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Abstract: Precision dosing of piperacillin/tazobactam in obese patients is compromised by sparse
information on target-site exposure. We aimed to evaluate the appropriateness of current and al-
ternative piperacillin/tazobactam dosages in obese and nonobese patients. Based on a prospective,
controlled clinical trial in 30 surgery patients (15 obese/15 nonobese; 0.5-h infusion of 4 g/0.5 g
piperacillin/tazobactam), piperacillin pharmacokinetics were characterized in plasma and at target-
site (interstitial fluid of subcutaneous adipose tissue) via population analysis. Thereafter, multi-
ple 3–4-times daily piperacillin/tazobactam short-term/prolonged (recommended by EUCAST)
and continuous infusions were evaluated by simulation. Adequacy of therapy was assessed by
probability of pharmacokinetic/pharmacodynamic target-attainment (PTA ≥ 90%) based on time
unbound piperacillin concentrations exceed the minimum inhibitory concentration (MIC) during
24 h (%f T>MIC). Lower piperacillin target-site maximum concentrations in obese versus nonobese
patients were explained by the impact of lean (approximately two thirds) and fat body mass (approx-
imately one third) on volume of distribution. Simulated steady-state concentrations were 1.43-times,
95%CI = (1.27; 1.61), higher in plasma versus target-site, supporting targets of %f T>2×MIC instead of
%f T>4×MIC during continuous infusion to avoid target-site concentrations constantly below MIC. In
all obesity and renally impairment/hyperfiltration stages, at MIC = 16 mg/L, adequate PTA required
prolonged (thrice-daily 4 g/0.5 g over 3.0 h at %f T>MIC = 50) or continuous infusions (24 g/3 g over
24 h following loading dose at %f T>MIC = 98) of piperacillin/tazobactam.
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1. Introduction

In recent decades, obesity has increased in prevalence globally (mean prevalence = 19.5%
in OECD countries in 2015 [1]). Alarmingly, in the United States, over 40% of adults are
obese [2] with projections of up to 50% in 2030 [3]. This challenges health care systems,
e.g., with a higher risk of mortality from serious bacterial infections, including surgical site
infections in critically ill, obese compared with nonobese patients [4–7]. The optimization of
antimicrobial dosing regimens is crucial to maximize the treatment success in these patients.
Yet, only sparse data are available on the impact of obesity-related changes of antimicrobial
pharmacokinetics (PK) [8–10], hampering the development of population PK models and
their use in model-informed precision dosing to guide antibiotic dosing regimens [11,12].
Previous investigations on the effect of body mass on the PK of piperacillin, a β-lactam
antibiotic with bactericidal activity against a broad spectrum of Gram-negative and Gram-
positive bacteria [13], have been compromised by inconsistent scaling approaches of PK
parameters with body mass [8,14]. This has hindered their implementation in model-
informed personalization of antimicrobial dosing.

Piperacillin is commonly co-administered with the β-lactamase inhibitor tazobactam
to enhance its activity against β-lactamase-producing pathogens [15]. The bactericidal
activity of piperacillin is time-dependent, and the PK/pharmacodynamic (PD) param-
eter best predicting clinical and microbiological outcomes is the fraction of time that
unbound (i.e., “free”) piperacillin concentrations exceed the minimum inhibitory concen-
tration (MIC) during the dosing interval (%f T>MIC) [16]. For piperacillin, %f T>MIC ≥ 50
is considered necessary for optimal activity [17] and %f T>MIC ≥ 100 has been recom-
mended for infections in critically ill patients [18]. For β-lactams, continuous infusions
have been recommended [19–21] with PK/PD targets related to multiples of the MIC (i.e.,
%f T>4×MIC ≥ 50 or 100) to avoid concentrations at the site of infection (target-site) below
MIC for the entire dosing interval [22,23].

Yet, piperacillin exposure at the target-site in (morbidly) obese patients, measured
by the gold standard microdialysis, a minimally invasive technique to measure unbound
drug concentrations at the target-site [24], has never been quantified. Such data are still
limited to few antibiotics [25–27] and are urgently needed to investigate if adaptations of
dosing regimens in (morbidly) obese patients are necessary. For this purpose, the European
Medicines Agency recommended probability of target attainment (PTA) analysis [24]. PTA
is based on plasma data but it is unknown whether presumably effective piperacillin
exposure in plasma (with targets based on clinical data in nonobese patients) translates
to effective exposure at the target-site of obese patients. Therefore, authors of recent
publications on piperacillin PK in obese individuals have suggested investigating effective
piperacillin concentrations at the target-site [14,28–30].

The aim of this analysis was to assess appropriateness and potentially adapt the
currently used piperacillin/tazobactam dosing regimens in obese and nonobese patients.
For this, the most adequate body size descriptor and further influential patient factors to
adjust piperacillin/tazobactam dosing regimens were identified and target-site penetration
in obese and nonobese patients was assessed.

2. Materials and Methods
2.1. Study Design and Patient Population

Data from a prospective, parallel-group, open-label, controlled single-center trial
(EudraCT No. 2012-004383-22) were analyzed. Detailed information concerning the study
design, procedures, and data collection has been described elsewhere [31]. Inclusion
criteria were: abdominal surgery, age ≥ 18 years, BMI = 18.5–30 kg/m2 for nonobese
and BMI ≥ 35 kg/m2 for obese patients. By design, patients with BMI 30.0 kg/m2 to
34.9 kg/m2 were not included to have clearer separation between the patient groups.
Nonobese patients were age- and sex-matched to the obese patient group.

Patients received a standard (weight-independent) single i.v. infusion of 4 g/0.5 g
piperacillin/tazobactam through an additional venous access over 30 min. Dense blood
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sampling (pre-dose and after 0.5,1, 2, 3, 4, 5, 6, and 8 h) and collection of microdialysate
samples in interstitial space fluid (ISF) of subcutaneous adipose tissue (pre-dose and 0–0.5,
0.5–1, 1–1.5, 1.5–2, 2–3, 3–4, 4–5, 5–6, 6–7, and 7–8 h) of both upper arms (one catheter
per arm to quantify microdialysis method-related variability [32,33]) were performed as
described in [31]. To derive drug concentration in ISF from microdialysate concentrations,
the retrodialysis calibration method was used [34].

2.2. Bioanalysis of Piperacillin Concentrations

Piperacillin concentrations were determined by high-performance liquid chromatog-
raphy with photometric detection. The analytical column was a XBridge C18 BEH 2.5 µ,
50 × 3 mm (Waters, Eschborn, Germany). The mobile phase consisted of 0.05 M NaH2PO4/
MeCN 83:17 (v/v), pH 6.4. The flow rate was 0.4 mL/min.

Unbound plasma piperacillin concentrations were determined after ultrafiltration.
Based on in-process quality controls the coefficient of variation (CV) of intra-/inter-assay
precision of the determination of total drug in plasma was <4% <6%, the accuracy was
101%. The intra-assay precision of the determination of unbound drug in plasma was not
further examined, as in preliminary experiments the difference between samples analyzed
in duplicate was as low as 1%, i.e., in the range of the precision of the injection system. The
inter-assay precision was assessed by analyzing spiked plasma of healthy subjects with
total piperacillin concentrations between 1 and 100 mg/L. The unbound fraction in these
samples was 85.7 ± 3.2% (CV 3.7%).

The CV of the intra-/inter-assay precision in 0.9% NaCl as surrogate for microdialysate
and ultrafiltrate was <3% <8%, the accuracy was 98.5%. The stability of the processed
samples in the autosampler was 99.6 ± 3.3% (total concentrations), 95.6 ± 2.4% (unbound
concentrations), or 98.9 ± 4.3% (microdialysate).

The lower limit of quantification was 0.3 mg/L in plasma and 0.03 mg/L in 0.9%
NaCl as surrogate for microdialysate and ultrafiltrate. Further details on the bioanalysis of
piperacillin concentrations are described in [35].

2.3. Population Pharmacokinetic Model and Identification of Body Size Descriptors

A population PK analysis was performed to characterize the plasma and target-site PK
of piperacillin simultaneously, to explain the variability in the PK parameters by patient-
specific covariates and to identify which body size descriptors were most predictive of
piperacillin PK [36]. The 2–3-compartment PK models with plasma data attributed to the
central and target-site data to the central or peripheral compartment were evaluated using
the integrated dialysate-based modeling approach, as described in detail in [37,38].

Clinical and demographic characteristics (body size descriptors, predicted glomerular
filtration rate and creatinine clearance), which were considered biologically plausible
to affect piperacillin PK, were tested for inclusion as covariates. Statistically significant
differences (p < 0.05) in individual parameter estimates between obese and nonobese
patients were investigated by Mann–Whitney–Wilcoxon tests. Population PK models were
evaluated by standard goodness-of-fit plots and the predictive model performance was
assessed by visual predictive checks (n = 1000) [39]. Further information on population PK
model development is provided in the Supplementary Section “Model development”.

2.4. Target-Site Penetration in Obese and Nonobese Patients

To evaluate the impact of obesity stages on predicted exposure in plasma and at
the target-site and to quantify target-site penetration, two virtual reference patients were
defined (Table 1):

(1) Nonobese, healthy renal function patient
(2) Morbidly obese, healthy renal function patient
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Table 1. Virtual reference patients of the same standard body height (1.76 m) and sex (male) but different obesity stage and
renal function.

Reference
Patients BMI [kg/m2] Total Body

Weight [kg]
Lean Body

Weight [kg] a Fat Mass [kg] b %Fat Mass c BSA [m2] d CLCRCG_ABW
[mL/min]

(1) Nonobese,
healthy renal
function

22.6 70.0 I 52.6 17.4 24.8 1.85 90 III

(2) Morbidly
obese, healthy
renal function

40.0 II 127 76.8 50.2 39.5 2.49 130 IV

(3) Nonobese,
renally impaired 22.6 70.0 52.6 17.4 24.8 1.85 45.0 V

(4) Nonobese,
hyperfiltration 22.6 70.0 52.6 17.4 24.8 1.85 130 VI

Calculated via a [40], b difference between total body weight and lean body weight, c fat mass/total body weight 100%, d calculated
by [41]. I Standard body weight, II lower BMI threshold for morbid obesity, III healthy renal function [42], IV adjusted healthy renal
function by “de-indexation” of V by BSA, V lower threshold of CKD stage 3A [43], VI lower threshold of glomerular hyperfiltration.
Abbreviations: BMI: Body mass index, BSA: Body surface area, CLCRCG_ABW: Creatinine clearance calculated via Cockcroft-Gault using
adjusted body weight.

Reference patient (1) was a male individual with standard total body weight = 70.0 kg,
standard body height = 1.76 m [44] (BMI = 22.6 kg/m2) and healthy renal function
(eGFR = 90.0 mL/min/1.73 m2 [42]). Reference patient (2) was defined by the lower BMI
threshold for morbid obesity (BMI = 40.0 kg/m2 [45], standard body height = 1.76 m, total
body weight = 127 kg). Since the body surface area is substantially higher in obese com-
pared to nonobese individuals [46] (compare Table 1), eGFR related to healthy renal function
for patient (2) was adjusted by “de-indexing” [47] 90.0 mL/min/1.73 m2: The employed
calculated body surface area [41] of reference patient (2) resulted in eGFR = 130 mL/min
(Table 1). The body size descriptor lean body weight (LBW) was derived from the patient
information via [40] and fat mass was calculated as the difference between individual total
body weight and LBW.

To evaluate the effect of renal function on piperacillin exposure and target-site pene-
tration, two additional reference patients were defined (Table 1):

(3) Nonobese, renally impaired patient
(4) Nonobese, hyperfiltration patient

Reference patient (3) was defined by the lower threshold of CKD stage 3A (creatinine clear-
ance calculated via Cockcroft–Gault based on adjusted body weight, CLCRCG_ABW = 45.0 mL/min,
minimum observed in present study CLCRCG_ABW = 49.8 mL/min) and the nonobese, hy-
perfiltration (4) reference patient was defined by the lower threshold of hyperfiltration
(CLCRCG_ABW = 130 mL/min [48]).

Simulations of unbound piperacillin plasma and target-site concentrations over 8 h
following a short-term infusion of 4 g/0.5 g piperacillin/tazobactam administration were
performed and median differences in minimum and maximum piperacillin concentrations
between reference patients were calculated.

To account for the time-dependent antibiotic effect of piperacillin, the target-site:plasma
ratio of %f T>MIC was investigated (effective penetration index). The following MIC val-
ues were selected: MIC = 2 mg/L (epidemiologic cutoff value (ECOFF) of Staphylococcus
aureus), 4 mg/L, 8 mg/L (Gram-positive and Gram-negative anaerobes and species in-
dependent susceptibility breakpoint; ECOFF of Escherichia coli, Klebsiella pneumoniae) and
16 mg/L (Gram-positive and Gram-negative anaerobes and species independent resistance
breakpoint, ECOFF of Pseudomonas aeruginosa) [49].

To investigate if PK/PD targets related to 4×MIC (i.e., %f T>4×MIC) for continuous
infusions are suitable to avoid target-site concentrations below MIC for the entire dos-
ing interval and for all four reference patients (1)–(4), the steady-state plasma:target-site
unbound concentration ratio was evaluated.
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2.5. Evaluation of Clinically Relevant Piperacillin/Tazobactam Dosing Regimens

To evaluate the impact of obesity status and renal function on PTA, the four reference
patients (1)–(4) were selected for calculation of PTA (Monte-Carlo simulation; n = 1000
per reference patient) for the species-independent resistance breakpoint (MIC = 16 mg/L).
To systematically evaluate the impact of body mass and renal function on the PTA of
piperacillin/tazobactam, Monte-Carlo simulations were performed for the identified model
covariates with the observed ranges in this clinical study (n = 1000 per covariate combina-
tion) using the developed population PK model.

The PK/PD index %f T>MIC was evaluated for the PK/PD targets %f T>MIC = 50
(optimal activity [17]) and %f T>MIC = 98. The latter was selected instead of %f T>MIC = 100
(critically ill patients [18]), since treatment at day 1 was evaluated during PTA analysis and
piperacillin concentrations in all matrices are zero before start of the first dose, preventing
any concentration-time profile from attaining %f T>MIC = 100. For continuous infusions, a
stricter PK/PD target of %f T>4×MIC [22] was selected. MIC = 2.00–16.0 mg/L values for
piperacillin/tazobactam were evaluated.

To determine if piperacillin/tazobactam dosing regimens achieve effective concentra-
tions in obese and nonobese patients in clinical routine, the sum of PTA weighted by the
relative frequency of MIC values (Supplementary Figure S1), the “cumulative fraction of
response” (CFR [50]), for specific populations of microorganisms was calculated. Infections
by pathogens commonly treated with piperacillin/tazobactam were selected (Escherichia
coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Streptococcus pneumoniae, and Staphylococ-
cus aureus). A dosing regimen was considered adequate if PTA was ≥90% [24]; the same
threshold was selected for CFR [51,52]. Four dosing regimens were evaluated in the PTA
and CFR analysis (Table 2).

Table 2. Summary of the model-evaluated intravenous dosing regimens of piperacillin/tazobactam.

Dosing Regimen Dose Piperacillin [g]/
Tazobactam [g] Dosing Interval [h] Infusion Length [h]

Loading Dose 1

Piperacillin [g]/
Tazobactam [g]

Daily Dose
Piperacillin [g]/
Tazobactam [g]

“Standard dosage 1” 2 4/0.5 6 0.5 - 16/2
“Standard dosage 2” 2 4/0.5 8 4 - 12/1.5

“High dosage” 2 4/0.5 6 3 - 16/2
“Continuous

infusion” 24/3 24 24 4/0.5 28/3.5 3

1 Infusion over 0.5 h; 2 EUCAST.org, accessed 1 June 2021; 3 For continuous infusion treatment at day 1, the initial loading dose is included.

3. Results
3.1. Patient Population

Thirty patients (15 obese and 15 nonobese) scheduled for elective abdominal surgery
were recruited according to study protocol [31]. The cohort comprised male (12/30 patients)
and female patients, covered a wide body mass range (BMInonobese = 20.1–29.3 kg/m2 and
BMIobese = 37.5–52.0 kg/m2, Table 3) and a wide range of renal functions from moderately
impaired to augmented renal function (CLCRCG_ABW = 49.8–173 mL/min, Supplementary
Figure S2) with none of the patients requiring haemodialysis. As expected, both lean body
weight (LBW, Supplementary Figure S3) and fat mass were higher in obese compared to
nonobese patients (Table 3).

In total, 1069/1128 (observed/planned) piperacillin concentrations were available,
comprising total (n = 237/240) and unbound (n = 114/116) plasma concentrations, micro-
dialysate concentrations collected via two catheters in the ISF of subcutaneous adipose
tissue over 8 h (n = 285/300 + 272/300; Supplementary Figure S4), and retrodialysate
concentrations (n = 80/86 + 81/86).
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Table 3. Patient-specific characteristics of obese and nonobese patients.

Characteristic Full
Population (n = 30) *

Obese
Subpopulation (n = 15) *

Nonobese
Subpopulation (n = 15) *

Sex, male 12 (40.0%) 6 (40.0%) 6 (40.0%)
Total body weight [kg] 96.0 (77.0–123) 122 (109–147) 75.0 (67.0–84.0)

Lean body weight [kg] a 55.5 (46.9–71.8) 64.7 (54.5–83.3) 45.8 (42.4–61.1)
Fat mass [kg] b 39.3 (25.2–63.3) 64.2 (53.0–72.3) 25.2 (22.8–27.8)

Percent fat mass, % c 39.9 (34.4–48.6) 48.6 (46.2–53.7) 34.0 (27.4–38.5)
BMI [kg/m2] 33.4 (26.5–44.8) 45.7 (40.1–48.3) 26.4 (24.7–28.1)

Serum creatinine conc. [µmol/L] 70.6 (59.2–86.0) 79.1 (61.0–88.0) 70.0 (57.6–86.0)
CLCRCG_ABW [mL/min] 110 (82.1–130) 131 (113–144) 89.8 (75.1–106)

Serum albumin conc. [g/L] 45.6 (43.1–46.9) 45.6 (44.0–46.9) 45.9 (42.1–47.7)
Total bilirubin conc. [µM] 6.20 (3.70–9.00) 7.70 (4.30–11.6) 5.90 (3.50–6.30)

Arterial hypertension 17 (56.7%) 14 (93.3%) 3 (20.0%)
Diabetes mellitus type 2 6 (20.0%) 4 (26.7%) 2 (13.3%)

Steatohepatitis 8 (26.7%) 8 (53.3%) 0 (0.00%)
Vasopressors d 18 (60.0%) 8 (53.3%) 10 (66.7%)

* Entries are median (25th to 75th percentile) or count (%) a Calculated via [40] b Calculated as the difference between total body
weight and lean body weight c Calculated as fat mass/total body weight 100%. d Noradrenaline or cafedrine/theodranenaline Ab-
breviations: BMI: Body mass index; CLCRCG_ABW: Creatinine clearance calculated via Cockcroft-Gault using adjusted body weight;
conc.: Concentration.

3.2. Population Pharmacokinetic Model and Identification of Body Size Descriptors

Observed concentrations in all matrices (plasma, plasma after ultrafiltration, micro-
dialysate, retrodialysate) were best characterized by a three-compartment model (Figure 1;
Supplementary Table S1). Target-site concentrations were related to a peripheral com-
partment, which was best described by a tissue factor of 69.9% 95%CI = (62.3%; 75.4%)
(Supplementary Table S2), scaling predicted piperacillin concentrations in this peripheral
compartment to target-site concentrations (Figure 1).
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Figure 1. Illustration of the final piperacillin population pharmacokinetic model. Impact of patient characteristics on
structural pharmacokinetic parameters (green); black font: body size descriptors; orange font: categorical difference be-
tween obese and nonobese patients; turquoise font: renal function); purple font: microdialysis-related observation types;
Eyes: observations in plasma, plasma after ultrafiltration, microdialysate, retrodialysate. Abbreviations: LBW: Lean body
weight; FM: Fat mass; CLCRCG_ABW: Creatinine clearance calculated via Cockcroft-Gault based on adjusted body weight;
CISF: Piperacillin concentration in interstitial space fluid of subcutaneous adipose tissue; Cplasma: Total plasma concentra-
tion; CRD1/2: Retrodialysate concentration from catheter 1/2; CRP: Retroperfusate concentration; CµD1/2: Microdialysate
concentration from catheter 1/2; Q1/Q2: Intercompartmental flows; RR: Relative recovery; TF: Tissue factor relating
predicted concentrations of “shallow” compartment to observed CISF; V1/V2/V3: Volume of distribution parameters of
central/peripheral compartments.
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The individual total volumes of distribution (V1 + V2 + V3, median (range)) were
similar in obese (25.0 L (14.9–56.6 L)) and nonobese patients (22.1 L (13.7–48.4 L), p = 0.486).
However, higher individual volumes of distribution associated with the target-site (V2,
Figure 1) were evident in obese (4.64 L (2.54–7.16 L)) versus nonobese patients (2.50 L
(1.94–4.70 L), p < 0.001). Individual clearance values were similar in obese (17.4 L/h
(9.34–31.2 L/h)) and nonobese patients (16.8 L/h (9.86–37.0 L/h), p = 0.367).

Given the similarity of observed maximum piperacillin concentrations in plasma in
obese and nonobese patients (Supplementary Figure S5, left and mid), allometric scaling
of the central (V1) and the “deep” (i.e., slow mass transfer from central to this peripheral
compartment) peripheral volume (V3) via LBW (not total body weight) was most adequate
(Supplementary Table S1). Similarly, the intercompartmental flows (Q1 and Q2) were scaled
based on LBW [53].

In contrast, a physiologically-motivated impact of LBW [40] and fat mass (FM = total
body weight − LBW) on V2 was identified (Supplementary Table S2 and [54]), demon-
strating that the impact of LBW (68.4%) was higher than that of fat body mass (31.6%). V2
was associated with the “shallow” peripheral compartment (i.e., fast mass transfer from
central to this peripheral compartment), which was associated with observed target-site
concentrations (Figure 1).

Piperacillin clearance increased by 0.583 L/h per 10 mL/min increase of CLCRCG_ABW
(Supplementary Table S2). No additional impact of LBW on piperacillin clearance was
identified (Supplementary Table S1).

Implementation of these covariate effects resulted in an adequate description of the
observed trends of individual CL with CLCRCG_ABW (Supplementary Figure S6B) and
volumes of distribution with LBW and fat mass (Supplementary Figure S6C–F), as judged
by inspection of individual random-effects parameter values versus these covariates.

All piperacillin model parameters were sufficiently precisely estimated (RSE ≤ 41.0%;
Supplementary Table S2), the results of model evaluation demonstrated appropriate model
performance for all four evaluated matrices (total plasma, unbound plasma, microdialysate,
and retrodialysate; Supplementary Figure S7) and adequate model predictive performance
was shown by visual predictive check (Supplementary Figure S8).

The retroperfusate concentration for both microdialysis catheters was missing in
one obese patient and was imputed by the nominal concentration. A sensitivity analysis
to investigate the impact of different imputations on PK parameter estimates proved a
negligible impact of the choice of imputation strategy (Supplementary Figure S9).

3.3. Target-Site Penetration in Obese and Nonobese Patients

The impact of obesity status and renal function on target-site penetration was evalu-
ated based on the “standard dosage 1” of piperacillin (Supplementary Figure S10). The
median effective penetration index (target-site:plasma ratio of %f T>MIC) was similar in all
reference patients for each investigated MIC (Supplementary Figure S11C,G). A detailed
description on the impact of obesity status and renal function on unbound piperacillin
exposure in plasma and at target-site is presented in the Supplementary Section “Target-site
penetration in obese and nonobese patients”.

To investigate if PK/PD targets related to 4×MIC (%f T>4×MIC) for continuous infu-
sions preceded by a 0.5 h loading dose are suitable to avoid target-site concentrations
below MIC for the entire dosing interval for all reference patients (1)–(4), the simu-
lated plasma and target-site concentrations following this “continuous infusion” dos-
ing regimen were evaluated: Unbound piperacillin steady-state concentrations were
1.43-times, 95%CI = (1.27; 1.61), higher in plasma versus target-site for all reference pa-
tients (Supplementary Figure S12).
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3.4. Evaluation of Clinically Relevant Piperacillin/Tazobactam Dosing Regimens

For the species-independent resistance breakpoint of piperacillin/tazobactam
(MIC = 16.0 mg/L) and the PK/PD target %f T>MIC = 50, adequate PTA was achieved for all
reference patients (1)–(4) by prolonged infusions of piperacillin/tazobactam (Figure 2B,C).
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For the same breakpoint and a stricter PK/PD target (%f T>MIC = 98), PTA was only
adequate for the nonobese, healthy renal function (1) and nonobese, renally impaired
reference patient (3) and only for the dosing regimen “continuous infusion” (Figure 2I).
Applying a more lenient PK/PD target related to 2×MIC in continuous infusion, which
still conservatively accounted for the lower plasma:target-site steady-state concentration
(Supplementary Figure S12), PTA = 100% was reached in all reference patients (1)–(4)
(Figure 2J).

When evaluating PTA over the entire study range of body mass and CLCRCG_ABW and
for MIC = 2.00–16.0 mg/L and %f T>MIC = 50 only the “high dosage” prolonged infusions
were adequate for all patients and even when applying this PK/PD target to target-site
exposure (Supplementary Figure S13E,F). By applying the PK/PD target %f T>MIC = 98 to
target-site exposure (related to 1×MIC), it was demonstrated that only the dosing regimen
“continuous infusion” was adequate for all patients (Supplementary Figure S14H; including
patients with CLCRCG_ABW = 170 mL/min).

For %f T>MIC = 50, CFR of S. aureus, S. pneumoniae, E. coli, and K. pneumoniae was
adequate for the prolonged “high dosage” for all reference patients (Figure 3C), whereas
for P. aeruginosa CFR was inadequate for all investigated dosing regimens. For %f T>MIC = 98
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the dosing regimen “continuous infusion” reached adequate CFR for all reference patients
and S. aureus, S. pneumoniae and E. coli, but none of the investigated dosing regimens was
adequate for P. aeruginosa and K. pneumoniae, because of their high relative frequencies at
high MIC values (MIC > 16 mg/L; Supplementary Figure S1).
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4. Discussion

For infections with MIC = 2–16 mg/L and applying a lenient PK/PD target (%fT>MIC = 50)
prolonged “high dosage” i.v. piperacillin/tazobactam (four-times daily 4 g/0.5 g over
3.0 h) might suffice to treat patients of all categories of obesity and renal function, even
when applying the same PK/PD targets to the target-site. For the stricter PK/PD target
(%f T>MIC = 98) and MIC = 16 mg/L, neither the intermittent dosing regimens nor the
continuous infusion dosing regimen (%f T>4×MIC = 98) were adequate in any investigated
category of obesity and renal function. Yet, the commonly employed 4×MIC in continu-
ous infusion proved too conservative given only 1.43-times, 95%CI = (1.27; 1.61) higher
unbound piperacillin concentrations in plasma versus target-site. Relating PK/PD targets
to 2×MIC was therefore deemed sufficiently cautious to evaluate PTA of continuous infu-
sions in patients of all obesity classes: When applying %f T>2×MIC = 98 to the continuous
infusion dosing regimen and MIC = 16 mg/L, a continuous i.v. infusion of 24 g/3 g
piperacillin/tazobactam over 24 h following a 4 g/0.5 g i.v. short-term loading dose proved
adequate in all categories of obesity and renal function.

These PK/PD evaluations of dosing regimens were based on the relationships of (i)
renal function and (i) body size descriptors with piperacillin PK parameters, which have
been quantified in this analysis based on a population PK model. The identified impact of
renal function on piperacillin CL was consistent with previous studies [14,28]. However,
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the lack of a standardized estimation of CLCRCG in obese patients has been recognized
as a major challenge in dosing of antibiotics [55]. The least biased body size descriptor
in the calculation of CLCRCG over a large BMI range was reported to be adjusted body
weight [56], although in the present study other estimators of renal function resulted in
equally accurate characterizations of the presented piperacillin exposure data. The larger
CLCRCG_ABW in obese patients obtained in our analysis is supported by the reported initial
state of glomerular hyperfiltration in obesity [57]. Neither an additional impact of body
mass on piperacillin CL, as shown in [14], nor an impact of CLCRCG_ABW on piperacillin
fraction unbound, as reported for other drugs [58], could be identified.

The quantitative influence of the body size descriptors LBW and fat mass on piperacillin
PK parameters was shown, corroborating the effect of body mass found in other analy-
ses [14,28]: Scaling the central and one peripheral compartment (representing the vascular
system and highly-perfused organs) with LBW alone and the other peripheral compart-
ment (representing other organs such as adipose tissue) with LBW and fat mass represents
a physiology-motivated distribution model [54,59]. This scaling approach allowed, for
the first time, a description of the exposure differences at target-site between obese and
nonobese patients and revealed that LBW (approximately two thirds of peripheral volume
scaled via LBW) is more relevant for piperacillin target-site exposure predictions than fat
mass (approximately one third of peripheral volume scaled via fat mass). By the improved
characterization of the observed piperacillin concentrations over a wide range of LBW and
fat mass and the plausible physiological interpretation, this allometric scaling approach of-
fered clear advantages over hitherto described empirical scaling approaches of piperacillin
PK [14,28]. Ultimately, the presented PK model might therefore serve as a basis for the
precision dosing of piperacillin/tazobactam in the special patient population of (morbidly)
obese patients.

These relationships of PK parameters with LBW and fat mass had a positive impact
to achieve adequate PTA of piperacillin/tazobactam dosing regimens in obese patients:
Although the unbound maximum piperacillin concentration was lower in (morbidly) obese
patients due to high volumes of distribution, unbound minimum piperacillin concentra-
tions were higher, resulting in higher PTA and CFR. Hence, obesity did not represent a risk
factor for PK/PD target non-attainment as similarly concluded by others based on plasma
data [14,28,29,60,61]. We could further show that prolonged and continuous infusions
might be necessary for MIC ≥ 16 mg/L in obese and nonobese patients [28]. This was
also supported by quantifying PTA related to the target-site for the first time. On top of
the impact of body mass on PK, renal function played a dominant role in dosing regimen
adjustment of piperacillin/tazobactam [21,62].

Besides evaluating piperacillin/tazobactam dosing regimens regarding target-site
concentrations for the first time in obese individuals, the strengths of this study were
the high-quality, rich sampling data obtained prospectively under clinical trial conditions
and the inclusion of the matched nonobese control group. Notably, piperacillin PK was
investigated following single-dose administration as perioperative antibiotic prophylaxis
and extrapolation of the results to other relevant patient populations such as critically ill
patients should be applied cautiously. Based on very large PK variability in critically ill
patients, therapeutic drug monitoring for optimizations of dosing regimens might still be
required [63]. Future clinical trials should include individual measurements of glomerular
filtration via standards such as 51Cr-EDTA or measurement of creatinine concentrations
in urine. This would allow a more accurate characterization of the distinct elimination
processes of piperacillin. Yet, our analysis represents an important basis for future clinical
target-site based PK/PD investigations of piperacillin/tazobactam in critically ill (morbidly)
obese and nonobese patients, to allow the future use of model-informed precision dosing
in these populations.

In conclusion, our findings suggest that the use of continuous piperacillin/tazobactam
infusions (24 g over 24 h after a loading dose) might be adequate over all obesity categories
for a strict PK/PD target (%f T>MIC = 98) by demonstrating adequate effective target-site
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exposure. For a lenient PK/PD (%f T>MIC = 50), four-times daily prolonged infusions (4 g
over 3.0 h) were adequate for all stages of obesity and renal function.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/pharmaceutics13091380/s1. Figure S1: Relative frequency of minimum inhibitory concentra-
tions for piperacillin/tazobactam for five different pathogens commonly treated with piperacillin/
tazobactam. Figure S2: Observed individual piperacillin fraction unbound in plasma for obese
and nonobese patients. Figure S3: Observed body mass index versus lean body weight for obese
and nonobese patients. Figure S4: Observed individual piperacillin concentration-time profiles in
plasma and interstitial space fluid of subcutaneous adipose tissue for both catheters for obese and
nonobese patients on linear and semi-logarithmic scale. Table S1: Key models in the population
pharmacokinetic model development., Table S2: Parameter estimates (pharmacokinetic parameters
for unbound piperacillin and microdialysis methodology-related parameters) including sampling
importance resampling results of the final model of piperacillin in obese and nonobese patients.
Figure S5: Distribution of observed individual piperacillin maximum and minimum concentrations
in plasma and interstitial space fluid of subcutaneous adipose tissue for both catheters for obese and
nonobese patients. Figure S6: Random-effects parameter values (η) for structural pharmacokinetic
parameters of the final pharmacokinetic model of piperacillin versus the identified continuous covari-
ates. Figure S7: Basic goodness-of-fit plots with observed and predicted piperacillin concentrations
on a log-scale for the final pharmacokinetic model for the three matrices: Microdialysate, retro-
dialysate and plasma (total and unbound). Figure S8: Visual predictive check (n = 1000 simulations)
for the final pharmacokinetic model for total plasma piperacillin concentrations, unbound plasma
concentrations, microdialysate concentrations, and retrodialysate concentrations (log-log scale) for
obese and non-obese patients. Figure S9: Pharmacokinetic parameter estimates after imputation of
retroperfusate concentrations in one obese patient (both microdialysis catheters) via four different
imputation strategies. Figure S10: Working steps towards quantification of differences in plasma
and target-site exposure and probability of target attainment of piperacillin/tazobactam. Figure S11:
Simulated unbound piperacillin concentration-time profiles in plasma and in the interstitial space
fluid of the subcutaneous adipose tissue (target-site) and target-site: plasma %f T>MIC ratio for four
different reference patients (1)–(4), defined in Table 1 in the main manuscript. Figure S12: Ratio of
unbound piperacillin concentration in plasma:target-site over time after an intravenous 24 g/3 g
piperacillin/tazobactam continuous infusion over 24 h following a 4 g/0.5 g piperacillin/tazobactam
0.5 h i.v. loading dose. Figure S13: Probability of target attainment based on the PK/PD target
%f T>MIC = 50 versus lean body weight and fat mass in plasma (left panel) and target-site (right panel)
stratified by (i) glomerular filtration rate according to CKD stages (moderate: 45.0–59.0 mL/min,
mild: 60.0–98 mL/min, normal: >90 mL/min) or glomerular hyperfiltration (≥130 mL/min) covered
by this study and (ii) MIC (2.00, 4.00, 8.00, 16.0 mg/L) after four different i.v. infusion regimens.
Figure S14: Probability of target attainment based on the PK/PD target %f T>MIC = 98 versus lean
body weight and fat mass in plasma (left panel) and target-site (right panel) stratified by (i) glomeru-
lar filtration rate according to CKD stages (moderate: 45.0–59.0 mL/min, mild: 60.0–98 mL/min,
normal: >90 mL/min) or glomerular hyperfiltration (≥130 mL/min) covered by this study and (ii)
MIC (2.00, 4.00, 8.00, 16.0 mg/L) after four different i.v. infusion regimens.
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