of TNF-α activation is that it increases the metabolism in the hepatocytes,
which results in reactive oxygen species (ROS) production. The LPS/TLR4 signaling and
the ROS generation further activate the NF-кB signaling axis to exacerbate the tissue injury
in the liver and hepatocyte apoptosis/necrosis. NF-kB activity regulates JNK activation.
TNF-α consistently causes JNK activation when NF-kB is not activated. This prolonged JNK
activation by TNF-α leads to cell death [77]. PAMPs act on the TLR4 and activate the NF-
kB, releasing CC-chemokine ligand-2 (CCL2) and IL-8, which, in turn, trigger neutrophil
and macrophage infiltration of the liver [50]. In contrast, DAMPs, including uric acid,
ATP, adenosine, and DNA, are released during sterile inflammation and are responsible
for cell death and loss of cell integrity. PAMPs, DAMPs, and IL-1β can act on the TLR4
receptor, activating NF-kB further and NLRP3 inflammasome signaling axis to precipitate
inflammation. In addition, alcohol-induced liver injury also activates HSC, leading to cell
proliferation that promotes the transforming growth factor-β (TGF-β) secretion. This can
aggravate collagen synthesis and deposition of extracellular matrix components, leading
to fibrogenesis. Furthermore, IL-1β activates the HSC through matrix metallopeptidase 9
(MMP9), intensifying liver fibrosis [78]. Studies have shown that sea buckthorn fermenta-
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tion liquid showed a protective effect against alcoholic fatty liver disease. It downregulates
the NF-kB and MAPK pathway by suppressing the TGF-beta activated kinase 1 (TAK1)
activation. It also reduces the level of TNF-α and inhibits hepatocyte apoptosis [79]. A
combination of taurine, EGCG, and genistein has also been studied for the intervention in
liver fibrosis caused by alcohol via modulating inflammatory cytokines. Treatment with
the combination compounds has restricted the production and secretion of inflammatory
cytokines like IL-6 and TNF-α. Taurine promotes HSCs apoptosis via lowering bcl2 mRNA
expressions and suppressing TGF-β1 and Smad pathways. EGCG can inhibit collagen
formation due to its potent antioxidant properties [80]. Whereas genistein can control
the growth of liver sinusoidal endothelial cells by acting as a tyrosine kinase inhibitor.
The combination therapy also promotes HSCs deactivation by significantly lowering the
elevated levels of TGF-β1 and Smad3 [81]. Ginsenoside Rb1 (Grb1), a triterpene saponin (a
glycoside), is isolated from Panax quinquefolium L. A study reported that Grb1 reduces the
synthesis of pro-inflammatory cytokines, such as IL-1β and TNF-α, by inhibiting NF-kB
expression. It considerably alleviates liver steatosis by lowering triglyceride levels and hep-
atic lipid accumulation. It prevents hepatic neutrophil infiltration, which is increased due
to chronic alcohol consumption, thereby limiting further damage due to protease release
and oxidative stress. Inhibition of neutrophil infiltration and decreased expression of the
potent pro-inflammatory markers make it a strong candidate to stop alcohol-induced liver
damage [82]. Myricetin, a polyhydroxyflavonol compound, is found in large quantities
in fruits and vegetables. Myricetin may be an effective phytochemical, promising to be
a potential candidate in alleviating ethanol-induced liver injury by reducing oxidative
stress and mitigating inflammation. Reports suggest myricetin curbs the expression of
inflammatory mediators (NF-κB and TNF-α, IL-6, IL-1β), and also restores the antioxidants,
thereby protecting the liver from ethanol-induced damage [83]. In addition to the above,
recent years of evidence have also documented that several other inflammatory signaling
mechanisms contribute to ALD progression. In these inflammatory pathways, various phy-
tochemicals have also been identified that alter the pathway and prevent the progression of
the disease [84].

2.3. cGAS-STING Signaling in ALD

cGAS is recognized as a direct sensor of cytoplasmic dsDNA and PRRs. The binding
of c-GAS to dsDNA activates the cGAS-STING signaling, leading to the expression of type
I IFNs and different inflammatory cytokines associated with innate immune responses [85].
This pathway is involved in the development of multiple liver diseases [86]. This in-
nate immune response results in the activation of interferon regulatory factor 3 (IRF3),
which increases the severity of ALD [87]. Alcohol consumption increases the liberation
of cytoplasmic mitochondrial DNA (mtDNA), which initiates the cGAS-IRF3 signaling.
Alcohol-induced activation of this signaling axis causes liver inflammation and injury
in the hepatocytes and in the parenchymal cells residing with the hepatocytes by a gap
junction intercellular communication pathway [87]. Also, the alcohol-induced hepatocytes
undergo apoptosis after the activation of IRF3. Alcohol-induced cell damage produces
DAMPs like damaged mtDNA and releases PAMPs like LPS, which then interact with the
PRRs. cGAS has three dsDNA-binding sites in its structure and can detect canonical B-form
DNA without any sequence specificity [88]. When cGAS molecules recognize dsDNA,
they cross-link with one another to form dimers or multimers, causing the activation of
cGAS [89,90]. Using ATP and GTP as substrates, cGAS catalyzes the cyclization of linear 2′-
5′-linked dinucleotides and then the 3′-5′-phosphodiester linkage [91]. STING, an adaptor
that resides in the endoplasmic reticulum (ER), changes its conformation upon binding to
2′, 3′-cGAMP and produces oligomers of STING [92–94]. Further, through the ER-Golgi
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intermediate compartment, the STING oligomer is transported to the Golgi [95,96]. In the
signaling domain, TANK-binding kinase 1 (TBK1) is trans phosphorylated as a result of
STING oligomerization upon ligand interaction [97]. In this process, phosphorylated TBK1
further phosphorylates IRF3 and STING. IRF3 dimerizes and moves into the nucleus, where
it starts the IFN-1 transcription process [98,99]. Furthermore, STING attracts IкB kinase
(IKK), which phosphorylates IкBα and causes NF-кB to migrate to the nucleus, where it
transcribes a variety of cytokines, including ILs, IFNs, and TNF-α, initiating the inflamma-
tory response and tissue damage in the liver [100,101]. The alcohol-induced cGAS-STING
axis is shown in Figure 3. Considering the above facts, targeting the cGAS-STING pathway
is a potential goal to alleviate ALD. However, the therapeutic benefits of phytochemicals
or herbal products have not yet been explored against ALD by targeting this pathway.
In this regard, further research is warranted. A flavonoid compound, Oroxylin A (OA),
is one of the active ingredients of Scutellaria baicalensis. Its therapeutic properties have
been explored in liver fibrosis. Oroxylin A inhibits the cGAS-STING pathway and induces
the ferritinophagy of HSC. It inhibits HSC activation by inducing its senescence through
ferritinophagy, which is a type of selective autophagy process [102].
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Figure 3. A diagrammatic representation of the cGAS-STING signaling axis involved in ALD. Alcohol
and its metabolic byproducts promote the release of DAMPs, such as mitochondrial DNA, and
PAMPs, such as LPS (known inducer of mitochondrial DNA release). These molecules are recognized
by cyclic GMP-AMP synthase (cGAS) in the cytosol. Upon activation, cGAS stimulates the adaptor
protein STING, which subsequently activates TBK1 and IRF3. This signaling cascade culminates
in the induction of type I IFNs and pro-inflammatory cytokines, both of which contribute to liver
inflammation and injury. Notably, certain phytochemicals have been shown to inhibit this pathway,
thereby attenuating inflammation and hepatic damage.
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2.4. NLRP3 Inflammasome Signaling Axis in ALD

Chronic alcohol consumption and its metabolic conversion lead to gut barrier dis-
ruption, resulting in the leakage of PAMPs, such as lipopolysaccharides (LPS), along
with cellular contents, including adenosine triphosphate (ATP), high mobility group box
1 (HMGB1), and uric acid [36,103]. Also, the regular intake of alcohol activates the en-
zyme cytochrome P450 2E1 (CYP2E1) in the hepatocytes, which results in the massive
production of ROS and causes stress in the endoplasmic reticulum and activates inflam-
matory responses via various pathways [36,104,105]. This further causes the generation
of DAMPs. Now, these DAMPs, PAMPs, and leaky gut microbiomes further modulate
the intracellular transduction axis and activate the inflammasome/NLRP3 signaling via
PRRs in hepatocytes or Kupffer cells. This NLRP3 inflammasome sensor comprises the
NLRP3, apoptosis-associated speck-like protein (ASC), and pro-caspase 1 [106]. The acti-
vation of NLRP3 inflammasome and caspase 1 leads to the cleavage of pro-inflammatory
cytokines, i.e., pro-IL-18 and pro-IL-1β, into their active form, i.e., IL-18 and IL-1β, causing
the inflammatory response in the liver [107]. Along with DAMPs and PAMPs, the ROS
that are generated during alcohol metabolism also play a significant part in activating
the NLRP3 inflammasome signaling. The imbalance between ROS production and their
detoxification via antioxidant defense mechanisms, including superoxide dismutase (SOD),
reduced glutathione (GSH), catalase, and many more, instigating oxidative stress in the
liver [108]. The rise in oxidative stress in the liver further damages the mitochondrial
DNA and produces more ROS. Mitochondrial ROS play a part in secondary stimulus
and activate pro-caspase 1 into caspase 1 and also produce pro-inflammatory cytokines,
including IL-18 and IL-1β. This activated caspase 1 again with the help of NLRP3 and
ASC oligomerizes to form NLRP3 inflammasome, triggering further tissue damage in the
hepatic tissues [109,110]. This NLRP3 inflammasome not only activates pro-IL-18 and
pro-IL-1β but also cleaves gasdermin D (GSDMD), a protein with a significant role in
the innate immune defense system against various PAMPs and DAMPs. The cleavage of
GSDMD generates N-terminal fragments, which oligomerize within the plasma membrane
to form pores secreting the activated IL-18 and IL-1β [111–113]. The pore formation in
the membrane alters the integrity of the plasma membrane and causes a lytic form of cell
death, i.e., pyroptosis [113,114]. There is some documented evidence to justify that the
NLRP3 inflammasome is a viable target for ALD, and phytochemicals/herbal products
can mitigate it. LanGui tea is a traditional Chinese medicine; its formulation comprises
different herbs, which are Gynostemma pentaphyllum, Cinnamomum cassia, and Ampelopsis
grossedentata. G. pentaphyllum has demonstrated potential in reducing inflammation, fatty
liver, and liver steatosis [115]. Additionally, cinnamon helps lower hepatic steatosis and
improve hyperlipidemia. These exhibit various protective properties against oxidative
stress, inflammation, liver damage, and many other conditions. In ALD, it inhibits the
NLRP3 signaling and reduces the generation of IL-1β [116]. Quercetin is a flavonoid of
polyphenols. It has antioxidant properties and shows beneficial effects on alcohol-induced
acute liver injury. It inhibits the ROS/NF-кB/NLRP3 axis by inducing IL-10 and heme
oxygenase (HO)-1 [117]. Cannabidiol is extracted from marijuana plants without its psy-
choactive activity. Its effect has been studied in the ethanol plus high-fat diet model, in
which it has been concluded that the compound inhibits the recruitment of macrophages
and also impedes the NLRP3-pyroptosis pathway [118]. Dihydroquercetin is also known
as taxifolin, which is a dihydroflavone. It is most abundantly found in onions, milk thistle,
and other fruits. Taxifolin inhibits P2X7R signaling and IL-1β secretion by inactivating
the NLRP3 inflammasome pathway. It also decreases caspase-1 activity [119]. Hence,
exploration of NLRP3 inflammasome may be a viable target for the alleviation of ALD.
Daucosterol, a phytosterol glycoside isolated from Sanchezia spesiosa, has been studied
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for ALD for its potential health benefits [120]. It also exhibits hepatoprotective activity
in the carbon tetrachloride (CCl4)-intoxicated rat liver slices [121]. By modulating the
p38 MAPK/NF-κB/NLRP3 inflammasome axis, daucosterol reversed the ethanol-induced
oxidative damage, reduced lipid buildup, and mitigated hepatic inflammation. It reduces
the alcohol-induced overexpression of the lipid synthesis genes fatty acid synthase (FASN)
and sterol regulatory element-binding protein 1c (SREBP1C). It also reversed the alcohol-
induced upregulation of collagen (COL)1A1, COL3A1, and α-smooth muscle actin (SMA).
Moreover, it attenuated the alcohol-induced oxidative damage by restoring the hepatic
antioxidants [122]. Ginsenoside Rk2 is one of the ginsenosides, a dehydro-protopanaxadiol
saponin that has a strong anti-inflammatory profile and inhibits NLRP3 inflammasome
activation [123]. It indicated a substantial decrease in the levels of triglycerides, aspartate
aminotransferase (AST), and alanine aminotransferase (ALT) in the serum and showed
hepatoprotective activity. Rk2 mitigates hepatic oxidative stress by promoting the nuclear
factor erythroid 2–related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway. It also exerts
anti-inflammatory action by blocking the NF-kB/NLRP3 inflammasome signaling path-
way [124]. Scutellarin, an active glycosylated oxy-flavonoid component, is isolated from
Erigeron breviscapus [125]. The defensive action of scutellarin toward ALD was reported.
Alcohol-induced mRNA levels of pro-inflammatory mediators pertinent to the inflam-
matory response, such as IL-6, IL-1β, TNF-α, and iNOS, were substantially decreased by
scutellarin action. In addition, scutellarin significantly reduces the degradation of IkBα
and the increase of p-NF-κB (p65) and impedes the NLRP3, caspase-1, and ASC protein
expressions in the liver [126].

2.5. NF-кB Signaling Axis in ALD

There are multiple inflammatory pathways associated with liver injury during ALD.
One of the inflammatory pathways that trigger the immune cells of the liver is NF-kB
signaling. The NF-kB protein family structurally contains five conservative members:
NF-kB1 (p50), NF-kB2 (p52), RelA (p65), RelB, and c-Rel [127]. These proteins reside in the
cytosol, and after the activation via various stimuli, they will form homo- or heterodimers
and translocate in the nucleus and then bind with the respective DNA targets. In the
cytosol, they are inactivated via molecular inhibitors of the NF-kB (IkB) family and ac-
tivated by an inhibitor of kappa B kinase (IKK) [128,129]. Liver innate immunity plays
a key role in the initial line of immunological defense against pathogens or endogenous
danger signals. This immune system is governed by PRRs expressed on macrophages,
epithelial cells, and others [129,130]. One of the receptors of PRRs is TLRs. After cellular
damage due to ROS generation via ethanol-metabolized byproducts, other PAMPs/DAMPs
contribute to activating the PRRs. The damaged cells also secrete inflammatory cytokines
like TNF-α. This cytokine and the binding of LPS to the TLRs activate the NF-kB signaling
cascade and the IKK kinase complex. This IKK phosphorylates IkB, which is then ubiq-
uitinated and degraded via the proteasome pathway [131,132]. This process releases and
activates NF-кB, which then moves to the nucleus, where it binds to DNA at a specific
sequence, which further leads to the expression of different inflammatory factors. This
NF-kB activation further propels the NLRP3 inflammasome, which then participates in
inflammation and liver damage [133,134]. Many phytochemicals have shown hepatopro-
tective activity during ALD by modulating the NF-kB axis. Europinidin, an o-methylated
derivative of delphinidin, is obtained from the plant Plumbago Europaea from the family
Plumbaginaceae. It has been shown that the flavonoid europinidin improves liver health
in rats. In this study, the intervention of europinidin restores the hepatic antioxidants
and decreases lipid peroxidation in the liver tissue. Further studies also identified that
the alcohol-induced pro-inflammatory cytokines (TNF-α, ILs, IFN-γ, and TGF-β) were
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substantially reduced in the europinidin treatment group and also interfered with the
NF-kB signaling axis [135]. Turmeric contains curcumin, a naturally occurring polyphenol
with strong anti-inflammatory and antioxidant properties. Studies reported that curcumin
protects against liver damage due to ethanol consumption. The findings further suggest
that curcumin regulates the ethanol-metabolizing enzyme CYP2E1 and also modulates the
IkBα-NF-kB signaling axis to decrease inflammation in the liver [136]. Similarly, artemisinin
has shown a cytoprotective effect in ALD. Artemisinin is obtained from Artemisia annua L. It
is a sesquiterpene lactone endoperoxide, which suppresses nitric oxide (NO) synthase pro-
duction and reduces the role of the transcription factor NF-kB. It also inhibits its activation
and reduces the expression of inflammatory cytokines [137]. In another study, grape leaf
extract, which is abundant in phenolic compounds and isolated from leaves of Vitis vinifera
L., has alleviated alcohol-induced liver injury in rats. This extract improved the antioxidant
defense system in the liver. The antioxidant and potential protective effect of this extract is
probably mediated by the phenolic constituents found in it, such as derivatives of apigenin,
epicatechin, quercetin, caffeic acid, and rosmarinic acid. Also, it inhibited the production
of the pro-inflammatory cytokine (TNF-α) and expression of the NF-kB (p65) subunit in
the liver [138]. Glabridin is an isoflavone derived from the roots of Glycyrrhiza glabra L. It
improves liver injury by modulating the NF-кB pathway, reducing its nuclear transloca-
tion, and decreasing inflammatory cytokines [139]. Genistein is isolated from Hydrocotyle
sibthorpioides Lam., a folk medicine in China. It has been studied for its antioxidant effect. It
protects against alcohol-induced liver damage by reducing the DNA binding activity of
NF-kB and its downregulation and the inhibition of inflammatory cytokines release [140].
Apigenin (4′, 5, 7-trihydroxyflavone) is a flavonoid compound found in fruits and a variety
of medicinal plants. It exhibits hepatoprotective activity. It acts as a peroxisome proliferator-
activated receptor alpha (PPARα) receptor agonist, and it also increases PPARα expression.
The increased expression of PPARα downregulates the NF-kB signaling, hence reducing
the inflammation of hepatic cells [141]. In Carthamus tinctorius L., hydroxysafflor yellow A
(HSYA) is a primary chemical component, and its structure constitutes a solitary chalcone
glycoside component. It has a strong antioxidant and anti-inflammatory profile [142,143].
Studies suggested that HSYA contributed significantly to the regulation of STAT3/NF-kB
and phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) pathways and proved its
therapeutic potential for ALD. HSYA treatment significantly decreases the triglyceride
and low-density lipoprotein cholesterol (LDL-C) contents and increases the high-density
lipoprotein cholesterol (HDL-C) in mice. HSYA interferes with the STAT3/NF-kB and
PI3K/AKT/mechanistic target of rapamycin (mTOR) signaling pathways both in vitro
and in vivo and efficiently suppresses ethanol-induced inflammation, lipid buildup, and
hepatocyte death, and also strengthens the antioxidant defense system in the liver [144].
Lutein, a naturally occurring carotenoid and a xanthophyll, is found in green leafy veg-
etables, such as carrots, spinach, and kale. Lutein intervention markedly ameliorated the
ALD in rats. In the liver, lutein lessens the occurrence of NF-κB and TLR4 proteins and
also decreases the inflammatory cytokines, including TNF-α and IL-1β. It further restores
the antioxidants in the liver. The hepatoprotective effect of lutein against alcohol-induced
liver damage was claimed due to its anti-inflammatory and antioxidant properties [145].
Hence, immunological consequences of the NF-kB signaling axis have a significant role in
the progression of ALD. The use of phytochemicals by targeting the NF-kB axis may be
a promising approach to treating ALD. The diagrammatic representation of NF-кB and
NLRP3 inflammasome signaling axis in ALD is shown in Figure 4.
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Figure 4. The diagrammatic representation of the NF-κB and NLRP3 inflammasome signaling
pathway in ALD. Alcohol exposure increases intestinal permeability, facilitating the translocation of
DAMPs and PAMPs into the liver, where they activate pattern recognition receptors, such as TLR4.
This activation initiates downstream signaling cascades, including NF-κB activation and NLRP3
inflammasome assembly. Consequently, pro-inflammatory cytokines, such as IL-1β and TNF-α, are
secreted, contributing to hepatic injury. Certain phytochemicals, including curcumin, artemisinin,
and glabridin, have demonstrated the ability to modulate these pathways by inhibiting NF-κB
translocation or NLRP3 inflammasome activation, thereby holding promise as potential therapeutic
agents for ALD.

2.6. MAPK Signaling Axis in ALD

Chronic ethanol consumption leads to liver injury through different signal transduc-
tion mechanisms, one of them being the mitogen-activated protein kinase signaling (MAPK)
axis. It is involved in various cellular responses like differentiation, proliferation, and in-
flammation [146,147]. It consists of three different kinase cascades: (i) p42/44 MAPK, also
termed extracellular signal-regulated kinase 1 and 2 (ERK1/2); (ii) p38 MAPK; and (iii)
c-Jun N-terminal kinase (JNK), also called stress-activated protein kinase (SAPK). The liter-
ature suggests that alcohol-induced LPS release activates this pathway [147]. Acute alcohol
exposure in the liver activates p42/44 MAPK in hepatocytes, whereas high exposure to
ethanol leads to the release of endotoxins as PAMPs. As an extracellular signal regulator,
ERK senses when the extracellular LPS release gets activated by it and causes transcription
of early growth response-1 (Egr-1). The activation of both hepatocytes and Kupffer cells
via the MAPK axis ultimately causes the production of TNF-α, instigating the inflamma-
tion [148,149]. Furthermore, acetaldehyde, a metabolite of ethanol, affects the HSC via
activation of p38 MAPK and JNK, causing a further increase in the production of collagen
and extracellular matrix deposition [150]. The generation of TNF-α and other cytokines
will further activate other associated pathways and result in the production of more inflam-
matory mediators and tissue injury/necrosis in the liver. It has been identified that a few



Pharmaceuticals 2025, 18, 710 14 of 25

phytochemicals have the potential to reduce the risk associated with ALD via the inhibition
of the MAPK signaling axis in the liver. A member of the hydroxycinnamic acid family,
p-coumaric acid is a phenolic derivative. It is widely spread in plants and mushrooms and
has different biological properties, like antioxidants and anti-inflammatory properties. In
the ethanol-induced model, p-coumaric acid inhibits the phosphorylation of JNK, ERK, and
p38 MAPK in the liver and exhibits hepatoprotective effects [151]. Sea buckthorn obtained
from Hippophae rhamnoides is a deciduous shrub. It is edible and has medicinal properties.
It helps in preventing alcoholic fatty liver disease by reducing the protein expression of
p38 MAPK and p65 NF-kB [79]. The flavanone-7-O-glycoside, narirutin, is a compound of
the flavone subclass. It is found in various fruits like oranges, tomatoes, beans, grapefruits,
etc. It shows antioxidant and anti-inflammatory properties; it has been investigated for its
hepatoprotective properties on alcohol-induced liver damage. It modulated the p38 MAPK
signaling via binding to MAPK14, suppressed the mRNA level of mapk14, and exhibited
hepatoprotective activity [152]. Similarly, glabridin, an isoflavone obtained from the lateral
roots of Glycyrrhiza glabra, possesses hepatoprotective [153], anti-inflammatory, and antiox-
idant properties [154]. It participates in numerous pathways, including Wnt/β-catenin
MAPK, Nrf2, and NF-kB pathways [153]. p38 MAPK, an important signaling pathway, is
suppressed by glabridin, further ameliorating NF-kB-mediated inflammation and Nrf2-
mediated oxidative stress in ethanol-fed C57BL/6J female mice [139]. Mechanistically,
glabridin ameliorated ALD in mice via the p38 MAPK/Nrf2/NF-kB pathway. Narirutin, a
flavanone-type polyphenolic compound, is mainly found abundantly in citrus peels, grape-
fruit, and oranges [155]. Acute exposure of zebrafish larvae to ethanol led to severe hepatic
damage, and it successfully prevented alcohol-induced liver damage [152]. Elevations
in mRNA genes linked to inflammation (TNF-α, IL-1β, and NF-κB) and oxidative stress
markers were observed to be reversed upon treatment with narirutin. Liver injury and
other liver illnesses are associated with abnormal p38 MAPK signaling [156]. Narirutin,
by regulating the p38 MAPK pathway and targeting MAPK14, exerted a protective effect
against ethanol-induced hepatic steatosis [152].

2.7. JAK-STAT Signaling Axis in ALD

In most of the alcohol-induced liver damage, cytokines are one of the essential factors
that get activated and result in inflammation and tissue damage in the liver. These cytokines
are released through different signaling pathways. Janus kinase/signal transducer and
activator of transcription (JAK-STAT) signaling pathways are one of the pathways that
are responsible for the transduction of various cytokines [157,158]. Along with controlling
gene expressions, it is also involved in endoplasmic stress, apoptosis, autophagy, and
other signaling processes [159,160]. Alcohol consumption leads to different physiological
changes in the organs. They alter the gut microbiome, cause enteric dysbiosis, and produce
or activate various DAMPs and PAMPs that will bind to different receptors like TLRs,
TNFRs, and so on. LPS, when bound to these receptors, causes signal transduction to
release multiple factors that cause damage and inflammation, in which the LPS-induced
cytokines bind to their corresponding transmembrane receptors. This binding will further
lead to the activation of JAK/STAT signaling, which causes altered gene expression. After
ligand-receptor binding, activation of the pathway is achieved by causing a conformational
change in the receptor. This change allows the JAK to enter the proximal receptor binding
site to phosphorylate the tyrosine residue at the receptor in the cytoplasmic domain of
the receptor. This process recruits the STAT molecule toward the receptor, which, in
turn, phosphorylates and activates STAT. The activated STAT now dimerizes and then
translocates to the nucleus. After entering the nucleus through the transcription factor,
it leads to the transcription of the targeted genes, which propel the inflammation in the
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liver [161]. However, in different studies, it has been found that ethanol itself inhibits the
JAK-STAT pathway, which contradicts its mechanism of JAK-STAT activation. In freshly
isolated hepatocytes, acute ethanol blocks IL-6 or IFN-γ-induced STAT activation [162]. IL-
6-activated STAT3 and IFN-induced STAT1 are inhibited by ethanol in monocytes. Hence,
ethanol acts as an activator and inhibitor for JAK-STAT [163]. Further research is necessary
to comprehend the detailed function of the JAK-STAT pathway in ALD. This dual behavior
of ethanol may be due to differences in cell type, timing, dose of alcohol exposure, or
specific cytokines involved in the signaling. Acute vs. chronic exposure, or systemic vs.
liver-specific effects, might result in opposite outcomes. Therefore, a better understanding
of the cellular context and temporal dynamics of ethanol action is critical, and future
studies are needed to reconcile these differences. A list of phytochemicals/herbal products
that modulate different immunological signaling pathways, along with cytokines and gut
microbiome in ALD, is presented in Table 1.

Table 1. A list of phytochemicals that modulate different immunological signaling pathways, along
with cytokines and gut microbiome in alcohol-induced liver disease.

Name of Phytochemicals/Herbal Products Preclinical Model Mechanisms of Hepatoprotection Ref.

Betaine (Dietary sources) Short-term ethanol-fed C57BL/6J mice
↓ALT, ↓AST,
↓lipid accumulation, and
↑SAM: SAH ratio

[164]

Caulerpa lentillifera (edible green seaweed)
(green algae) Chronic and binge alcohol-fed Wistar rats

↑AST, ↓AST, ↓GGT,
↓TLR4 pathway, and
↓ Gut dysbiosis

[47]

Inula Britannica
(Asteraceae) Chronic ethanol-fed C57BL/6J female mice

↓ALT, ↓AST, ↓liver TG, ↓TC
Interferes SIRT1-AMPK/Nrf2/NF-κB axis,
↓ hepatic lipid buildup, ↑antioxidant action, and
↓hepatic inflammation

[165]

Hydroxytyrosol Chronic binge ethanol-fed male C57BL/6J mice

↓ALT, ↓AST, ↓liver TG, ↓TC, ↓LDL-C, interfere
with STAT3/iNOS pathway and
p-AKT/SREBP-1c pathway, and ↓hepatic
inflammation

[166]

Daucosterol (Sanchezia spesiosa) (Acanthaceae) Short-term chronic and binge ethanol-fed male
C57BL/6J mice

↓ALT, ↓FFA, ↓liver TG,
↓p38/NF-κB/NLRP3, ↓hepatic lipid buildup,
↑antioxidant action, and
↓hepatic inflammation

[122]

Ellagic acid
(polyphenol) Chronic alcohol-fed ICR mice

↓ALT, ↓AST, ↓ASP, ↓liver FFA, ↓liver TG,
↑antioxidant action, ↓hepatic inflammation,
improves gut microbiota

[167]

Withaferin A Chronic binge ethanol-fed wild-type mice based
on C57BL/6J

↓ALT, ↓AST, ↓liver TG
↓hepatic lipogenesis, and
↓hepatic lipid buildup

[168]

Glabiridin
(Isoflavone) (Glycyrrhiza glabra L.)

Short-term chronic ethanol-fed C57BL/6J
female mice.

↓ALT, ↓AST, ↓liver FFA, ↓liver TG, interfere
with the p38 MAPK/Nrf2/NF-kB pathway, ↓
oxidative stress, and ↓hepatic inflammation

[139]

Nobiletin
(Polymethoxylated flavone)
(from citrus fruit peels)

Male C57BL/6N wild-type (WT) mice

↓ALT, ↓AST, ↓liver FFA, ↓liver cholesterol,
interferes with NRF1-TFAM pathway, ↓hepatic
inflammation, ↓oxidative stress, ↓ER stress, and
↓ apoptosis

[169]

Narirutin EtOH-fed wild-type zebrafish larvae
↓ALT, ↓AST, interfere with p38-MAPK pathway,
↓hepatic inflammation, ↓oxidative stress, ↓ER
stress, and ↓lipid accumulation

[152]

Hydroxysafflor yellow A Chronic and binge alcohol-fed C57BL/6J
male mice.

↓ALT, ↓AST, ↓LDL, ↑HDL, ↓liver TG, interfere
with STAT3/NF-kB and
PI3K/AKT/mTOR pathways,
↓hepatic inflammation, ↓oxidative stress, ↓ER
stress, ↓lipid accumulation, and
↓hepatocyte apoptosis

[144]

Ginsenoside Rk1 Alcohol-fed wild-type zebrafish
↓liver lipid content, ↓liver TG
Interferes with NF-kB pathway, and ↓hepatic
inflammation

[82]

Ginsenoside Rk2 (Panax notoginseng) (Araliaceae) Ethanol-fed C57BL/6J male mice
↓ALT, ↓AST, interfere with Nrf2/HO-1 pathway,
↓oxidative stress, block the NF-kB/NLRP3
pathway, and ↓hepatic inflammation

[124]
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Table 1. Cont.

Name of Phytochemicals/Herbal Products Preclinical Model Mechanisms of Hepatoprotection Ref.

Astragaloside (Astragalus membranaceus) Chronic and binge alcohol-fed SD rats

↓ALT, ↓AST, ↓LDL, ↑HDL, ↓liver lipid content,
↓NF-kB pathway, ↓hepatic inflammation,
↓oxidative stress, ↓ER stress, ↓lipid peroxidation,
and ↓hepatocyte apoptosis

[170]

Diammonium glycyrrhizinate Chronic and binge alcohol-fed C57BL/6J
male mice

↓ALT, ↓AST, ↓liver TG,
↓serum TG, ↓DDX5/STAT1 axis, ↓hepatic lipid
buildup, ↑antioxidant action, and
↓hepatic inflammation

[171]

Scutellarin
(Erigeron breviscapus) (Asteraceae) Binge alcohol-fed C57BL/6J male mice

↓ALT, ↓AST, interfere Nrf2/HO-1 pathway &
AKT, p38 MAPK/NF-kB pathway, and
↓hepatic inflammation

[126]

Lutein Chronic and binge alcohol-fed male Wistar rats

↓ALT, ↓AST, ↓GGT, ↓serum TG, ↑Nrf2/HO-1
pathway, ↓TLR4/NF-kB pathway,
↓hepatic inflammation, and
↓ oxidative stress

[145]

Myricetin Chronic and binge alcohol-fed male Wistar rats
↓ALT, ↓AST, ↓LDH, ↓lipid peroxidation,
interfere with the NF-kB pathway, and
↓hepatic inflammation

[83]

Allium ochotense
(Amaryllidaceae) Alcohol-fed C57BL/6J mice ↓CHL, ↓TG, ↓LDL, and ↓lipid peroxidation [172]

Schisandra sphenanthera
(Magnoliaceae) Chronic alcohol-fed male Sprague Dawley rats

↓ALT, ↓AST, ↓ADH, ↓ALDH, interfere with the
PI3K-AKT pathway, ↓hepatic inflammation, and
↓oxidative stress

[173]

Oroxylin A, obtained from Scutellaria biacalensis,
is a flavonoid compound. CCl-4 induced mice model, 8 weeks Oroxylin A inhibits the cGAS-STING pathway

and induces the ferritinophagy of HSC [102]

Extract of LanGui tea, a flavonoid-rich
formulation containing Gynostemma
pentaphyllum, Cinnamomum cassia, and
Ampelopsis grossedentata.

Alcohol-induced male C57BL/6 mice model Inhibits NLRP3 signaling and decreases the
generation of IL-1β [116]

Quercetin, a polyphenol Alcohol-induced male Wistar rat model
It enhances the occurrence of HO-1 and IL-10
and, thus, inhibits NLRP3
inflammasome activation

[117]

Cannabidiol, extracted from marijuana plants Ethanol plus high-fat diet male C57B/6J
mice model

Inhibits the recruitment of macrophages, and
thus, it leads to the inhibition of the
NLRP3-pyroptosis pathway

[118]

Taxifolin, a dihydroflavone found in onions and
milk thistle Alcohol-induced male C57BL/6 mice model Inhibits P2X7R-signaling IL-1β secretion by

inactivating the NLRP3 inflammasome pathway [119]

p-coumaric acid, a hydroxycinnamic acid family Ethanol-induced male Wistar rat model, 28 days Inhibits phosphorylation of JNK, p38 MAP
kinase, and ERK. [151]

Sea buckthorn (Hippophae rhamnoides) Male pathogen-free KM mice model Reduces the expression of MAPK p38 protein
and inflammatory cytokines [79]

Narirutin, a flavone type flavonoid Alcohol-induced zebrafish larvae model
Modulated the p38 MAPK signaling via binding
to the MAPK14 and also suppressed the mRNA
level of mapk14

[152]

Europinidin, obtained from Plumbago europea Ethanol-induced male Wistar rat model Inhibits pro-inflammatory cytokines and genes
via inhibiting NF-kB initiation [135]

Curcumin, obtained from Curcuma longa Alcohol-induced rat, mouse model It regulates the IkBα-NF-kB pathway to further
decrease inflammation [136]

Artemisinin, isolated from Artemisia annua, is a
sesquiterpene lactone Alcohol-induced male KM mice model Inhibits NF-кB activation and reduces the

expression of the inflammatory cytokines [137]

Grape leaf extract, a phenolic compound
isolated from leaves of the plant Vitis vinifera

Ethanol-induced male Sprague Dawley
rat model

Suppress ethanol-induced NF-кB p65 subunit
and TNF-α [138]

Glabridin, an isoflavone obtained from
licorice root Ethanol-induced C57BL/6 female mice model Decreases the nuclear translocation of NF-кB [139]

Genistein, isolated from
Hydrocotyle sibthorpioides Lam.

Alcohol-induced male SPF-Wistar rat model,
24 weeks

Reduces the DNA binding activity of NF-кB and
downregulates its activity [140]

Apigenin (4′ , 5, 7-trihydroxyflavone), a
flavonoid compound Alcohol-induced male KM-mice model, 30 days Increases expression of PPARα, downregulates

the NF-kB signaling [141]

Combination of epigallocatechin-3-gallate,
taurine, and genistein

Alcohol-induced rat liver fibrosis model,
24 weeks

Restricted the production and secretion of the
inflammatory cytokines like IL-6, TNF-α [81]

Epigallocatechin-3-gallate, a phenolic compound Alcohol-induced female Sprague-Dawley rat
model, 5 or more weeks Inhibits gut leakiness and reduces endotoxemia [43]

Lychee (Litchi chinensis Sonn) Alcohol-induced male C57Bl/6 mice model,
8 weeks

Lychee pulp extract increases the production of
mucus-protecting proteins and intestinal tight
junction proteins and lowers the number of
endotoxins in the blood.

[44]

A mixture of Ginkgo biloba and Rosa roxburghii Alcohol-induced male Sprague Dawley rat
model, 8 weeks

They restore tight junctions, hence protecting the
intestinal barrier dysfunction [45]
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Table 1. Cont.

Name of Phytochemicals/Herbal Products Preclinical Model Mechanisms of Hepatoprotection Ref.

Rice bran phenolic extract Alcohol-induced C57BL/6 mice model, 8 weeks
Its supplementation decreases pathogenic
bacteria in the gut and protects the intestinal
barrier, function, and permeability from alcohol.

[46]

↓ indicates decreased, ↑ indicates increased.

Care must be taken to separate the action of individual phytochemicals from the action
of crude plant extracts. Particular compounds, e.g., curcumin, quercetin, and resveratrol,
act on clearly defined signal molecules—e.g., NF-κB, JAK-STAT, or MAPK—whereas plant
extracts comprise a blend of bioactive constituents. These can have additive action or
interact along multiple pathways. Thus, caution must be exercised in interpreting the
mechanisms of action from extract-based studies, and wherever possible, results from
purified phytochemicals should be given precedence for mechanistic insights.

3. Conclusions and Future Perspective
Bioactive compounds from nature have shown strong protective effects on the liver.

This presents an exciting opportunity for therapeutic development. This is especially crucial
when there is a pressing demand for new and effective treatments. These phytochemicals
have minimal side effects and are relatively effective. Furthermore, they are readily avail-
able since they are derived from natural sources. However, they must be monitored for
interactions with other metabolites or food and checked for physicochemical properties.
The advancement of innovative treatments for individuals with ALD whose outlook is poor
and lacking any interventions requires both translational and clinical studies. Additionally,
getting accurate medicine based on multi-omics analysis and sex differences is necessary
to conquer the obstacles and challenges to carrying out beneficial clinical studies on ALD
patients. Accumulating evidence further indicates that phytochemicals, through a variety
of immunological pathways, including cGAS-STING signaling, NLRP3 inflammasome,
MAPK signaling, JAK-STAT signaling, enteric dysbiosis, and gut microbiome, lessen the
alcohol-induced liver injuries. Hence, the development of phytomedicine-based therapy
may be an alternative approach to mitigating ALD. In conclusion, immunological mech-
anisms play a crucial role in developing ALD. Despite promising preclinical results, the
clinical translation of phytochemicals faces several challenges. These include poor bioavail-
ability, lack of standardized dosing, variability in compound composition, and regulatory
hurdles that complicate their approval as therapeutic agents. Targeting immunological
mechanisms using phytochemicals or herbal medicine may find a place to counteract ALD.

4. Database Search
A comprehensive literature search was conducted in 2024, using PubMed, Google

Scholar, Web of Science, and Science Direct databases. The search aimed to identify rele-
vant studies published between 2005 and 2024 and employed the following search terms:
“Alcohol-induced liver disease and Phytochemicals”, “Alcohol-induced liver disease and
inflammation”; “Alcohol-induced liver disease and cGAS-STING signaling”; “Alcohol-
induced liver disease and NLRP3 inflammasomes”; “Alcohol-induced liver disease and
NF-κB signaling”; “Alcohol-induced liver disease and MAPK signaling”; and “Alcohol-
induced liver disease and JAK-STAT signaling”.
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Abbreviations
The following abbreviations are used in this manuscript:

AFL Alcoholic fatty liver
ALD Alcohol-induced liver disease
APCs Antigen-presenting cells
ASC Apoptosis-associated speck-like protein
cGAS Cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase
DAMPs Damage-associated molecular patterns
EGCG Epigallocatechin-3-gallate
ERK Extracellular signal-regulated kinase
HSCs Hepatic stellate cells
IFN Interferon
IFR Interferon regulatory factor
ILs Interleukins
JAK-STAT Janus kinase/signal transducer and activator of transcription
NK c-Jun N-terminal kinase
LPS Lipopolysaccharide
MAPK Mitogen-activated protein kinase
NF-kB Nuclear factor–kappa B
NKT Natural killer T cells
NLRP3 NOD-like receptor family pyrin domain containing 3
PAMPs Pathogen-associated molecular patterns
PRR Pattern recognition receptor
ROS Reactive oxygen species
STING Stimulator of interferon gene
TGF-β Transforming growth factor-β
TLR Toll-like receptor
TNF Tumor necrosis factor
WHO World Health Organization
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