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Abstract: Many proteins can be used to treat brain diseases; however, the presence of the blood–brain
barrier (BBB) creates an obstacle to delivering them into the brain. Previously, various molecules were
delivered through the paracellular pathway of the BBB via its modulation, using ADTC5 and HAV6
peptides. This study goal was to design new cyclic peptides with N-to-C terminal cyclization for
better plasma stability and modulation of the BBB. Cyclic HAVN1 and HAVN2 peptides were derived
from a linear HAV6 peptide. Linear and N-to-C terminal cyclic ADTHAV peptides were designed by
combining the sequences of ADTC5 and HAV6. These novel cyclic peptides were used to deliver an
IRdye800CW-labeled IgG monoclonal antibody into the brain. Cyclic HAVN1 and HAVN2 peptides
deliver IgG into the brain, while the parent linear HAV6 peptide does not. Cyclic and linear ADTHAV
and ADTC5 peptides enhanced brain delivery of IgG mAb, in which cyclic ADTHAV peptide was
better than linear ADTHAV (p = 0.07). Cyclic ADTHAV and ADTC5 influenced the distribution of
IgG mAb in other organs while HAV6, HAVN1 and HAVN2 did not. In summary, the novel cyclic
peptides are generally better BBB modulators than their linear counterparts for delivering IgG mAb
into the brain.

Keywords: blood–brain barrier (BBB); cadherin cyclic peptides; monoclonal antibody (mAb);
paracellular pathway; mAb in vivo brain delivery

1. Introduction

Insufficient delivery of drugs across the blood–brain barrier (BBB) has become the major challenge
in diagnosing and treating brain-related diseases [1–3]. Many large molecule therapeutics, such as
neurotrophic factors, enzymes, and antibodies, are being developed to treat brain disorders such as
neurodegenerative diseases (e.g., multiple sclerosis (MS) and Alzheimer’s disease (AD)) and brain
tumors (i.e., glioblastoma and medulloblastoma). Unfortunately, the BBB is one of the major hurdles for
brain delivery of large therapeutic agents such as proteins. Most large molecules, such as monoclonal
antibodies (mAbs) with a molecular weight around 150 kDa, have a low ability to enter the brain
because any molecule that crosses the BBB requires appropriate physicochemical properties for passive
diffusion or a specific transporter for an active transport mechanism. The BBB is a very selective
barrier, main function of which is to regulate the passage of nutrients into the brain and provide
brain protection against toxic compounds and pathogens. The transcellular pathway, which many
hydrophobic drugs utilize to cross the BBB, is also limited to molecules with physicochemical properties
that at least satisfy Lipinski’s rule of five [4]. Even if a molecule satisfies Lipinski’s rules, efflux pumps
can still prevent it from crossing the BBB [2].

The paracellular pathway, where a drug molecule can pass through intercellular junctions, is also
limited to small ions and hydrophilic molecules with hydrodynamic radius <11 Å [2]. This is due to
the presence of tight junctions between two opposing cellular membranes. Therefore, large hydrophilic
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molecules such as peptides and proteins normally cannot passively diffuse through the paracellular
pathway. Conversely, a select number of peptides and proteins (e.g., insulin, transferrin) can cross the
BBB via the transcellular pathway because they have specific transporter systems (e.g., insulin and
transferrin receptors) [3,5–9]. Currently, many neurotrophic factors such as nerve growth factor
(NGF) [10] and brain-derived neurotrophic factor (BDNF) [11] have been investigated for treating
neurodegenerative diseases such as MS and AD. Unfortunately, as with other proteins, the brain
delivery of NGF or BDNF is still very challenging. Therefore, there is an urgent need to develop
methods that are safe and effective for improving delivery of proteins and peptides into the brain.

Several attempts have been made to overcome this challenge using various invasive and
non-invasive methods. Intracerebral ventricular (ICV) delivery is an invasive injection technique in
which drug substances are administered directly into the cerebrospinal fluid in cerebral ventricles.
Alternatively, many non-invasive methods have been investigated in vivo with various levels of
success using receptor-mediated drug delivery systems, liposomes, microbubble-enhanced diagnostic
ultrasound (MEUS), and nanoparticles [12–14]. The most successful non-invasive method for delivering
drugs to brain tumor patients is osmotic BBB disruption, which utilizes a mannitol hypertonic solution
to shrink the vascular endothelial cells and increase the porosity of the paracellular pathway to improve
permeation of antitumor drugs from the blood into the brain [15–17]. Following in the footsteps of
the osmotic BBB method, we designed cadherin peptides (i.e., HAV6 and ADTC5) that modulate
cadherin–cadherin interactions in the adherens junctions to increase the porosity of the BBB paracellular
pathways, so as to allow molecules to cross from the bloodstream into the brain [1,2]. The proposed
mechanism is that cadherin peptides inhibit cadherin-mediated cell–cell adhesion in a specific, dynamic,
and equilibrium fashion. Both HAV6 and ADTC5 peptides were derived from the extracellular-1 (EC-1)
domain of E-cadherin and, collectively, they have been shown to increase the brain delivery of various
molecules, including paracellular markers (i.e., 14C-mannitol, 25 kDa IRdye800CW-polyethylene
glycols or PEG), anticancer drugs (i.e., 3H-daunomycin, Glu-CPT, adenanthin), efflux pump substrates
(i.e., rhodamine 800 (R800), 3H-daunomycin), magnetic resonance imaging (MRI)-enhancing agents
(i.e., gadopentetic acid or Gd-DTPA), peptides (i.e., IRdye800CW-cLABL and cIBR7), and proteins (i.e.,
65 kDa galbumin) [18–23]. Recently, HAV6 has been shown to significantly improve the delivery of an
anticancer drug, adenanthin, into the brains of mice with medulloblastoma brain tumor. Treatments
with a combination adenanthin and HAV6 increased survival and suppressed tumor growth compared
to treatments with adenanthin alone or placebo [24]. Similarly, oral and brain deliveries of eflornithine
in rats were simultaneously increased by HAV6 peptide [25].

The goal of this study was to design and synthesize novel cyclic peptides derived from HAV6 and
ADTC5 peptides to improve their BBB modulatory activity and selectivity by forming a peptide bond
from the N- to C-termini (Table 1, Figure 1). The hypothesis is that the formation of N-to-C-termini
cyclic peptides increases the backbone rigidity of the peptide to improve binding affinity and selectivity
for the EC1 domain of cadherin as well as improving plasma stability of the cyclic peptide compared to
its parent linear peptide. Previously, cHAVc3 and ADTC5 cyclic peptides were formed using a disulfide
bond between two Cys residues at the N- and C-termini; these cyclic peptides have enhanced BBB
modulatory activity and plasma stability compared to their parent linear peptides [19,20]. However,
a disulfide bond in a cyclic peptide can be reduced by glutathione in plasma to form a linear peptide
that may have lower biological activity. Thus, we designed stable N-to-C-termini cyclic peptides
(i.e., HAVN1 and HAVN2) derived from HAV6 and cyclic ADTHAV peptide utilizing a combination of
sequences from ADT and HAV peptides (Table 1, Figure 1). A new cyclization method was successfully
developed to make N-to-C-termini cyclic peptides using acetonitrile for easy solvent evaporation
rather than using dimethylformamide (DMF), which is difficult to evaporate or remove (Figure 2).
The activities of new cyclic peptides were compared to current linear HAV6 and cyclic ADTC5 in
delivering IRDye800CW-labeled IgG mAb into the brains of C57BL/6 mice. The effects of the new cyclic
peptides on IgG mAb deposition in other organs such as liver, kidney, spleen, lung, and heart were
also determined to assess potential off-target tissue effects or side effects of these cadherin peptides.
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Table 1. Peptide Names and Peptide Sequences.

Peptide Sequence Mass (Da) Exact Mass (Da)

Cyclic ADTC5 Cyclo(1,7)Ac-CDTPPVC-NH2 772 795.2813 (+ Na+)
Linear ADTHAV Ac-TPPVSHAV-NH2 847 848.4606
Cyclic ADTHAV Cyclo(1,8)TPPVSHAV 788 789.4124

Linear HAV6 Ac-SHAVSS-NH2 627 628.2991
Cyclic HAVN1 Cyclo(1,6)SHAVSS 568 569.2603
Cyclic HAVN2 Cyclo(1,5)SHAVS 481 482.2159
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Figure 2. A synthetic scheme to make cyclic ADTHAV peptide. (a) Fmoc-deprotection:
piperidine/DMF (1:4). (b) Coupling reaction in DMF using HCTU, NMM, and Fmoc-amino
acids: Fmoc-Ala-OH, Fmoc-Ser(Bzl)-OH, Fmoc-Val-OH, Fmoc-Pro-OH, Fmoc-His(Trt)-OH,
Fmoc-Thr(Bzl)-OH, and Fmoc-Pro-OH. (c) (i) Fmoc-deprotection reaction and (ii) peptide cleavage
from the resin: TFA/H2O/TIPS (94:3:3) at room temperature and 2-h reaction time. (d) Solution-phase
cyclization reaction using HATU/DIEA/peptide (2:4:1) in acetonitrile at room temperature and 24-h
reaction time followed by prep-HPLC. (e) Final hydrogenation reaction for side-chain deprotection on
the peptide was done in a mixture of peptide/H2/Pd/C at room temperature and 24-h reaction time.
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2. Materials and Methods

2.1. Chemicals, Reagents, and Animals

The reagents (i.e., trifluoro acetic acid (TFA), hydrogen gas, Pd/C catalyst, triisopropylsilane
(TIPS), O-(1H-6-Chlorobenzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HCTU),
1-[Bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate
(HATU), N-[(Dimethylamino)-1H-1,2,3-triazolo-[4,5-b]pyridin-1-ylmethylene]-N-methylmethanaminium
hexa-fluorophosphate N-oxide (HATU), diisopropyl ethyl amine (DIEA)) and solvents (i.e., acetonitrile,
methanol) were purchased from Sigma Aldrich Chemical Company (St. Louis, MO, USA) and Fisher
Scientific Inc. (Hampton, NH, USA). Gyros Protein Technologies Inc. (Tucson, AZ, USA) was the
vendor for all Fmoc-protected amino acids for peptide synthesis. IRDye800CW donkey anti-goat IgG
was obtained from LI-COR Inc. (Lincoln, NE, USA). All animal studies were carried out under the
approved animal protocol (AUS-75-13; Approval Date: 03/26/2019) granted by Institutional Animal
Care and Use Committee (IACUC) at The University of Kansas. Animal Care Unit (ACU) personnel
and veterinarians were involved in the care of the animals used in this study.

2.2. Peptide Synthesis and Purification

A Tribute solid-phase peptide synthesizer (Gyros Protein Technologies, Inc., Tucson, AZ, USA)
with Fmoc chemistry was used to synthesize all linear peptide precursors (Table 1). The HAV6 and
linear precursors for cyclic ADTC5 peptide were synthesized using amide resin and were cleaved
from the resin with a cocktail mixture of 89% TFA:5% phenol:3% H2O:3% TIPS. The linear precursors
for N-to-C-termini cyclic peptides (i.e., HAVN1, HAVN2, and ADTHAV) were synthesized using
Fmoc-Val-Wang resin (Figure 2). The carboxylic acid and alcohol groups on the side chains were
protected with benzyl groups. The peptides were cleaved using a 94% TFA: 3% H2O: 3% TIPS cocktail
solution. The TFA solutions of linear HAV6, ADTC5, and ADTHAV were added into cold diethyl
ether to precipitate the peptide. In contrast, the cleavage solutions of linear HAVN1 and HAVN2 were
directly concentrated by rotary evaporator to yield the crude peptides that were further lyophilized.

To form cyclic ADTC5, a very low concentration of linear peptide precursor without any protecting
groups was dissolved in bicarbonate buffer solution at pH 9.0; and then, the solution was then bubbled
with air to oxidize the two thiol groups in the Cys residues to form a disulfide bond. The end result
produced cyclic ADTC5 peptide in a monomeric form with low side products as dimers, trimers,
and oligomers. The desired monomer was purified by semi-preparative HPLC using a C18 column
Waters XBridge C18 (19 mm × 250 mm, 5 µm particle size; Waters Corporation, Milford, MA, USA).
The mobile phase consisted of solvents (A) H2O: ACN: TFA (94.9:5:0.1) and (B) acetonitrile with a
gradient of 40% B (0 min), 40–100% B (17 min), 100% B (2 min), 100–40% B (2 min), and 40% B (6 min).
Before combining the collected fractions, each fraction was evaluated by analytical HPLC using a C18
column (Luna C18, 4.6 mm × 250 mm, 5 µm particle size, 100 Å; Phenomenex, Inc., Torrance, CA, USA)
to check for purity, and the pure fractions were pooled, concentrated, and lyophilized.

The N-to-C-termini cyclizations to produce cyclic ADTHAV, HAVN1, and HAVN2 were carried
out in solution phase (Figure 2). In this case, the acid and alcohol functional groups on the side
chains of the peptide were protected with benzyl ester and ether groups that were removed after
cyclization. The optimized molar ratio of peptide: HATU:DIEA for the cyclization reaction was 1:2:4,
and the cyclization reaction was done in dilute solution (~6.0 mM peptide) in acetonitrile (ACN).
In this case, three separate solutions were prepared: (1) 6.3 mmol peptide in 50 mL of acetonitrile,
(2) 12.6 mmol HATU in 50 mL acetonitrile, and (3) 25.2 mmol DIEA in 1 L of acetonitrile. The solutions
of peptide and HATU were both added slowly from two different peristaltic pumps into the DIEA
solution over 4 h, and the mixture was stirred overnight. The completion time for the cyclization
reaction was monitored using mass spectrometry every 4 h to observe the disappearance of the linear
precursor and the appearance of the cyclic peptide. After confirming the complete formation of the
cyclic peptide, the acetonitrile was removed by rotary evaporator. A C18 semi-preparative HPLC
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column was used to isolate the cyclic peptide, and the pure peptide was lyophilized. The cyclic peptide
was dissolved in methanol and subjected to hydrogenation reaction under balloon pressure in the
presence of Pd/C catalyst overnight to remove benzyl ester and ether protecting groups. The final
product was purified by semi-preparative HPLC, and the identity of the cyclic peptide was confirmed
using mass spectrometry (Figure 3).
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Figure 3. Mass spectra of (A) HAV6, (B) HAVN1, (C) HAVN2, (D) ADTC5, (E) linear ADTHAV, and (F)
cyclic ADTHAV peptides to identify the synthesized molecules.2.3. In Vivo Delivery of IRdye800CW
IgG mAb.
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The activity of each peptide in enhancing BBB penetration was evaluated by delivering
IRdye800CW donkey anti-goat IgG mAb in C57BL/6 mice; the amounts of mAb in the brain were
determined using near infrared fluorescence (NIRF) imaging. Each group contains 3 mice per
group (n = 3) with a mixture of male and female mice, selected randomly for each arm of the
study. The injection solution was prepared by adding 600 µL PBS into 0.5 mg lyophilized IgG mAb;
then, approximately 1.5 mg lyophilized peptide was added into the mixture yielding the injectable
formulation. A 100 µL solution of a mixture containing IgG mAb (21.6 nmol/kg) along with 13 µmol/kg
peptide was administered via tail vein. As a control, 100 µL of IgG mAb alone was administered via i.v.
route. After the delivered molecules had been circulating for 15 min, the mice were sacrificed; then,
a mixture of PBS with 0.5% Tween-20 was administered for cardiac perfusion to remove the blood
and delivered molecules from the brain microvessels. The brain and other organs such as lung, heart,
spleen, liver, and kidney were harvested and rinsed with PBS. The isolated organs were scanned with
Odyssey® CLx for mAb quantification.

The brain deposition of IgG mAb was also quantified by NIRF imaging in brain homogenates.
The isolated brains were mechanically homogenized in 2.0 mL of PBS. To make the standard solutions,
IRDye800CW IgG mAb stock solution (70 µg/mL) was prepared; it was then diluted with various
amounts of PBS to make six different mAb concentrations. To generate a calibration curve, the brain
homogenate (200 µL) was aliquoted out to a 96-well plate. A total of 10 µL of each concentration
of IgG mAb was added to three different wells of blank brain homogenates. The standard spiked
homogenates were at a range of 10–200 ng/mL IgG mAb in brain homogenate. The wells were scanned
using the Odyssey® CLx scanner, and the signal intensities vs. concentrations of mAb per gram of
brain were used to generate a calibration curve.

2.3. Statistical Analysis

ANOVA with Student–Newman–Keuls was used to compare the data for determining statistical
significance for IgG mAb deposition in the brains. A p-value of less than 0.05 was used as a criterion
for a significant difference in data comparison. Numeric results are presented as: mean ± SEM.

3. Results

3.1. Peptide Synthesis and Purification

The solid-phase peptide synthesizer was used to generate all peptides used in this study, and
the synthesis was done using Fmoc amino acids. A high yield of crude peptide was normally found
for peptide synthesis. The cyclization reaction to make cyclic ADTC5 peptide was uneventful and
generated a mostly monomeric cyclic peptide. The syntheses of N-to-C-termini cyclic peptides
were done by a combination of solid-phase and solution-phase synthetic methods (Figure 2). As an
example, a linear precursor ADTHAV peptide with uncapped N- and C-termini (TPPVSHAV-OH) was
synthesized using solid-phase peptide synthesis, and the side chains of the Asp, Ser, and Thr residues
were protected with benzyl ester and ether protecting groups. These protecting groups were maintained
during the cleavage reaction to remove the peptide from the resin. After semi-preparative HPLC
purification, the isolated product was considered acceptable when it had >96% purity, as determined by
analytical HPLC with a C18 column. The cyclization was done in acetonitrile in high dilution to favor
intramolecular peptide bond formation and to prevent formation of dimers, trimers, and oligomers.
The major product was a monomeric cyclic peptide, and the exact mass of each N-to-C-termini cyclic
peptide is shown in Table 1 and Figure 3, where the molecular mass of the cyclic peptide was 18 amu
(−H2O) less than the precursor linear peptide.

3.2. In Vivo Delivery of IRdye800CW IgG mAb

The new cyclic peptides were compared to ADTC5 and HAV6 peptides by evaluating their
activities in delivering IgG mAb into the brains of C57BL/6 mice. As a negative control, IgG mAb was
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delivered in PBS without peptide. Previously, ADTC5 has been shown to improve brain delivery of
IgG mAb, which can serve as a positive control. Cyclic HAV peptides (i.e., HAVN1, HAVN2) and
linear HAV6 were evaluated to test whether the formation of cyclic peptides could improve their BBB
modulatory activity. Cyclic ADTHAV peptide was formed via a combination of ADTC5 and HAV6
sequences to test the potential additive activity of the two sequences. Because ADTC5 and HAV6 bind
to two different binding sites on the EC1 domain, it is proposed that the activity of cyclic ADTHAV is
also due to its binding to two different binding sites on the EC1 domain.

A calibration curve was generated to determine the amount of IgG mAb in the brain by spiking
blank brain homogenates with a concentration range from 10 to 200 ng/mL, and good linearity with
R2
≥ 0.98 was achieved. The results showed that HAV6 did not enhance brain delivery of IgG mAb

compared to the control, i.e., IgG mAb alone (Figure 4, p > 0.05) while IgG mAb brain delivery
was significantly enhanced by cyclic HAVN1 and HAVN2 peptides compared to HAV6 and control
(Figure 4). These results indicate that cyclic peptide formation increases BBB modulatory activity of
HAV peptide. The average amounts of IgG mAb in the brains of HAV6-treated and control animals
were 3.4 ± 0.4 and 4.0 ± 0.5 pmol/g brain, respectively. In contrast, the average amounts of mAb
in the brains of cyclic HAVN1- and HAVN2-treated mice were 8.6 ± 0.5 and 8.8 ± 0.6 pmol/g brain,
respectively. The BBB modulatory activities of ADTC5, linear ADTHAV, and cyclic ADTHAV were also
compared to the control (Figure 5). The brain delivery of IgG mAb by linear ADTHAV, cyclic ADTHAV,
and ADTC5 was significantly better than in the PBS control. The average brain deposition of IgG
mAb were 11.8 ± 0.5, 15.7 ± 0.8, and 13.3 ± 0.7 pmol/g brain for linear ADTHAV, cyclic ADTHAV,
and ADTC5, respectively.
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Figure 4. (A) The levels of brain deposition of IRdye800CW-IgG mAb were qualitatively shown by
NIRF imaging after administration of IgG mAb (21.6 nmol/kg) alone as a control or along with linear
HAV6, cyclic HAVN1, or cyclic HAVN2 (13 µmol/kg) in C57BL/6 mice. (B) IRdye800CW-IgG mAb brain
deposition was determined quantitatively using NIRF imaging in pmol/g brain after delivery of IgG
mAb alone (21.6 nmol/kg) or delivered with HAV6, HAVN1, or HAVN2 (13 µmol/kg) in C57BL/6 mice.
The asterisk (*) designates a significant difference in HAVN1- or HAVN2-treated groups compared to
control with p < 0.05. Error bars show the mean± SEM with the number of animals, n = 3, for each group.
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Figure 5. (A) The qualitative brain deposition of IRdye800CW-IgG mAb as NIRF images after its i.v.
administration alone (21.6 nmol/kg) as a control or together with cyclic ADTC5, linear ADTHAV, or
cyclic ADTHAV (13 µmol/kg) in C57BL/6 mice. (B) Quantitative determination of IRdye800CW-IgG
mAb brain deposition in pmol/g brain after its administration (21.6 nmol/kg) without peptide as a
control group or in the presence of ADTC5, linear ADTHAV, or cyclic ADTHAV (13 µmol/kg) in C57BL/6
mice. The asterisk (*) indicates a significant difference in cyclic ADTC5-, linear ADTHAV-, or cyclic
ADTHAV-treated groups compared to control with p < 0.05. Error bars show the mean ± SEM with the
number of animals, n = 3, for each group.

The effects of peptides in the deposition of IgG mAb in other organs such as liver, kidney, heart,
spleen, and lungs were compared to the control. There was no significant difference in IgG mAb
deposition in other organs for HAV6-, HAVN1- and HAVN2-treated animals compared to the control
animals (Figure 6; p > 0.05). These results suggest that these BBB-modulating peptides do not have a
significant impact on other organs. In contrast, ADTC5 and linear ADTHAV peptides have significant
effects on the distribution of IgG mAb in the heart and kidney when compared to the control (Figure 7).
Moreover, there were significant increases in deposition of IgG mAb in liver, kidney, spleen, and lungs
for cyclic ADTHAV peptide when compared to the control (Figure 7; p < 0.05).
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Figure 6. The effects of linear HAV6, cyclic HAVN1, and cyclic HAVN2 peptides on the peripheral
organ deposition of the IRdye800CW-IgG mAb in heart, lung, kidney, spleen, and liver determined
using NIRF signal intensity (A) qualitatively and (B) quantitatively in absorption units (A.U.). The IgG
mAb deposition was measured by the total NIRF image intensity in each organ. There is no significant
difference in the IgG mAb signal intensities for each organ when comparing the control group and
peptide-treated group with p > 0.05. Error bars show the mean ± SEM with the number of animals,
n = 3, for each group.
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Figure 7. The effects of cyclic ADTC5, linear ADTHAV, and cyclic ADTHAV peptides on the peripheral
organ deposition of the IRdye800CW-IgG mAb in heart, lung, kidney, spleen, and liver determined
using NIRF signal intensity (A) qualitatively and (B) quantitatively in absorption units (A.U.). The IgG
mAb deposition was measured by the total NIRF image intensity in each organ. There are significance
differences in the IgG mAb signal intensities for kidney and heart of ADTC5- or linear ADTHAV-treated
mice compared to control (* p < 0.05). There are significant differences in the IgG mAb signal in lung,
kidney, spleen, and liver from the cyclic ADTHAV-group compared to the control group (* p < 0.05).
Error bars show the mean ± SEM with the number of animals, n = 3, for each group.

4. Discussion

Treating brain diseases is a challenge as it is difficult to deliver drugs through the BBB into the
brain. As many approaches to solve this problem have failed clinically, it is important to investigate new
methods to improve brain delivery of molecules for diagnosing and treating brain diseases. This study
was focused on designing, synthesizing, and evaluating new cyclic peptides for modulating the BBB
to increase paracellular protein delivery into the brain. Our previous studies showed that ADTC5
and HAV6 peptides modulate the paracellular pathways of the BBB and increase the permeation
of small marker or drug molecules, peptides, and proteins into the brain [19–23]. In recent studies,
the activities of ADTC5 and HAV6 to deliver proteins into the brain were compared in C57BL/6 mice.
Both ADTC5 and HAV6 significantly enhanced the brain delivery of 15 kDa lysozyme compared to
the control; however, ADTC5 was significantly better than HAV6 in delivering 15 kDa lysozyme into
the brain. HAV6 (13 µmol/kg) did not significantly enhance brain delivery of albumin at a low dose
(21.6 nmol/kg), while ADTC5 (13 µmol/kg) significantly enhanced brain delivery of albumin compared
to the control. In a separate study, when galbumin (600 nmol/kg) was delivered at a 27 times higher
dose than NIRF-labeled albumin (21.6 nmol/kg) using HAV6 in living mice, there was a significant brain
deposition of galbumin found as detected by magnetic resonance imaging (MRI) [22]. This indicates
that the dose of delivered protein can influence the amount of protein deposition in the brain. It is
proposed that HAV6 created a small subpopulation of large pores in the intercellular junctions that
allow for sufficient amounts of galbumin, when delivered at a high dose, to enter the brain to be
detected by magnetic resonance imaging (MRI). As shown here, HAV6 could not enhance the delivery
of IgG mAb, while the ADTC5 could. From this, it was clear that ADTC5 is a better BBB modulator
than HAV6 for delivering proteins into the brain. The difference in activity of HAV6 and ADTC5
peptide is due to their binding properties to the EC1 domain of cadherin.

Cadherin peptides interrupt the cadherin–cadherin interactions by binding to the extracellular
domains of cadherins allowing delivered molecules to pass through the intracellular junctions of the
BBB. HSQC NMR and molecular modeling experiments showed that ADT and HAV peptides bind
to different sites on the EC1 domain of E-cadherin [26]. Using the X-ray structure of C-cadherin as a
model, it is seen that the cadherin molecules can form cis- and trans-interactions with each other in a
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homotypic fashion [27]. The cis-cadherin interactions were formed via binding of the EC1 domain from
one cadherin molecule to the EC2 domain of another cadherin, both of which protrude from the same
cell membranes. The trans-cadherin interactions were formed by binding between the EC1 domain
of a cadherin molecule from one cell membrane to the EC1 domain of another cadherin molecule
from an opposing cell membrane. In this case, a Trp residue at the N-terminus of the first EC1 binds
to a hydrophobic pocket in the second EC1 from the opposing cell membranes while another Trp
on the second EC1 binds to a hydrophobic pocket at the first EC1. This process is called “domain
swapping”. Our NMR studies showed that ADTC5 and its derivatives bind to the hydrophobic pocket
of the EC1 in which the “domain swapping” can occur between the two trans-cadherin interactions;
therefore, ADT peptides inhibit trans-cadherin interactions. In contrast, NMR studies also indicated
that HAV peptides (i.e., HAV6 and cHAVc3) bind to the EC1 domain of E-cadherin at the interface
of cis-cadherin interactions; thus, it is proposed that HAV peptides block cis-cadherin interactions to
open the paracellular pathways [26]. Because cyclic ADTHAV is derived from ADTC5 and HAV6, it is
proposed that the activity of cyclic ADTHAV is due to its ability to bind both ADT- and HAV-peptide
binding sites to inhibit both cis- and trans-cadherin.

To improve BBB modulatory activity, the aim of this study was to design and synthesize more
potent and selective cyclic peptides derived from HAV6 and ADTC5 sequences and evaluate their BBB
modulatory effects in delivering IgG mAb to the brain. Previously, the formation of cyclic peptides
has been shown to improve biological activity and plasma stability of peptides. For these reasons,
cyclic peptides have been developed successfully as therapeutics in the clinic, and there are more
than 60 approved peptide-derived drugs available in the United States and other major markets.
Among those, a vast majority are derived from natural products such as antimicrobials or human
peptide hormones, including widely applied cyclic peptides such as oxytocin, octreotide, vasopressin,
vancomycin, daptomycin, and polymyxinB [28]. Peptide cyclization improves conformational stability
and binding properties of peptides to their respective target receptor(s). Various covalent bonds have
been utilized to form cyclic peptides by linking two ends of the peptide using a disulfide, amide,
lactone, ether, or thioether bond. Peptide cyclization can be formed via backbone-to-backbone (or
N-to-C termini), backbone-to-side chain, or side chain-to-side chain. Using a disulfide bond via side
chain-to-side chain cyclization is the easiest way to make a cyclic peptide by oxidation of the two thiol
groups of Cys residues at the two ends of a peptide. However, the disulfide bond can be reduced in
the blood by reducing agents (i.e., glutathione). Nonetheless, many cyclic peptide drugs (e.g., oxytocin,
integrilin) are formed with a disulfide bond. The second most popular cyclization method is head-to-tail
cyclization via N-to-C (or backbone-to-backbone) peptide bond formation. In nature, many biologically
active peptides are N-to-C cyclic peptides such as cyclosporin and bacitracin. Compared to their linear
counterparts, cyclic peptides are less flexible or more conformationally rigid, which often enhances
their receptor selectivity and biological activities. This rigidity reduces the number of available
conformations and decreases the entropy term of the Gibbs free energy. Moreover, N-to-C cyclic
peptides have been shown to have higher plasma stability than the parent linear peptides; this is due
to the flexibility of linear peptides to readily bind to the active side of exo- and endo-peptidases [29].

In this study, cyclic HAVN1 and HAVN2 peptides enhanced in vivo brain delivery of 150 kDa
IgG mAb while the parent linear HAV6 (Ac-SHAVSS-NH2) did not (Figure 4). Similarly, when HAV6
was used to deliver IRdye800CW-albumin at the same dose as IgG mAb, no significant enhancement
of albumin brain deposition was observed compared to albumin alone as a control. It was clear that
there was an improvement in the BBB modulatory activity of cyclic HAVN1 and HAVN2 compared
to that of linear HAV6. It is proposed that the rigidity imposed on the peptide backbone of the
cyclic peptide reduced the ensemble of peptide conformations and, as a result, the backbone rigidity
improved peptide binding to the target cadherin protein for modulation of the BBB. HAVN1 is a
cyclo-hexapeptide with a sequence similar to that of HAV6, while the HAVN2 is a cyclo-pentapeptide
with one Ser residue deleted from the sequence of HAV6. It is interesting that the removal of one serine
residue did not influence the BBB modulatory activity of HAVN2 compared to HAVN1 in delivering
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IgG mAb using the presented conditions. In the future, the effects of peptide dose and residence time
in the systemic circulation of peptide along with IgG mAb will be evaluated to possibly differentiate
the properties of these peptides. Currently, binding affinities of HAVN1, HAVN2, and HAV6 to the
EC1 of E- and VE-cadherins are being evaluated using surface plasmon resonance (SPR) and NMR to
differentiate these two peptides.

Previously, cyclic cHAVc1 (cyclo(1,8)Ac-CSHAVASC-NH2) and cHAVc3 (cyclo(1,6)Ac-
CSHAVC-NH2) were prepared and compared to a linear HAV4 (Ac-SHAVAS-NH2) in modulating
the intercellular junctions in vitro and in vivo [19]. In Madin–Darby Canine Kidney (MDCK) cell
monolayers, the results showed that cyclic cHAVc1 (cyclo(1,8)Ac-CSHAVASC-NH2) has the same
junction modulatory activity as HAV4 peptide [19]. However, deletions of the Ala6 and Ser7
residues from cHAVc1 to produce cHAVc3 (cyclo(1,6)Ac-CSHAVC-NH2) made cHAVc3 peptide more
active compared to HAV4 and cHAVc1 in modulating the intercellular junctions in the cell culture
monolayers. Cyclic cHAVc3 peptide was better than a linear HAV4 in improving in vivo brain delivery
of gadopentetic acid (Gd-DTPA) as a magnetic resonance imaging (MRI) agent in mice as well as
in lowering the TEER values of MDCK cell monolayers [19]. One of the potential reasons for lower
activity of cHAVc1 compared to that of cHAVc3 is that cHAVc1 has more backbone flexibility than
the smaller cyclic cHAVc3, confirming that backbone rigidity has a strong influence on the cadherin
peptide binding selectivity for target cadherin protein.

This study was also aimed at developing cyclic ADTHAV peptide by combining important
residues from the ADT peptide (i.e., ADTC5) and HAV peptide (i.e., HAV6). Because ADTC5 and
HAV6 bind at different sites on the EC1 domain, combining the two active sequences could provide
synergistic activity form both parent peptides on cyclic ADTHAV. In this case, cyclic ADTHAV contains
the Thr-Pro-Pro-Val sequence from ADTC5 and Ser-His-Ala-Val sequence from HAV6. The hypothesis
is that the combined sequence enhances BBB modulatory activity better than the parent ADTC5
and HAV6. The selection of the Thr-Pro-Pro-Val sequence to build cyclic ADTHAV was due to the
importance of this sequence in previous studies in MDCK cell monolayers as well as in vivo BBB in
animal models [20,30]. ADT peptides containing the Ala-Asp-Thr-Pro-Pro-Val (ADTPPV) sequence
were derived from a bulge region in the EC1 domain of E-cadherin [30]. In NMR [31] and X-ray [32]
structures of the EC1 domain of E-cadherin, the Thr-Pro-Pro-Val sequence was also found on the
active surface of the EC1 domain. Bocsik et al. showed that the ADT6 peptide (Ac-ADTPPV-NH2)
reversibly disrupts the intercellular junctions of primary brain endothelial cell monolayers as measured
by trans-endothelial electrical resistance (TEER) values [33]. Early studies showed that removal of the
Ala1 residue from cyclo(1,8)-Ac-CADTPPVC-NH2 (ADTC1) to make cyclo(1,7)-Ac-CDTPPVC-NH2

(ADTC5) significantly enhanced the ADTC5 activity compared to that of ADTC1 [20]. In contrast,
removal of the Val6 residue from ADTC5 to make cyclo(1,6)Ac-CDTPPC-NH2 (ADTC6) lowered
the activity of ADTC6 compared to ADTC5, suggesting that the Val residue is an important residue
in ADT peptides [20]. Binding studies of ADT peptides to the EC1 domain of E-cadherin using
NMR and molecular docking indicated that the Thr-Pro-Pro-Val sequence has an important role in
binding interactions.

The selection of the Ser-His-Ala-Val sequence as a building block for the cyclic ADTHAV peptide
was rationalized from our previous alanine scanning studies [34], the work on cyclic HAV peptides by
Williams et al. [35] and our own work with cHAVc3 (see above) [19]. An alanine scanning study was
carried out to evaluate the role of each amino acid in HAV6 peptide, and the biological activity of each
alanine mutant peptide was evaluated in lowering the TEER values of MDCK cell monolayers [34].
Mutation of the Ser1 to Ala1 residue reduced the junction modulatory activity of the HAV6 mutant;
this finding indicates the potential importance of hydrogen bonding from the hydroxyl group Ser1
to the EC1 domain of E-cadherin [34]. Replacing the Val4 residue with Ala4 in HAV6 dramatically
reduced the activity of the mutant; thus, the bulky hydrophobic dimethyl group in Val4 is necessary
for its binding to a hydrophobic pocket in the EC1 domain. It is interesting to find that replacing the
His2 residue with the Ala2 residue did not cause any change in the activity of the mutant. In HAV4
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peptide (Ac-SHAVAS-NH2), substitution of Ser5 with Ala5 enhanced modulatory activity of the peptide
compared to HAV6. It was proposed that the replacement of a neutral hydrophilic Ser residue with a
hydrophobic Ala residue improved peptide binding to cadherin; thus, a non-bulky hydrophobic group
(i.e., methyl group) in position 5 is favorable for docking into a small hydrophobic pocket on the EC1
domain of cadherin. Taken together, it was shown that the Ser-His-Ala-Val sequence has an important
role in the activity of HAV peptides.

Evaluations of the in vivo activities of ADTC5 and linear and cyclic ADTHAV peptides showed
that all three peptides were effective in delivering IgG mAb into the brain compared to IgG mAb alone
as a control (Figure 5; p < 0.05). Cyclic ADTHAV showed a trend of higher activity in delivering IgG
mAb compared to linear ADTHAV (p = 0.07), whereas there was no significant difference between
cyclic ADTHAV and ADTC5 (p = 0.20). It is proposed that a short circulation time (15 min) may
not be adequate to differentiate BBB modulatory activities of ADTC5 and ADTHAV peptides. In the
future, we will evaluate the effects of dose and longer circulation times to further differentiate the
in vivo biological activities of all cyclic peptides that were used in the current study. At the same time,
the stability of cyclic ADTHAV and ADTC5 in the systemic circulation can also be compared because it
is predicted that the plasma stability of ADTC5 will be lower than that of cyclic ADTHAV; this is due
to the instability of the disulfide bridge in ADTC5 that could be reduced by glutathione in the blood.

The BBB modulatory activity of cyclic ADTHAV to deliver IgG mAb was significantly better than
that of cyclic HAVN2. However, it was not yet clear whether the difference in activity was due to
additive activity by the two sequences (Thr-Pro-Pro-Val and Ser-His-Ala-Val) or domination by only
one sequence. As mentioned above, there was a trend that cyclic ADTHAV was slightly better than
ADTC5. Because it is difficult to differentiate the activities of cyclic ADTHAV and ADTC5 in vivo,
we compared their binding properties to the EC1 domain of E-cadherin using SPR experiments in a
separate study. After optimizing the SPR running conditions, the EC1 protein was immobilized on the
streptavidin chip via the Streptag I sequence on the N-terminus of the EC1 domain followed by injection
of various peptide concentrations. The obtained KD for ADTC5 was 26.8 µM, which is in a range
similar to that of the KD (35 µM) determined by NMR upon titration of the 15N-labeled EC1-domain of
E-cadherin using heteronuclear single quantum coherence spectroscopy (HSQC) experiments. It is
interesting to find that cyclic ADTHAV has higher binding affinity (KD = 0.114 µM) than that of
ADTC5 (KD = 26.8 µM), indicating that cyclic ADTHAV is more selective than ADTC5. In the future,
the mechanism of cyclic ADTHAV binding to the EC1-domains of E-cadherin and VE-cadherin will
be evaluated.

E-cadherin is found primarily in epithelial cells while VE-cadherin is found in vascular endothelial
cells. It has been suggested previously that VE-cadherin on the BBB has “E-cadherin-like” characteristics.
Thus, it will be interesting to find out whether peptides derived from E-cadherin can bind to VE-cadherin
and modulate VE-cadherin interactions; this question is being investigated by comparing the binding
of HAV and ADT peptides to the EC-1 domain of E- and VE-cadherins. Because cadherin-mediated
cell–cell adhesion is also found in different organs (i.e., liver, kidney, heart, spleen, and lung), the effects
of cyclic peptides on IgG mAb deposition in other organs were determined to evaluate potential side
effects. All peptide-treated groups and the control group showed a significantly higher accumulation
of IgG mAb in the liver than in spleen, heart, kidney, and lung because most of the metabolic pathways
occur in the liver. When comparing the control group to all groups treated with HAV peptides
(i.e., HAV6, HAVN1, and HAVN2), there was no significant difference in deposition of IgG mAb within
each specific organ. These results suggest that these peptides did not have any significant effect on the
peripheral organs. Thus, HAV peptides may have higher specificity in modulating the BBB than the
peripheral organs. In contrast, cyclic ADTC5 and linear ADTHAV showed a significant increase in IgG
mAb deposition in heart and kidney, as compared to the control, while the cyclic ADTHAV group had
a significant increase in IgG mAb deposition in lungs, spleen, kidney, and liver. The strong effect of
cyclic ADTHAV in peripheral organs was presumably due to its strong binding affinity to the EC1
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domain of E-cadherins; thus, further studies are needed to evaluate the role of different doses in IgG
deposition in peripheral organs.

The duration of time of the BBB opening is an important factor to consider for using cadherin
peptides to deliver molecules to the brain. This is because it is dangerous to keep the BBB open for
a long period of time, allowing unwanted molecules to enter the brain. However, it is necessary to
maintain the opening for an adequate amount of time to allow the delivered molecule to enter the
brain with the necessary dose. For example, HAV6 has an opening window of less than 1 h to allow a
small molecule such as IRdye-R800 and gadopentetic acid (Gd-DTPA) to enter the brain, while ADTC5
has a duration of opening from 2 to 4 h for brain delivery of Gd-DTPA [20,21]. Using a high dose
of 65 kDa galbumin, HAV6 can increase the BBB penetration of galbumin when they are delivered
together; however, a 10-min delay between the delivery of HAV6 and galbumin does not allow the
galbumin to cross the BBB [22]. Thus, the BBB window of opening by HAV6 for a large protein such
as galbumin is short (<10 min). In contrast, the opening created by ADTC5 for galbumin is between
10 and 40 min. It should also be noted that ADTC5 could not deliver 220 kDa fibronectin, indicating
that there is a cut-off size of molecules that can be delivered by ADTC5. The results suggest that each
peptide produces various populations of pore sizes that can collapse in a time-dependent manner, and
each peptide has a cut-off size of molecules that can be delivered through the BBB.

5. Conclusions

In this study, we have designed and synthesized novel cyclic peptides that can effectively modulate
the BBB to enhance the delivery of mAb into the brains of C57BL/6 mice. The new peptides were
designed based on HAV6 and ADTC5 peptides, which modulate cadherin–cadherin interactions in
the BBB to improve the delivery of small, medium, and large molecules, including proteins. We have
shown that cyclic HAVN1 and HAVN2 peptides have better BBB modulatory effects than their linear
counterpart, HAV6. Cyclic ADTHAV with a combination of ADT and HAV sequences has better
binding affinity to the EC1 domain of E-cadherin than does ADTC5. Linear and cyclic ADTHAV
can significantly enhance brain delivery of IgG mAb compared to the control, and they influence
the deposition of IgG mAb in peripheral organs while no HAV peptides influence the deposition of
IgG mAb in these organs. In the future, all cyclic peptides will be evaluated for their effects on BBB
duration of opening in delivering various size molecules as well as the effects of dose and circulation
in the deposition of delivered proteins in the brain. The future direction of this project is to design
cadherin peptides that can modulate cadherins in the BBB without affecting cadherins in other organs;
thus, the potential side effects of these peptide modulators can be minimized.
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