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Abstract: Doxorubicin (Dox) is an effective anti-cancer medication with poor oral bioavailability
and systemic toxicities. DoxQ was developed by conjugating Dox to the lymphatically absorbed
antioxidant quercetin to improve Dox’s bioavailability and tolerability. The purpose of this study
was to characterize the pharmacokinetics and safety of Dox after intravenous (IV) and oral (PO)
administration of DoxQ or Dox (10 mg/kg) and investigate the intestinal lymphatic delivery of
Dox after PO DoxQ administration in male Sprague–Dawley rats. Drug concentrations in serum,
urine, and lymph were quantified by HPLC with fluorescence detection. DoxQ intact IV showed a
5-fold increase in the area under the curve (AUC)—18.6 ± 1.98 compared to 3.97 ± 0.71 µg * h/mL
after Dox—and a significant reduction in the volume of distribution (Vss): 0.138 ± 0.015 versus
6.35 ± 1.06 L/kg. The fraction excreted unchanged in urine (fe) of IV DoxQ and Dox was ~5% and
~11%, respectively. Cumulative amounts of Dox in the mesenteric lymph fluid after oral DoxQ
were twice as high as Dox in a mesenteric lymph duct cannulation rat model. Oral DoxQ increased
AUC of Dox by ~1.5-fold compared to after oral Dox. Concentrations of β-N-Acetylglucosaminidase
(NAG) but not cardiac troponin (cTnI) were lower after IV DoxQ than Dox. DoxQ altered the
pharmacokinetic disposition of Dox, improved its renal safety and oral bioavailability, and is in part
transported through intestinal lymphatics.

Keywords: doxorubicin; quercetin; pharmacokinetics; bioavailability; lymphatics transport; toxicity

1. Introduction

Doxorubicin (Dox) is an effective anti-cancer medication that has been clinically used to treat a
variety of cancers including breast, ovarian, and lymphoma [1–5]. Despite the clinical effectiveness
of Dox, its use is limited by off-target adverse effects, particularly dose-related cardiotoxicity and
renal toxicity, which involve free radical formation and tissue damage. Dox formulations that are
pegylated and in liposomes are utilized in medications, including Doxil™ and Caelyx™ [6]. Pegylated
(polyethylene glycol coated) liposome-encapsulated forms of Dox result in an increased concentration
of Dox in the skin and a side effect called palmar plantar erythrodysesthesia or hand–foot syndrome [7].
Non-pegylated liposomal Dox called Myocet™ does not have a polyethylene glycol coating, and
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therefore does not result in the same rate of hand–foot syndrome. This liposomal encapsulation
of Dox limits but does not eliminate the cardiotoxic effects of the drug. This damage is caused by
the generation of reactive oxidative species (ROS) such as superoxide and hydrogen peroxide upon
the reduction of Dox to form electron-deficient semiquinone [8]. Various additional drug delivery
approaches have been undertaken to overcome the toxicity limitations of Dox, such as utilization of
micelles [9], synthetic polymer conjugates [10], and antibody targeted carriers [11], with varied degrees
of success. We have previously demonstrated that hyaluronan, a biopolymeric nanocarrier, improves
survival and reduces the toxicity of Dox in xenografts of human breast cancer through the localization
of Dox into the lymphatics [8].

Dox is a substrate of both the P–glycoprotein (P–gp) efflux pump [12] and cytochrome P450
metabolic enzymes [13], both of which contribute to its overall disposition, poor oral absorption, and
low oral bioavailability. For this reason, Dox is only currently available as a parenteral treatment
administered intravenously. We have previously reported the synthesis of a Dox-quercetin derivative
designed to overcome P–gp efflux and CYP inhibition [14] as quercetin is a natural flavonoid that
exhibits inhibitory effects on CYP3A4 and P–gp [15] and an antioxidant that scavenges free radicals.
Our in vitro investigation of DoxQ [14] revealed that both Dox and quercetin are released from the
conjugate over time. Furthermore, DoxQ inhibited CYP3A4, a major metabolic enzyme involved in
the first pass effect, and demonstrated higher cellular uptake by P–gp-positive (MDCK–MDR) cells
compared to free Dox. The inhibitory effects of DoxQ on CYP3A4 and P–gp may improve the oral
absorption and bioavailability of Dox in vivo. Additionally, DoxQ retained anti-cancer activity in a
triple negative murine breast cancer cell line and was less toxic to both rat and human cardiomyocytes.
The cardioprotective mechanism of DoxQ involved scavenging ROS, suppression of oxidative stress,
and cardiac hypertrophy markers, and also inhibitory effects on CYP1B1, all of which contribute
to Dox’s induced cardiotoxicity. Taken together, the in vitro results of DoxQ showed promise at
mitigating the cardiotoxicity of Dox and may also mitigate its poor oral bioavailability in vivo by
inhibiting CYP3A4 and P–gp [14]. The antioxidant effects of DoxQ may also mitigate the renal toxicity
induced by Dox and improve its overall tolerability in vivo.

In addition to quercetin’s antioxidant activity and inhibitory effects on CYP3A4 and P–gp, it is
naturally absorbed into intestinal lymphatics after gastric or intraduodenal administration [16–18];
this property may be utilized as a novel strategy to deliver Dox into lymphatics. Following oral
administration, molecules and drugs are either absorbed from the intestinal mucosa into the blood
stream via the hepatic portal vein or into lymphatics via the intestinal lymphatic pathway. Most
small molecules and drugs administered orally enter systemic circulation via blood capillaries and
become subject to hepatic metabolism before entering the vasculature. In contrast, highly lipophilic
molecules and macromolecules such as proteins associate with chylomicrons in the intestinal mucosa
and enter systemic circulation via the intestinal lymphatics pathway [19]. These lipophilic molecules
and macromolecules are absorbed via lymphatic capillaries, which collect into the mesenteric lymph
duct, followed by the thoracic lymph duct, and then drain into systemic circulation at the junction of the
left subclavian and left jugular veins [19,20]. Therefore, molecules that are absorbed via the intestinal
lymphatic pathway enter systemic circulation without passing through the liver. This alternative
absorptive pathway may be of particular importance in drug delivery and may serve as a novel drug
delivery approach to minimize the first-pass effect while increasing lymphatic exposure and ultimately
improving overall systemic drug exposure [21]. Lipophilic drugs with LogP > 5 and solubility of
>50 mg per g in long-chain triglyceride will likely have preferential absorption towards lymphatics
owing to their ability to incorporate with intestinal lipoproteins [19]. If the drug of interest does not
meet these criteria, it is also possible to alter the physicochemical properties of a small drug molecule
by chemically modifying its lipophilicity, utilizing a lipid-based drug delivery system or designing a
lipophilic prodrug where the parent drug is chemically conjugated to a lipophilic moiety via a linker
that can be easily cleaved in vivo [19–22]. In this study, we utilized a novel Dox–quercetin conjugate
where quercetin is designed to act as a lymphatically targeted carrier and may facilitate the intestinal
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transport of Dox into systemic circulation after oral administration and may also affect its disposition
as well as overall systemic exposure after intravenous administration.

In the light of the studies discussed above and our promising DoxQ observations in vitro,
this study was conducted to investigate the feasibility of utilizing the antioxidant quercetin as a
lymphatically targeted carrier for Dox with the potential to improve its disposition, oral bioavailability,
and tolerability in vivo. We hypothesize that the presence of quercetin in DoxQ, intact or when
released from the conjugate, will act as a carrier to transport Dox into lymphatics, at least partially,
thus bypassing systemic circulation and increasing the overall bioavailability of Dox. The release of
quercetin from DoxQ will likely have a beneficial effect and limit the cardiotoxic and renal side effects
of doxorubicin. In addition, the synthesis and change in physicochemical properties of DoxQ may alter
its pharmacokinetics and metabolism; the release of quercetin from DoxQ or DoxQ intact may also have
effects on CYP3A4 and P–gp, which could further augment the disposition and bioavailability of Dox
in vivo. Here, the acute in vivo disposition, safety, and lymphatic uptake of DoxQ are characterized for
the first time. The pharmacokinetics, toxicodynamics, and intestinal lymphatic absorption of DoxQ in
comparison to free Dox are examined in a rat model. Our results demonstrate that DoxQ improves the
disposition of Dox and its oral bioavailability and safety, and is partially transported via lymphatics.

2. Materials and Methods

2.1. Chemicals and Reagents

Doxorubicin, duanorubicin, cycloheximide, PEG-400, and DMSO were purchased from Sigma
(St. Louis, MO, USA). Analytical grade formic acid and HPLC grade acetonitrile were purchased from
Fisher Scientific (Ottawa, ON, Canada). Ultrapure water from a Milli-Q® system (Millipore, Billerica,
MA, USA) was used for the mobile phase. HPLC columns, vials, inserts, and 0.2 um nylon filter
membranes were purchased from Phenomenex® (Torrance, CA, USA). Silastic® laboratory tubing was
purchased from the Dow Corning Corporation (Midland, MI, USA). Intramedic® polyethylene tubing
was purchased from Becton Dickinson Primary Care Diagnostics, Becton Dickinson and Company
(Sparks, MD, USA). Monoject® 23 gauge (0.6 × 25 mm) polypropylene hub hypodermic needles were
purchased from Sherwood Medical (St. Louis, MO, USA). Synthetic absorbable surgical sutures were
purchased from Wilburn Medical US (Kernesville, NC, USA). Sterile heparin/50% dextrose catheter
lock solution and blunt needles were obtained from SAI Infusion Technologies, Strategic Applications
(Lake Villa, IL, USA).

2.2. Synthesis of the DoxQ Conjugate

DoxQ was synthesized by conjugating Dox to quercetin via a glycine linker, as previously
described [14].

2.3. Physicochemical Properties

LogP and LogS values of DoxQ were predicted using an online computer software (VCCLAB,
Virtual Computational Chemistry Laboratory) [23,24]. pKa, logP, logD at pH 7.4, intrinsic solubility,
and solubility at pH 7.4 were calculated using MarvinSketch v. 17.2.20.0 (ChemAxon Ltd., Cambridge,
MA, USA), pKa and logP were calculated using GastroPlus v. 9.0.0007 (Simulations Plus, Inc., Lancaster,
CA, USA). Portions of these results were generated by GastroPlus™ software (Version 8.0) provided
by Simulations Plus, Inc. (Lancaster, CA, USA). The melting point of DoxQ was experimentally
determined by MEL-TEMPII melting point apparatus from Laboratory Devices (Holliston, MA, USA).

2.4. Analytical System and Conditions

The analytical method described in [25] was adapted with some modifications. The HPLC
system used was a Shimadzu LC-2010A (Kyoto, Japan) with Fluorescence RF-535 detector at
470/560 nm (excitation/emission) wavelengths. Separation was achieved using C18 Phenomenex
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Kintex® (Torrance, CA, USA) column (250 µm, 250 × 4.6 mm) for serum and lymph samples or
(2.6 µm, 100 × 4.60 mm) joined to (250 µm, 250 × 4.6 mm) for urine samples. The mobile phase was
prepared by mixing acetonitrile with 0.1% formic acid in water (35:65, v/v), which was filtered through
0.2 µm nylon filter and degassed under reduced pressure prior to use. The separation was carried out
isocratically at ambient temperature (22 ± 1 ◦C) with a flow rate of 0.6 mL/min. Shimadzu EZStart
(Version 7.4) software was used for data collection and integration. On the day of the analysis, samples
were prepared and injected into the HPLC system.

2.4.1. Preparation of Standard Solutions

Stock solutions of Dox (1 mg/mL) and the internal standard (IS) duanorubicin (1 mg/mL) were
prepared in methanol, protected from light and stored at −20 ◦C between uses for no longer than one
week. Using the stock solutions of Dox, calibration standards in serum, urine, and lymph were freshly
prepared by sequential dilution with blank rat serum, urine, and lymph. A series of concentrations
were obtained, particularly 0.1, 0.5, 1.0, 10.0 and 100 µg/mL.

Stock solutions of intact DoxQ (10 mg/mL) were freshly prepared in DMSO and protected from
light. Calibration standards of DoxQ in serum and urine were prepared by serial dilution with blank
rat serum or urine to yield concentrations of 1, 10, 20, and 100 µg/mL. The final concentration of
DMSO in serum and urine spiked standards did not exceed 1%.

2.4.2. Calibration Curves

Calibration curves of Dox and DoxQ were obtained by plotting the peak area ratio of Dox or
DoxQ to the internal standard (duanorubicin) versus calibration standards concentration of Dox or
DoxQ through the unweighted least squares linear regression.

2.5. Animals and Surgical Procedures

Male Sprague–Dawley rats (250–300 g) were obtained from Charles River Labs (Montreal, QC,
Canada) and given food (Purina Rat Chow 5001) and water ad libitum in the animal facility for at
least three days before use. Rats were housed in temperature-controlled rooms with a 12 h light/dark
cycle. The animal ethics protocol was revised and approved by the Bannatyne Campus Animal Care
Committee at the University of Manitoba, (protocol #16-004, approved 29 March 2016).

2.6. Pharmacokinetic Study

Eight surgically modified, with exposed jugular vein catheterization (polyurethane–silastic
blended catheter), adult male Sprague–Dawley rats (average weight: 250 g) were purchased from
Charles River Laboratories (Saint-Constant, QC, Canada). The cannula was flushed daily with a sterile
heparin/50% dextrose catheter lock solution to maintain the patency of the cannula, as advised in the
technical sheet supplied with the animals from Charles River. Each animal was placed in a separate
metabolic cage overnight and fasted for 12 h before dosing. On the day of experiment, the animals
were dosed either intravenously or orally with Dox (10 mg/kg) or equimolar DoxQ (n = 4 for each
treatment group). Both Dox and DoxQ were freshly reconstituted in 3% DMSO and 97% PEG-400 prior
to dosing. Animals received water ad libitum pre- and post-dosing, and food (Purina Rat Chow 5001)
was provided 2 h post-dosing. Doses were selected based on previous use in similar pharmacokinetic
studies [13,15] and sensitivity of analytical instrumentation. Serial blood samples (0.30 mL) were
collected at 0, 1 min, 15 min, and 30 min, then 1, 2, 4, 6, 12, 24, 48 and 72 h after IV administration.
The same blood collection time points were applied following oral administration except for 1 min.
At 72 h after administration, the animals were euthanized and exsanguinated. Immediately after all
the blood collection time points (except the terminal point); the cannula was flushed with the same
volume of 0.9% saline to replenish the collected blood volume. The dead volume of the cannula was
filled with a small volume (~0.15 mL) of heparinized lock solution after each blood draw to maintain
the patency of the cannula. The samples were collected into regular polypropylene microcentrifuge
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tubes, centrifuged at 15,000 rpm for 5 min (Beckman Microfuge centrifuge, Beckman Coulter Inc.,
Fullerton, CA, USA), and the serum collected and stored at −20 ◦C until further sample preparation
for HPLC analysis. Urine samples were also collected at 0, 2, 6, 12, 24, 48 and 72 h following Dox or
DoxQ administration. The exact urine volume of each sample was recorded then stored at −20 ◦C
until further sample preparation for HPLC analysis.

2.7. Intestinal Lymphatic Drug Delivery

The intestinal transport of DoxQ via lymphatics was examined in vivo by two methods. In the
first method, mesenteric lymph cannulated rat model was used to directly measure the concentrations
of Dox in the lymph after administration of DoxQ or Dox. In the second method cycloheximide, a
chylomicron blocking drug, was administered intraperitoneally prior to oral administration of DoxQ
or Dox then concentrations of Dox were measured in serum to indirectly assess lymphatic transport.

2.7.1. Mesenteric Lymph Cannulation Surgery

Six male Sprague–Dawley rats (~300 g) were obtained from Charles River Labs (Montreal, QC,
Canada) and given food (Purina Rat Chow 5001) and water ad libitum in the animal facility for at
least three days before use. On the day of surgical operation, rats were anesthetized by isoflurane
and the abdominal hair was shaved. Rats were maintained under inhaled anesthesia on a warm
surgical table. A ~2.5 cm abdominal midline skin incision was made and extended through the
musculature using blunt dissection beginning the incision at a point just above the xyphoid cartilage
and proceeding distally. The intestine and liver were retracted using surgical retractors to locate the
superior mesenteric lymph duct, which is filled with opaque white chyle. The lymph duct was isolated
from the surrounding connective tissue and a small incision was made with a bent 23 G needle in the
ventral wall of the lymph. A catheter was inserted through the incision and secured by placing a small
cellulose patch with a drop of VetbondTM over the point of insertion into the lymph duct. When a
gradual and continuous flow of lymph was observed, an initial lymph sample was collected into a
normal microtube. A single dose (10 mg/kg) of DoxQ (n = 3) or Dox (n = 3) was administered by oral
gavage while the rat was under anesthesia. Thereafter, lymph samples were collected over one hour
after dosing. The animals were euthanized after the last lymph sample collection.

2.7.2. Lymph Blockage by Cycloheximide

Cycloheximide (3 mg/kg) was administered intraperitoneally (IP) to jugular vein cannulated
male Sprague–Dawley rats (~250 g) (n = 4) 1.5 h prior to oral administration of DoxQ to block the
formation of chylomicrons in lymph [26–35]. DoxQ was then administered orally (10 mg/kg). Blood
samples were collected at 0 h, 15 min, 30 min, 1 h, 2 h, 6 h, 12 h, 24 h and 48 h. The animals were
euthanized after the last blood sample collection.

2.8. Treatment of Biological Samples for Analysis

2.8.1. Serum and Lymph Sample Preparation

To a 100 µL serum or lymph sample (except 0 h), 10 µM of the internal standard (duanorubicin) was
added then vortexed for 30 s (Vortex Genie–2, VWR Scientific, West Chester, PA, USA). One milliliter
of cold HPLC grade acetonitrile (pre-stored at −20 ◦C) was added to the precipitate proteins, vortexed
for 2 min (Vortex Genie–2, VWR Scientific, West Chester, PA, USA), and centrifuged at 15,000 rpm
for 5 min; the supernatant was transferred to new, labeled 2 mL centrifuge tubes. The samples were
evaporated to dryness using a Savant SPD1010 SpeedVac Concentrator (Thermo Fisher Scientific, Inc.,
Asheville, NC, USA). The residue was reconstituted with 100 µL of mobile phase, vortexed for 1 min,
and centrifuged at 15,000 rpm for 5 min; the supernatant was transferred to HPLC vials and 100 µL
were injected into the HPLC system.
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2.8.2. Urine Sample Preparation

Two hundred microliters of urine and 10 µM of the internal standard were combined and vortexed
for 30 s. The proteins present in the urine samples were precipitated using 1.6 mL cold HPLC-grade
acetonitrile (pre-stored at −20 ◦C), vortexed for 2 min, and centrifuged at 15,000 rpm for 15 min.
The supernatant was transferred to new, labeled 2-mL centrifuge tubes. The samples were evaporated
to dryness using SpeedVac. The residue was reconstituted with 200 µL of mobile phase, vortexed for
1 min, and centrifuged at 15,000 rpm for 15 min. The supernatant was transferred to HPLC vials and
vortexed, and 100 µL was injected into the HPLC system.

2.9. Pharmacokinetic Analysis

Pharmacokinetic analysis was performed using data from individual rats, and the mean and
standard error of the mean (SEM) were calculated for each group. The elimination rate constant
(kel) was estimated by linear regression of the serum concentrations in the log-linear terminal phase.
Non-compartmental modeling of the serum concentration versus time data points was performed
using Phoenix® WinNonlin® software (Version 6.3) (Pharsight Corporation, Mountain View, CA, USA)
to calculate the pharmacokinetic parameters in the terminal phase, namely mean residence time (MRT),
total clearance (CLtot), and volume of distribution (Vss). The initial maximum serum concentration
(C0) was calculated by back extrapolation using WinNonlin software. Based on the cumulative
urinary excretion data, the fraction excreted in urine (fe by dividing the total cumulative amount
excreted in urine (ΣXu) by the dose), renal clearance (CLrenal by multiplying fe by CLtot), and hepatic
clearance (CLhepatic by subtracting CLrenal from CLtot, assuming that hepatic clearance is equivalent to
non-renal clearance) were calculated. The fraction of a dose converted to a specific metabolite (Fm)
was calculated using the following equation: Fm = AUC(m,D)/AUC(m), where AUC(m,D) is the AUC
of the metabolite after IV or PO administration of its precursor (Dox after DoxQ) and AUC(m) is the
AUC of the metabolite after IV administration of an equimolar dose of the preformed metabolite (Dox
after Dox) [36,37].

2.10. Assessment of Cardiac Toxicity of DoxQ and Dox

The cardiac toxicity was assessed after a single IV dose of Dox or DoxQ utilizing a rat cardiac
Troponin-I (cTnI) ultra-sensitive ELISA kit from Life Diagnostics, Inc. (West Chester, PA, USA). Blood
samples from pharmacokinetic studies were collected at 0, 12, 24, and 48 h from the jugular vein after a
single 10 mg/kg IV dose of Dox (n = 4) or an equimolar dose of DoxQ (n = 4). Samples were centrifuged
to obtain the serum and stored at −20 ◦C in a freezer until analysis. On the day of the analysis, cTnI
concentrations were measured in serum samples following the manufacturer’s instructions. The area
under the effect curve (AUEC) was calculated for cTnI concentrations at 12–48 h post-dosing using the
trapezoidal rule [38,39] by WinNonlin® software.

2.11. Assessment of Renal Toxicity of Dox and DoxQ

2.11.1. Urinary Output

The urinary output of rats over 24 h was monitored before and after administration of a single
IV dose of Dox (10 mg/kg) or equimolar DoxQ to assess potential renal toxicity. Acute renal toxicity
induced by Dox and other drugs may result in a reduction in the total urinary output [40–42]. The total
urine volume excreted over 24 h post-dosing was compared to the total urine volume excreted over
24 h pre-dosing.

2.11.2. β-N-Acetylglucosaminidase (NAG)

The potential renal toxicity of Dox and DoxQ was determined by measuring β-N-
acetylglucosaminidase (NAG), a marker of ongoing renal damage, in rat urine [8,43]. Urine samples
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from pharmacokinetics experiments were collected from metabolic cages at 0 h, 12 h, 24 h, and 48 h
and stored at −20 ◦C until analysis. Concentrations of NAG urine samples were measured using
an assay kit from ALPCO Diagnostics (Salem, NH, USA, cat. No. 73-1290050) on a Medica EasyRA
automated clinical chemistry analyzer (Medica Corporation, Bedford, MA, USA) [44,45].

2.12. Statistical Analysis

Compiled data were presented as mean and standard error of the mean (mean ± SEM).
Where possible, the data were analyzed for statistical significance using SigmaPlot software (v. 13.0,
Systat Software, Inc., San Jose, CA, USA). Student’s t-test was employed for unpaired samples to
compare means between two groups, while one-way ANOVA was employed to compare the means of
three or more groups, with subsequent t-tests between groups if necessary; a value of p < 0.05 was
considered statistically significant.

3. Results

3.1. Physicochemical Properties

As DoxQ is a chemical derivative of Dox, the change in the chemical structure of Dox will likely
alter the physiochemical properties of the parent drug, which may affect its disposition into biological
fluids and pharmacokinetic profile. Therefore, exploring the physicochemical properties of DoxQ in
comparison to Dox provides insight into the differences in their dispositions and pharmacokinetics.
Computer software, namely VCCLAB [23,24], MarvinSketch, and GastroPlus, were used to predict the
physicochemical properties of DoxQ and Dox (Table 1). The estimated partition coefficient (LogP) value
of DoxQ (2.6–3.8) was 3–5-fold higher than Dox (logP 0.49–1.3), suggesting the higher lipophilicity of
DoxQ. The distribution coefficient at pH 7.4 (LogD7.4), which takes into account the ionizable groups at
specific pH, of DoxQ was 25-fold higher than Dox (0.097) and may be a better predictor of lipophilicity.
The predicted LogP and LogD7.4 values of DoxQ are in agreement with the low predicted solubility
(0.006 mg/mL) of DoxQ compared to Dox (0.243 mg/mL) at physiological pH and higher logS values
of DoxQ. The predicted pKa values of DoxQ were also different than those of Dox. Furthermore, the
experimentally determined melting point of DoxQ was 175 ◦C compared to 242 ◦C. The difference in
the predicted pKa values of DoxQ versus Dox as well as other physicochemical properties described
above indicate that DoxQ is distinct from Dox and exhibits unique physicochemical properties.

Table 1. Physicochemical properties of Dox, quercetin, and DoxQ.

Compound Doxorubicin (Free Base) Quercetin DoxQ

Structure
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Compound 
Doxorubicin 
(Free Base) Quercetin DoxQ 

Structure 

 
 

Molecular Weight 
(g/mol) 

543.53 302.238 928.82 

Formula C27H29NO11 C15H10O7 C45H40N2O20 

pKa (MarvinSketch) 8.00, 9.17, 9.93, 
12.67, 13.49, 14.10 

6.38, 7.85, 8.63, 
10.29, 12.82 

6.37, 7.72, 7.94, 8.97, 9.51, 
10.21, 12.53, 13.10, 13.57, 

14.06, 14.77 

pKa (GastroPlus) 6.77, 8.43, 9.5 7.24, 8.15, 9.12, 
10.25, 11.35 

7.21, 8.08, 8.78, 9.38, 9.91, 
10.64, 11.26 

pKa (GastroPlus, after 
fitting solubility) 

6.974, 10.08 6.582, 8.15, 10.25, 
11.35 

7.978, 8.08, 8.78, 9.38, 10.64, 
11.26 

logP (MarvinSketch) 1.30 1.75 2.60 
logP  

(neutral, GastroPlus) 0.49 1.96 2.61 

logP (VCCLAB) 1.3 1.44 ± 0.55 3.8 ± 1.5 
logD7.4 

(MarvinSketch) 
0.097 1.00 2.407 

Intrinsic solubility 
(MarvinSketch) −4.05 logS −2.49 logS −6.47 logS 

Solubility at  
pH 7.4 

(MarvinSketch) 
−3.27 logS −1.42 logS −5.34 logS 

Solubility at  
pH 7.4 

(MarvinSketch) 
0.243 mg/mL 15.15 mg/mL 0.006 mg/mL 

logS (VCCLAB) 2.7 2.78 3.43 
Melting point 
(experimental) 242 °C 316.5 °C * 175 °C 

* PubChem [46]. 

3.2. HPLC Analysis of Dox 

Optimal separation of Dox, DoxQ, and duanorubicin (IS) in serum, urine, and lymph was 
achieved with a mobile phase composed of acetonitrile with 0.1% formic acid in water 35:65, v/v and 
a flow rate of 0.6 mL/min on a C18 Phenomenex Kintex® (Torrance, CA, USA) column. 
Chromatograms were free of any interfering peaks co-eluted with peaks of interest (Figure 1). 
Calibration curves of Dox in serum and lymph were linear over the range of 0.05–100 μg/mL in serum 
and lymph and 0.1–100 μg/mL for urine, with excellent linearity (r2 > 0.99) in all three matrices. 
Calibration curves of DoxQ in serum and urine were linear over the range of 1–100 μg/mL (r2 > 0.99). 
The observed maximum serum concentration (Cmax) of both Dox and DoxQ at 1 min post-dosing was 
within the linear range. The limit of quantification (LOQ) was 0.05 μg/mL and 1 μg/mL for Dox and 
DoxQ intact, respectively. 
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6.974, 10.08 6.582, 8.15, 10.25, 
11.35 

7.978, 8.08, 8.78, 9.38, 10.64, 
11.26 

logP (MarvinSketch) 1.30 1.75 2.60 
logP  

(neutral, GastroPlus) 0.49 1.96 2.61 

logP (VCCLAB) 1.3 1.44 ± 0.55 3.8 ± 1.5 
logD7.4 

(MarvinSketch) 
0.097 1.00 2.407 

Intrinsic solubility 
(MarvinSketch) −4.05 logS −2.49 logS −6.47 logS 

Solubility at  
pH 7.4 

(MarvinSketch) 
−3.27 logS −1.42 logS −5.34 logS 

Solubility at  
pH 7.4 

(MarvinSketch) 
0.243 mg/mL 15.15 mg/mL 0.006 mg/mL 

logS (VCCLAB) 2.7 2.78 3.43 
Melting point 
(experimental) 242 °C 316.5 °C * 175 °C 

* PubChem [46]. 

3.2. HPLC Analysis of Dox 

Optimal separation of Dox, DoxQ, and duanorubicin (IS) in serum, urine, and lymph was 
achieved with a mobile phase composed of acetonitrile with 0.1% formic acid in water 35:65, v/v and 
a flow rate of 0.6 mL/min on a C18 Phenomenex Kintex® (Torrance, CA, USA) column. 
Chromatograms were free of any interfering peaks co-eluted with peaks of interest (Figure 1). 
Calibration curves of Dox in serum and lymph were linear over the range of 0.05–100 μg/mL in serum 
and lymph and 0.1–100 μg/mL for urine, with excellent linearity (r2 > 0.99) in all three matrices. 
Calibration curves of DoxQ in serum and urine were linear over the range of 1–100 μg/mL (r2 > 0.99). 
The observed maximum serum concentration (Cmax) of both Dox and DoxQ at 1 min post-dosing was 
within the linear range. The limit of quantification (LOQ) was 0.05 μg/mL and 1 μg/mL for Dox and 
DoxQ intact, respectively. 
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3.2. HPLC Analysis of Dox

Optimal separation of Dox, DoxQ, and duanorubicin (IS) in serum, urine, and lymph was achieved
with a mobile phase composed of acetonitrile with 0.1% formic acid in water 35:65, v/v and a flow
rate of 0.6 mL/min on a C18 Phenomenex Kintex® (Torrance, CA, USA) column. Chromatograms
were free of any interfering peaks co-eluted with peaks of interest (Figure 1). Calibration curves of
Dox in serum and lymph were linear over the range of 0.05–100 µg/mL in serum and lymph and
0.1–100 µg/mL for urine, with excellent linearity (r2 > 0.99) in all three matrices. Calibration curves
of DoxQ in serum and urine were linear over the range of 1–100 µg/mL (r2 > 0.99). The observed
maximum serum concentration (Cmax) of both Dox and DoxQ at 1 min post-dosing was within the
linear range. The limit of quantification (LOQ) was 0.05 µg/mL and 1 µg/mL for Dox and DoxQ
intact, respectively.
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Figure 1. (A) Representative chromatogram of blank serum; (B) representative chromatogram of Dox,
DoxQ, and the internal standard duanorubicin after 30 min of DoxQ IV dosing.

3.3. Pharmacokinetics of Dox and DoxQ

3.3.1. IV Administration

The disposition profiles of Dox and DoxQ intact in serum and urine following a single IV dose of
Dox and an equimolar dose of DoxQ were examined (Figures 2 and 3). The serum concentration–time
profile of IV DoxQ showed a rapid decline over the first 30 min and was quantifiable up to 1 h
post-dosing. The concentrations of Dox after Dox were quantifiable up to 6 h post-dosing (Figure 2),
with a maximum serum concentration (C0) of Dox after Dox of ~25 µg/mL. The disposition profile of
Dox after Dox, as well as its pharmacokinetic parameters, are consistent with the literature [13,15,25].
Following IV administration of DoxQ, both DoxQ intact and Dox were detected with maximum
serum concentration (C0) of intact DoxQ of ~108 µg/mL and ~1 µg/mL for free Dox (Table 2).
Concentrations of intact DoxQ demonstrated a rapid decline over one hour, while concentrations of
Dox after DoxQ dosing showed a slower decline and were quantifiable up to 2 h post-dosing. Notably,
the maximum serum concentration (C0) of intact DoxQ after equimolar IV DoxQ was 4–5-fold higher
than Cmax of Dox after IV Dox. The area under the concentration–time curve (AUC) of intact DoxQ
(18.6 ± 1.98 µg * h/mL) was also 5-fold higher than that of Dox (3.97 ± 0.71 µg * h/mL), demonstrating
higher systemic exposure to DoxQ. The volume of distribution Vss of Dox was ~80-fold higher than that
of DoxQ, suggesting significantly greater tissue distribution of Dox. The fraction of DoxQ metabolized
into Dox was ~12%.
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Figure 2. Concentrations of Dox and DoxQ intact after IV administration of Dox (10 mg/kg,
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Table 2. Pharmacokinetics of Dox and DoxQ intact in rat serum after IV administration of Dox
(10 mg/kg) and an equimolar dose of DoxQ (mean ± SEM, n = 4 unless otherwise stated).

Pharmacokinetic
Parameter

Dox Administered DoxQ Administered

Dox DoxQ 1 Dox

C0 (µg/mL) 24.7 ± 14.2 108 ± 26.4 * 1.23 ± 0.11 +

kel (h−1) 0.16 ± 0.02 4.59 ± 0.78 * 0.75 ± 0.076 +

t1/2 (h) 4.69 ± 0.8 @ 0.16 ± 0.3 * 0.87 ± 0.07
Clast (µg/mL) 0.12 ± 0.03 1.11 ± 0.17 * 0.09 ± 0.01 +

Tlast (h) 2 6 1 2
AUClast (µg * h/mL) 3.97 ± 0.7 @ 18.6 ± 1.98 * 0.46 ± 0.04 +

AUCinf (µg * h/mL) 4.79 ± 1.83 NC 0.62 ± 0.03
Vss (L/kg) 6.35 ± 2.11 0.08 ± 0.015 NA

CLrenal (L/h/kg) 1 0.28 ± 0.84 0.02 ± 0.005 NA
CLhepatic (L/h/kg) 1 2.35 ± 0.36 0.51 ± 0.06* NA
CLtotal (L/h/kg) 1 2.63 ± 0.39 0.53 ± 0.01 * NA

fe (%) 10.73 ± 3.14 4.32 ± 1.005 NA
fm (%) NA NA 11.66 ±0.86

1 n = 3; 2 Median; NC = not calculable because r2 < 0.8 or AUC% extrapolated > 27%; NA = not applicable; * p < 0.05
Dox after Dox versus DoxQ after DoxQ, + p < 0.05 DoxQ after DoxQ versus Dox after DoxQ, @ p < 0.05 Dox after
Dox versus Dox after DoxQ.

In the urine, both DoxQ intact and Dox were detected after DoxQ IV dosing. Likewise, Dox
was excreted unchanged after Dox IV dosing (Figure 3). The total cumulative urinary excretion plots
demonstrate that DoxQ is predominantly excreted as intact DoxQ and, to a much lower extent, as
free Dox after DoxQ dosing. The total cumulative amount of free Dox excreted unchanged was much
higher after Dox dosing than after DoxQ. The fraction of the dose excreted unchanged in the urine
(fe) of DoxQ and Dox were 4.32 ± 1.005 and 10.73 ± 3.14, respectively, indicating that both drugs are
mainly eliminated by non-renal routes.
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Figure 3. Cumulative amounts of Dox and DoxQ intact excreted unchanged in the urine after IV
administration of Dox (10 mg/kg; n = 3 mean ± SEM) and equimolar DoxQ (n = 4 mean ± SEM)
during the 48 h post-dosing.

3.3.2. Oral Administration

Following oral administration of DoxQ only the metabolite Dox was detected in serum as opposed
to both DoxQ intact and Dox after IV administration (Figure 4). Following oral administration
of Dox, Dox was also detected in serum. The serum concentration time plots demonstrate that
concentrations of Dox after DoxQ were higher than after Dox at all time points, with resultant higher
calculated AUClast values of Dox after DoxQ than Dox after Dox when each was orally administered
(Table 3). Bioavailability of Dox after Dox was ~8.5%, while the fraction of DoxQ metabolized into Dox
was ~10.3%.
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Table 3. Pharmacokinetics of Dox after oral administration of 10 mg/kg Dox and equimolar DoxQ in
rat serum (mean ± SEM, n = 4 unless otherwise stated).

Pharmacokinetic
Parameter

Dox Administered DoxQ Administered Cycloheximide + DoxQ
Administered

Dox 1 Dox Dox

Cmax (µg/mL) 0.09 ± 0.01 0.11 ± 0.01 + 0.07 ± 0.001
Clast (µg/mL) 0.08 ± 0.01 0.10 ± 0.01 0.07 ± 0.02

Tlast (h) 2 4 4 4
AUClast (µg * h/mL) 0.33 ± 0.04 0.41 ± 0.03 + 0.27 ± 0.005

Fm (%) NA 10.32 ± 0.42 + 6.81 ± 0.14
F (%) 8.57 ± 0.71 NA NA

1 n = 3; 2 Median; NA = Not applicable; + p < 0.05 Dox after DoxQ versus Dox after Cycloheximide + DoxQ.

3.4. Intestinal Lymphatic Drug Delivery

3.4.1. Mesenteric Lymph Duct Cannulation

The mesenteric lymph duct cannulation rat model is commonly used as to directly examine the
transport of drugs after oral administration because it enables the collection of lymphatic fluids as it
flows from the intestine [20,35]. The intestinal lymphatic transport of Dox after oral administration
DoxQ and Dox was investigated in a mesenteric lymph duct cannulated model to assess whether
the presence of quercetin facilitates lymphatic transport of Dox. Following oral DoxQ or Dox dosing,
lymph samples were collected up to one hour post-dosing and concentrations of Dox were measured
by HPLC. The cumulative amount of Dox in mesenteric lymph fluid after oral DoxQ were two-fold
higher than after Dox (Figure 5), suggesting that quercetin in DoxQ, intact or when released, increased
the intestinal delivery of Dox into lymphatics.
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Figure 5. Cumulative amounts of Dox in mesenteric lymph fluid over one hour after oral administration
of Dox (10 mg/kg) and equimolar DoxQ (n = 3, mean ± SEM). * p < 0.05 Dox after DoxQ versus Dox
after Dox.

3.4.2. Lymph Blockage by Cycloheximide

Intestinal lymphatic delivery of Dox was also examined indirectly in the cycloheximide treated
rat model. Lymph blockage was achieved by pre-administration of cycloheximide 1.5 h prior to oral
administration of DoxQ. A 3 mg/kg intraperitoneal dose of cycloheximide was chosen based on
previous studies published in the literature [26–35]. Likewise, a 1.5-h time delay prior to oral DoxQ
dosing was chosen to achieve maximum lymph blockage [29].
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Figure 6 demonstrates that pre-administration of cycloheximide prior to oral DoxQ reduced the
systemic exposure of Dox compared to DoxQ administered alone. Given that quercetin is naturally
transported via intestinal lymphatics and could act as a carrier for Dox’s (Dox in DoxQ) lymphatic
transport, blockage of the intestinal lymphatic pathway may reduce systemic exposure. The results
suggest that quercetin in DoxQ, intact or when released from the conjugate, facilitates intestinal
lymphatic transport of Dox, and that blocking the lymphatic pathway resulted in lower levels of
circulating Dox.
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Figure 6. Systemic exposure (AUClast) of Dox after PO administration of DoxQ alone or after
cycloheximide IP followed by DoxQ PO in rat serum (n = 4 mean ± SEM). * p < 0.05 Dox after
DoxQ versus Dox after cycloheximide + DoxQ.

3.5. Cardiotoxicity of Dox and Dox

The clinical use of Dox is limited by its dose-related cardiotoxicity, which can result in cardiac
muscle injury. The extent of myocardial injury can be assessed by measuring the levels of cardiac
troponins in blood. Cardiac troponins are highly sensitive and specific biomarkers of cardiac muscle
damage, induced by chemotherapeutics as well as other pathological conditions [47]. cTnI is commonly
used as an early marker of cardiotoxicity induced by Dox [8,48] as it is released within 2–3 h of
myocardial injury and peaks at 24 h [49,50]. Based on the reported peak troponin concentrations
following myocardium injury, levels of cTnI were measured in serum samples from pharmacokinetic
study at 12, 24, and 48 h after a single acute IV dose (10 mg/kg) of Dox or equimolar DoxQ utilizing
an ELISA kit. Figure 7 illustrates that the concentrations of cTnI at 12, 24, and 48 h post-IV-dosing of
DoxQ were lower than after Dox dosing, though this did not reach statistical significance and thus
the cardiac toxicity induced by DoxQ and Dox was not different using this biomarker. Although the
calculated area under the effect curve (AUEC) of cTnI concentrations at 12–48 h post-DoxQ-dosing
(Figure 8) was lower than the AUEC after Dox, it did not result in cardioprotective effects of DoxQ as
there were no statistical differences between the treatment groups.
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3.6. Renal Toxicity of Dox and DoxQ

3.6.1. Urinary Output over 24 h

Dox can also induce renal toxicity, which could be manifested as reduced urinary output. Thus,
the effect of DoxQ on the total urinary output of rats over 24 h was examined in comparison to rats
treated with Dox after a single acute IV dose. Figure 9 shows that there was no significant difference in
the total urine volume over 24 h in rats treated with Dox or an equimolar dose of DoxQ.
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3.6.2. β-N-Acetylglucosaminidase (NAG)

The potential renal toxicity of Dox and DoxQ was determined by measuring β-N-
acetylglucosaminidase (NAG), a lysosomal enzyme found in large concentrations in kidney tubules
and a sensitive and early marker of renal damage [8,51,52]. Urine samples from pharmacokinetic
studies after a single IV dose of DoxQ or Dox collected at 0, 2, 6, 12, 24 and 48 h were analyzed on a
Medica easy RA analyzer for NAG concentrations. Cumulative amounts of NAG in 24 h after DoxQ
dosing were lower than after Dox (Figure 10), suggesting lower renal toxicity induced after DoxQ
administration compared to Dox.
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4. Discussion

Dox is an anthracycline antibiotic widely used in cancer chemotherapy; however, its
dose-dependent toxicity limits its clinical use. The purpose of this study was to investigate the
feasibility of utilizing a Dox-bound derivative with the lymphatically absorbed antioxidant quercetin
as a proof of concept linker, delivering Dox and Dox–quercetin to the systemic circulation via intestinal
lymphatics after oral dosing. In addition, the flavonoid–Dox conjugate may lead to sustained release
of the anti-cancer agent after IV dosing, resulting in lower peak serum concentration, which may be
associated with the dose-limiting cardiotoxicity of the drug. Furthermore, the protective antioxidant
effects of quercetin in DoxQ, when intact or when released, may further limit the cardiac and renal
toxicity induced by Dox.

Various liposome-encapsulated formulations of Dox are currently available in human studies with
the advantage of reduced acute cardiotoxicity compared to IV Dox and improved pharmacokinetics [53].
However, pegylated liposomal Dox is associated with an additional side effect of palmar plantar
erythrodysesthesia [7]. In this study, we sought to examine the performance of a controlled-release
Dox–quercetin conjugate with reduced side effects in vitro, which may have better tolerability
compared to conventional Dox–HCl and liposomal Dox treatments.

The Dox–quercertin conjugate was synthesized using a glycine linker, resulting in a new derivative
with increased lipophilicity and improved in vitro pharmacological activities. Our previous in vitro
study demonstrated a controlled release of both Dox and quercetin released from DoxQ over four
days [14]. Furthermore, DoxQ was less cardiotoxic than Dox to both rat and human cardiomyocytes
and the mechanism of cardioprotection involved a reduction in the levels of ROS and oxidative stress
markers as well as inhibitory effects on the expression and catalytic activity of CYP1B1. Additionally,
DoxQ mitigated the therapeutic barriers contributing to the low oral bioavailability of Dox as it inhibited
CYP3A4 and demonstrated higher cellular uptake by P–gp-positive cells (MDCK–MDR) in vitro.

In this study, our intestinal lymphatic delivery strategy was applied to the DoxQ delivery system,
increasing the serum concentrations of Dox at all time points, with an overall increase in AUClast
of Dox after oral DoxQ administration compared to after Dox, reflecting an overall increase in the
systemic exposure of Dox. In addition, only free Dox was released from oral DoxQ and detected
analytically, thus it was analyzed for systemic exposure. Given that DoxQ was not detected as the
intact conjugate after oral dosing of DoxQ, calculating the F of DoxQ intact was not possible; however,
it was appropriate to calculate the fraction of DoxQ metabolized to Dox, as described in Section 2.9.
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Therefore, the extent of systemic exposure of Dox after oral Dox and DoxQ was assessed by comparing
the AUCs of Dox (Table 3).

After IV administration DoxQ was detected intact, which we have shown to be a
pharmacologically active form as it retained anti-cancer activity in a triple-negative murine breast
cancer cell line [14]. The actual total concentration of DoxQ intact in the serum after an equimolar dose
of Dox was 5-fold higher than the concentration of Dox after Dox, allowing a greater AUC compared
to the standard Dox treatment. This could result in a lower dose of DoxQ being required to achieve
the same effective serum concentrations. DoxQ injections could conceivably be as effective as Dox
with reduced toxicity. With regard to its pharmacokinetics, the difference in the volume of distribution
between the IV Dox after Dox group and the IV DoxQ intact group was possibly due to the change in
physicochemical properties and inhibition of P–gp by quercetin. Dox with a log P value of 1.3, pKa of
8.4, and a molecular weight of 543.53 g/mol rapidly crosses the lipid membrane and binds to tissues,
resulting in a larger Vss. On the other hand, DoxQ with a smaller Vss (0.08) indicates that it is should
mainly reside in the vascular compartment with much lower affinity to distribute across biological
membranes compared to Dox, regardless of its higher lipophilicity (logP 2.60–3.8). This could be due to
the large molecular weight of 982 g/mol and the presence of multiple potential ionization sites, which
may impede its distribution across biological membranes while intact. Similar effects were observed
for clozapine nano-formulation, where tissue distribution of clozapine incorporated in solid lipid
nanoparticles was lower than clozapine solution because free clozapine could only be distributed after
its release from nanoparticles [54]. Therefore, it is possible that DoxQ intact will distribute to a lower
extent than when it is released from the conjugate or when Dox alone is administered. Examination of
the total cumulative amounts of Dox and DoxQ excreted unchanged after IV dosing revealed lower
cumulative amounts of DoxQ intact after DoxQ than of Dox after Dox. This could be due to the large
molecular weight of DoxQ (928.8 g/mole) to be filtered at the glomerulus and also its high lipophilicity
(LogP 2.6–3.8, Table 2), as opposed to Dox with a smaller size and lower lipophilicity.

With regard to intestinal lymphatic absorption of DoxQ, our results show that cumulative
amounts of Dox following DoxQ oral dosing were twice as high after Dox in a mesenteric lymph
cannulated rat model. This observation is likely due to the presence of quercetin in DoxQ, intact
or when released, acting as a lymphatically targeted carrier to facilitate the transport of Dox into
lymphatics, as quercetin has been reported to be transported via intestinal lymphatics following
intragastric or intraduodenal administration [16–18]. Additionally, compounds with high lipophilicity,
high logP, and large molecular size favor association with chylomicrons in the intestine, facilitating
their uptake by lymphatic capillaries into the mesenteric lymph duct [19,21]. The new derivative is
more lipophilic (LogP 2.6–3.8) and larger in size (molecular weight 928.8 g/mole) compared to Dox
(LogP 1.3, 543.53 g/mol), both of which may in part facilitate DoxQ’s lymphatic intestinal absorption.
Furthermore, formulation effects of PEG-400 on the intestinal absorption and pharmacokinetics of
DoxQ and even Dox are possible. PEG-400 is often utilized in dosing of rodent species [45,55] and was
used as a vehicle in this study for both oral and IV administration of DoxQ and Dox because DoxQ has
poor water solubility and reconstitution in 0.9% NaCl is not feasible. The diverse effects of PEG-400 on
solubility, permeability, drug metabolizing enzymes, transporters, and gastrointestinal transit time
may have influences on the intestinal absorption and systemic exposure of oral drugs [56–58].

In spite of the efficacy of Dox chemotherapy, its clinical use is limited due to its dose-limiting
cardiac toxicity along with its renal toxicity, caused in part by the generation of oxygen species in
the conversion from Dox to semiquinone, yielding very reactive hydroxyl radicals. The free radical
may also cause damage to various membrane lipids and other cellular components [59]. Following a
large single-dose injection of Dox (10 mg/kg IV), there was an increase in cTnI released from cardiac
tissues at the 12, 24, and 48 h time points, consistent with the literature. In parallel, rats that received
DoxQ (equimolar dose of Dox) also had an increase in cTnI at each time point. The significant 4–5-fold
increase of circulating intact DoxQ as compared to Dox and its overall increase in systemic exposure,
as well as the metabolism of DoxQ to Dox, did not result in higher cTnI compared to rats that received
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Dox as no statistically significant difference in cardiac toxicity was observed between the two treatment
groups (Figures 7 and 8). The in vivo cardiac effects of DoxQ in this study are different from our
in vitro observations, where DoxQ formulation greatly reduced the cardiac toxicity induced by Dox in
both rat and human cardiomyocytes [14]. This observation is also different from a reported study in
which the combination of Dox with resveratrol and quercetin polymeric micelles was shown to mitigate
Dox-induced cardiotoxicity both in vitro and in vivo [60]. The in vivo cardioprotective effects of this
combination strategy were assessed by measuring levels of AST, ALT, and CK in mice and showed
a significant reduction in all three biochemical markers as opposed to Dox administered alone. The
observations from the later reported study [60] and our in vitro study [14] demonstrate the protective
effects of quercetin on Dox-induced cardiotoxicity. The cardioprotective effects reported in [60] were
attributed to the synergistic action of resveratrol and quercetin micelles when co-administered with
Dox at a ratio of 10:10:1 resveratrol:quercetin:Dox, whereas our DoxQ conjugate is designed to release
Dox and quercetin at a ratio of 1:1, which may have not been enough to show cardioprotection
in vivo after one dose. Additionally, the use of two antioxidants, namely resveratrol and quercetin,
together could have provided a greater ability to scavenge reactive oxygen species and attenuate the
cardiotoxicity induced by Dox as opposed to only quercetin in the DoxQ formulation.

Urine analysis following a single acute dose of Dox showed higher cumulative amounts of
β-N-acetylglucosaminidase (NAG), a lysosomal enzyme in the epithelial cells of the proximal tubules
and a sensitive marker of renal damage, compared to DoxQ. This is likely due to the antioxidant
protective effects of quercetin in DoxQ on Dox-induced renal toxicity and is consistent with similar
studies reported in the literature [61,62].

DoxQ by injection could have greater benefits over standard dosing regimens in terms of tolerance
and potential improved toxicity. Further translational efforts will focus on optimizing dose frequency,
completing preclinical proof of concept in chronic studies, and examining other natural lymphatic
carriers for oral delivery.

5. Conclusions

DoxQ alters the pharmacokinetic disposition of Dox both orally and intravenously and is in part
transported through intestinal lymphatics. DoxQ may increase therapeutic safety compared to Dox in
a rodent model and further long-term studies are warranted.
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