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Abstract: In the last few decades, hot-melt extrusion (HME) has emerged as a rapidly growing
technology in the pharmaceutical industry, due to its various advantages over other fabrication
routes for drug delivery systems. After the introduction of the ‘quality by design’ (QbD) approach by
the Food and Drug Administration (FDA), many research studies have focused on implementing
process analytical technology (PAT), including near-infrared (NIR), Raman, and UV–Vis, coupled
with various machine learning algorithms, to monitor and control the HME process in real time.
This review gives a comprehensive overview of the application of machine learning algorithms for
HME processes, with a focus on pharmaceutical HME applications. The main current challenges
in the application of machine learning algorithms for pharmaceutical processes are discussed, with
potential future directions for the industry.

Keywords: hot-melt extrusion (HME); machine learning; drug; polymer; process analytical technol-
ogy; in/on-line process monitoring; Industry 4.0

1. Introduction

Hot-melt extrusion (HME) is a rapidly growing technology in the pharmaceutical
industry, for the preparation of various dosage forms, including granules, pellets, tablets,
and implants. The HME process offers many advantages relative to other pharmaceutical
processes, one of the major benefits being that HME can enhance the bioavailability and
solubility of poorly soluble drugs. Further, as a solvent-free process, it is free of harsh
environmental toxicants and no additional step for solvent recovery is required, unlike
solvent evaporation and spray drying. HME is also relatively easy to scale-up, and it is a
continuous process [1].

As with all pharmaceutical products, polymer–drug extrudates that are produced
using HME must undergo rigorous quality analysis and typically undergo thermal, rheo-
logical, mechanical, and chemical characterisation. For thermal analysis, DSC and TGA
are widely used to measure the percentage of crystallinity, the glass transition temperature
(Tg), and the change in weight. The results of these methods have been used to predict
the miscibility, solid state, and stability of the polymer–drug matrix [2–19]. Rheological
analysis is used to provide information about the behaviour of the polymer–drug system
under the high temperature and stresses experienced in the process itself [20–23]. HPLC is
used to monitor the drug/additive content in the extrudate [4,5,14,18,19]. FT-IR, Raman,
and NIR have been employed post-production to study the stability and for analysing
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the drug content in the polymer–drug matrix [2,4,10,18,19,24]. Physicomechanical test-
ing [25,26] and dissolution testing [27,28] are also performed for product quality assurance.
The main disadvantage of these off-line, lab-based methods is that there is a long lag
between processing and feedback on product quality, which makes process control very
challenging. HME is a continuous process, but the long testing time for product quality
assurance defeats this advantage of the process.

In 2004, the Food and Drug Administration (FDA) introduced the concept of using
process analytical technology (PAT) [29]. The main aim is to improve the understanding of
the mechanism of the manufacturing process, enhance process monitoring, and to reduce
the processing time. In the literature, spectroscopic techniques, including Raman [2],
NIR [30], and UV–Vis spectroscopy [31], have been widely implemented as PAT tools for
in/on-line monitoring of the HME process, and an in-line slit die rheometer has also been
implemented as a PAT tool in some studies [32,33]. Machine learning (ML) algorithms are
generally used to infer the required information from in/on-line collected spectra.

A PAT tool, coupled with a machine learning algorithm, has been established as
an effective way to monitor the HME process in real-time. Figure 1 gives a schematic
representation of the work flow for in/on-line monitoring of the HME process using
PAT tools coupled with machine learning. Since 2004, many research studies have been
reported, in which different machine learning algorithms have been applied to in-process
data to analyse product and process parameters in real-time. The applications include the
monitoring of product critical quality attributes (CQAs), including the following: the solid
state of the polymer/drug [2,3]; API/additive concentration [34,35]; degradation of the
polymer [36,37]; the particle size of additive/s [31]; and mechanical properties [33]. Other
works have examined the monitoring of critical process properties (CPPs), including melt
temperature [38], pressure [39], and viscosity [40], and for process fault detection [41].
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In recent years, many review papers have been published focusing on different aspects
of the HME process [1,15,42–58]. In this review, we focus specifically on the application
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of machine learning (ML) algorithms in the monitoring and control of the HME process.
Greater process sensorization, coupled with algorithms for deriving intelligence from
data, are key concepts of the Pharma 4.0 initiative for the digital transformation of the
pharmaceutical industry, hence this review aims to establish the current state of the art of
the HME process in this respect. We present and discuss the various data analytics and
machine learning methods reported for the monitoring and control of HME, including
the following: methods for the pre-processing of data, model training/calibration, the
ability of the developed model to detect the effect of varying processing conditions, and
the performance of models on unseen data. We summarise the contribution that machine
learning has made to date in the monitoring and control of the HME process and discuss
the main challenges and future potential of the field.

The remainder of the paper is organised as follows: First, a brief introduction is given
to machine learning and the main data pre-processing techniques that are relevant to the
HME process. The main body of the paper then reviews the applications of (i) PCA, (ii) PLS,
and (iii) non-linear machine learning algorithms to the process, followed by the discussion
and conclusions.

2. Machine Learning

Machine learning (ML) is generally defined as an ability of a computer to learn without
being explicitly programmed. Machine learning algorithms train themselves to identify
patterns in the data or make predictions based on past data, as opposed to modelling
algorithms that are based on the prior physical/chemical knowledge of a system. A
machine learning system can be predictive; descriptive (meaning that the system uses the
data to explain what happened); or prescriptive (meaning that the system will use the data
to make suggestions about what action to take). ML algorithms can be divided into the
following three classes: supervised learning, unsupervised learning, and reinforcement
learning [59].

2.1. Supervised Machine Learning

In supervised learning, algorithms are provided with known/labelled input–output
data [59,60]. In other words, supervised machine learning algorithms try to predict the
results for an unknown output based on the patterns present in the labelled data set, i.e.,
the algorithm tries to approximate the mapping function from input to output variables.
Regression and classification are categorised under supervised machine learning.

Classification algorithms classify training data into separate categorical classes/groups.
All the samples of data in the training set are labelled. The purpose of using classification
is to identify the class of future unknown observations. There are the following three
types of classification: binary classification with two possible outcomes; multi-class clas-
sification with more than two classes; and multi-label classification, whereby each input
in the training data is mapped to more than one class [61]. The classification algorithm’s
performance is assessed based on how well an algorithm classifies unseen observations
into the correct classes. A confusion matrix is created for performance assessment, where
the rows represent the true classes and the columns represent the predicted classes. Naïve
Bayes, k-nearest neighbours (k-NN), decision tree, support vector machine (SVM), and
random forest (RF) are commonly used classification algorithms [62,63].

In regression, the class of the output variable is continuous numeric. Linear regression
methods include methods such as partial least squares regression (PLS), least absolute
selection shrinkage operator (LASSO), and ridge regression; while random forest (RF)
regression and support vector regression (SVR) are commonly used non-linear regression
algorithms. In the literature, the performance of a regression algorithm is generally assessed
based on its root mean square error (RMSE), which is based on the difference between the
actual and predicted values, and on the coefficient of correlation (R2) values.
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2.2. Unsupervised Machine Learning

Unlike supervised learning, the inputs are not labelled in unsupervised learning and
the algorithm is concerned with detecting regularities/patterns in the unlabelled training
data [59]. Clustering (e.g., k-means and hierarchical clustering) is a well-known class of
unsupervised machine learning [60,64]. In clustering, the aim is to find similar subgroups
within the data set; all the objects are divided into a certain number of clusters, and inputs
with a similar pattern are gathered in the same cluster. Principal component analysis
(PCA) is another very common unsupervised machine learning method. It is usually used
for dimensionality reduction in data sets with a degree of collinearity between the input
variables [65]. In PCA, the input variables are transformed into a new set of input features,
which are linear combinations of the original variables. These new features or ‘principal
components’ (PCs) successively explain the variance in the input data, such that most of
the variation in the data can be captured by a small number of PCs and redundant input
features, representing noise in the data set, can be ignored.

2.3. Reinforcement Learning

In reinforcement learning (RL), the learning process is different from supervised
and unsupervised learning. Reinforcement learning is an agent-based learning process,
whereby a ‘reward’ is associated with each learning action by the agent. An RL process
proceeds with trial and error, and an agent learns through its interaction with the envi-
ronment. To achieve the given task, i.e., to maximise the reward signal, it takes different
actions, and experiences many failures and successes [66,67].

3. Pre-Processing Techniques for In-Process Spectral Data

Raw spectral data, collected using spectroscopic methods, typically undergoes pre-
processing before applying a chemometric model [68]. During the process, spectral data
can be affected by nuisance factors, including physical interruptions and faulty apparatus.
These factors can reduce the signal-to-noise ratio and resolution [69]. Other undesirable
features of raw spectra are baseline shifts and a complex background. Baseline shifts are
caused by the scattering of the light, resulting from the interaction of spectra with the
sample particles [68]. Undesired scatter effects can dominate the desired information (e.g.,
chemical information) in the spectra [70]. These undesired spectral variations can increase
the complexity and reduce the accuracy of the model [69]. The main goal of pre-processing
techniques is to remove the unwanted features from the spectra.

For in-process spectral data, the following two groups of pre-processing techniques
dominate the literature: scatter correction and spectral derivatives. Multiplicative scatter
correction (MSC), extended MSC (EMSC), extended inverse MSC, de-trending, normali-
sation, and standard normal variate (SNV) belong to the scatter-correction group; these
methods are used to correct baseline shifts and trends in the baseline. The spectral deriva-
tive group includes Norris-Williams (NW) and Savitzky-Golay (SG) and are used for
smoothing and for reducing the noise effects [68,71]. The most common pre-processing
techniques used in the literature are MSC, SNV, derivatives, and SG.

MSC is used to remove undesired scatter effects. MSC defines a reference spectrum,
which is commonly the average spectrum of the calibration set [72]. MSC is a two-step
process involving the estimation of shifting and scaling correction coefficients [68]. After
MSC, all the spectra have the same offset and amplitude [68,70]. SNV is also used to
eliminate baseline shifts. SNV and MSC are quite similar to each other, but in SNV, a spec-
trum is mean-centered and then scaled by its standard deviation [68]. Smoothing is also
a pre-processing method used to increase the signal-to-noise ratio. The moving average,
where each spectral point is substituted by the average of m neighbouring points, is the
simplest smoothing method (m is defined as the width of the smoothing window) [71].
Savitzky-Golay (SG) is a popular smoothing method that performs local least squares
regression on the spectral data [72,73]. Differentiation is usually applied after applying
smoothing methods. Derivatives are used to increase the spectral resolution and to elimi-
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nate the background effects. The first derivative eliminates constant baseline shifts, while
the second derivative eliminates linear shifts in the spectrum, along with eliminating con-
stant baseline shifts [72–74]. For more in-depth reading on these methods to understand
the differences and similarities, the reader is directed to the review article [68] and these
papers [69,71,75].

4. Application of PCA for In-Process Monitoring of Critical Quality Attributes (CQAs)

PCA is a technique for dimensionality reduction, which falls under unsupervised
machine learning [65,76,77]. Details on how PCA works with PAT tools for monitoring
pharmaceutical processes (other than HME) can be found in [78–80], and the detail of the
algorithm is not repeated here. PCA has mostly been utilised in the HME literature to
monitor the effect of varying processing conditions on the solid state of the drug. The
drug solid state significantly influences the dissolution rate and bioavailability of the
drug, with an amorphous form of the drug exhibiting a higher dissolution rate than the
crystalline form.

Almeida et al. [70] used PCA to monitor the effect of screw speed and barrel tem-
perature on the solid state of metoprolol tartrate (MPT) extruded with ethylene-vinyl
acetate (EVA). Six different batches were processed under different combinations of tem-
perature (90, 110 and 140 ◦C) and screw speed (90 and 110 rpm). All Raman spectra were
pre-processed using SNV before developing a PCA model. Three separate clusters were
identified along the first principal component (t[1], see Figure 2), representing the Raman
spectra from the extrusion batches processed at three different temperatures. The clustering
is caused by the reduction in the drug crystallinity due to an increase in temperature. The
PCA results indicated that the effect of screw speed on the solid state of MPT was not
very prominent at the lower processing temperatures (90–110 ◦C), as there was no clear
separation of the points relating to different screw speeds in these temperature clusters
(see Figure 2, spectra from experiments 1–2 and 3–4). However, when MPT was processed
above its melting point (140 ◦C), an increase in screw speed was found to have a significant
effect on the solid state of MPT. At 140 ◦C, MPT was present entirely in melt form—thus
increasing the screw speed produced a more significant temperature difference in the
product, which resulted in separation of the high and low screw speeds in the PCA scores
scatterplot (see Figure 2, spectra from experiments 5–6). These results were confirmed by
off-line DSC results. Similar results were obtained with PCA analysis applied to in-line
NIR spectra at the same processing conditions.
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Saerens et al. [10] used PCA to monitor the effect of different MPT concentrations
(10% and 40%), extrusion temperatures (100, 120, and 140 ◦C), and screw speeds (80 and
160 rpm) on the solid state of MPT along the barrel. For this purpose, in-line Raman spectra
were collected from the following different sections of the extruder: the feeding section (S1)
and five-barrel sections (S2, S3, S4, S5, and S6). SNV was used as a pre-processing step. For
10% MPT, a PCA scores scatterplot indicated no difference in the solid state of MPT with
varying barrel temperatures, as the points relating to all the spectra were clustered together.
This is because a solid solution was formed for all the temperatures. For 40% MPT at 100 ◦C
and 140 ◦C, three separate clusters were identified along PC2; these clusters grouped the
spectra collected from different barrel sections. This clustering was due to the difference
in the drug crystallinity at different barrel sections. For 10% MPT at 120 ◦C, doubling the
screw speed did not affect the final solid state of the extrudate. On the contrary, for 40%
MPT at 140 ◦C, increasing the screw speed from 80 to 160 rpm significantly affected the
solid state of the drug, as indicated by the PCA results; at higher screw speeds, a solid
solution was formed.

Saerens et al. [2] used PCA to monitor the effect of drug loadings (30%, 40% and
50%), processing temperature (130 to 150 ◦C), and screw configurations on the solid state
of celecoxib (CEL) extruded with Eudragit®E PO. DSC and XRD were used for off-line
characterisation. First, they ran PCA on off-line data collected from DSC and XRD. A
PCA scores scatterplot demonstrated the following two separate clusters: the first cluster
grouped all the extrusion experiments where CEL was present in crystalline form, and the
second cluster grouped all the extrusion experiments where CEL was present in amorphous
form. The in-line Raman spectra were pre-processed using SNV. After PCA, all the spectra
grouped into two clusters. However, unlike in the case of XRD and DSC, the Raman
spectra from the extrusion experiments with 30% CEL (extruded at 130 ◦C) could not
be classified into any of the groups, indicating the presence of partial crystalline CEL at
these conditions. The predictive ability of a PCA classification model was assessed on an
independent validation set. For this purpose, the in-line Raman spectra were classified
into two groups, crystalline or amorphous, according to the off-line DSC and XRD results.
Separate PCA models were developed for both groups. For the validation set, the class
membership of new observations was decided by using a Coomans’ plot [81]. A Coomans’
plot for the validation set correctly identified CEL in the product as either crystalline
or amorphous using the in-line Raman spectra. Further, under conditions where CEL
was semi-crystalline in the extrudate, the Raman spectra could not be classified as either
crystalline or amorphous. The same procedure was repeated with off-line XRD and DSC.
For the XRD data, three data points from 50% CEL extruded at 130 ◦C, and for DSC, three
data points from experiments with 50% CEL and one from the experiment with 40% CEL,
could not be classified in any of the classes as CEL was present in semicrystalline form in
these samples. PCA analysis indicated that the effect of screw configuration on the solid
state of the drug was insignificant. This study showed the better sensitivity of Raman
spectroscopy coupled with PCA over the conventional off-line methods DSC and XRD, to
precisely monitor the solid state.

Markl et al. [82] used PCA to investigate the effect of varying feed rates on paracetamol
concentration in a paracetamol and calcium stearate (CaSt) mixture in real-time, using in-
line NIR in the die section. SIPAT (a commercially available software solution by Siemens
AG, Munich, Germany) was used to align the spectra with process measurements of barrel
temperature and pressure, and screw speed. SIMCA-Q was used to analyse the data, and
the processed data was visualised in SIPAT. Without any pre-processing, raw NIR spectra
were used for developing the PCA model. On a PCA scores scatterplot, four separate
clusters were observed, relating to the presence of different API contents. The plot showed
that at different feed rates, different API contents were present in the die section. They
further highlighted that on varying the feed rate, the API contents varied in the process
stream, which affected the PC1 score. Thus, from the scores scatterplot, the time to reach
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the steady-state can be determined, i.e., by comparing the score value of PC1 and reference
feed rate in real-time (see Figure 3).
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transition from stable state 1 to stable state 2. (Reproduced with permission from Markl, D et al., AAPSPharmSciTech;
published by Springer Nature, 2013) [82].

Other works have also shown the significance of monitoring the PC1 score in real-
time to monitor various aspects of the HME process. Chirkot et al. [30] investigated the
effect of varying processing conditions on the uniformity of the extrudate in processing 5%
ibuprofen with 95% Kollidon at 160 ◦C. They varied the screw speed (200, 400, and 600 rpm)
and feed rate (1.5 and 2 kgh−1). A PC scores scatterplot showed higher variability in the
spectra at higher screw speeds and very small variability in the spectra with changing
feed rate. Montano-Herrera et al. [37] used PC scores to monitor the degradation of four
different polyhydroxyalkanoates (PHAs) (mixed and pure cultures) during extrusion. NIR
spectra were pre-processed using MSC, second derivative, and mean centring. The PC1
scores were plotted against time and a change in the gradient of the plot against time was
used as an indicator of degradation. A scores plot revealed higher spectral changes with
time for pure cultures than for mixed cultures, which, in other words, suggested higher
degradation for pure cultures than mixed cultures (see Figure 4).

In summary, PCA has been shown to be a useful technique for monitoring drug
solid state in real-time with in-line spectroscopy data, provided that previous off-line
characterisation has been carried out to identify the solid state associated with different
clusters in the data. The method allows for rapid identification of the effect of process
parameters on the solid state, which is valuable for process control purposes. Further,
monitoring of the PC1 score in real-time has been shown to be useful to identify when a
process has reached steady state, to monitor the effect of processing conditions on variability
in the extrudate, and to monitor in-process degradation as well.
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5. Application of PLS for In-Process Monitoring of Critical Quality Attributes (CQAs)

PLS regression is a multivariate linear regression method that is suitable for highly
collinear data. Analogous to PCA, it involves a linear transformation of the data set,
allowing for dimensionality reduction to a reduced number of ‘latent variables’ (LV),
which are linear combinations of the original variables. General details on the workings
of the PLS algorithm applied to PAT data for pharmaceutical process monitoring can be
found in [78–80,83]. In pharmaceutical processes, PLS is primarily used to predict the
concentration of the drug, although it has also been used to predict polymer blend contents,
degradation of the polymer, the particle size of fillers in the polymer matrix, and mechanical
properties of the polymer extrudate in non-pharma HME processes.

5.1. In-Process Monitoring of the Drug Content

Dadou et al. [84] used PLS to measure the concentration of two model drugs, ramipril
(RMP) and hydrochlorothiazide (HCTZ), in fixed dose combinations, using an in-line
Raman spectrometer. Five different concentrations of HCTZ and RMP were extruded with
Eudragit®E. The Raman spectra from these concentration levels were used to develop a
PLS calibration model. All the Raman spectra were pre-processed using SNV and first
derivative, followed by SG and MSC, before using them for developing the PLS model.
The actual amount of drug in all the extruded samples was measured using off-line HPLC.
The PLS model was developed using pre-processed Raman spectra regressed against the
off-line measured drug content. The predictive ability of the PLS calibration model was
assessed using an independent validation set. The concentration levels of HCTZ and RMP
used in the validation experiments were different from the ones included in the calibration
model. The PLS model showed a good ability to predict drug content in real-time, with
an RMSEP (RMSE of prediction, i.e., on unseen validation data) of 1.237% and 1.007% for
HCTZ and RMP, respectively.

Tumuluri et al. [85] used PLS to predict the concentration of clotrimazole and keto-
profen, used as model drugs in different concentrations with polyethylene oxide (PEO).
The first set of experiments was conducted using a pilot-scale extruder, while the second
set of experiments (used for model validation) was conducted using a lab-scale extruder.
Different concentration levels were used for the second set of experiments. Six Raman
spectra were recorded for each concentration level, for both ketoprofen and clotrimazole.
All the Raman spectra were pre-processed using the second derivative. Separate PLS
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calibration models were developed for ketoprofen and clotrimazole, using on-line col-
lected spectra. It should be noted that calibration models were developed by regressing
on-line collected spectra versus the theoretical drug concentration, and the actual drug
content in the extrudate was not evaluated. The performance of the PLS models was
assessed by using the RMSEP achieved on the validation set. The RMSEP values achieved
for ketoprofen and clotrimazole were 0.94% and 0.97%, respectively. The results of this
study indicate good transferability of the PLS model to a different extrusion machine with
different drug loadings.

Saerens et al. [9] applied in-line Raman spectra coupled with PLS to predict the
concentration of MPT extruded with Eudragit® RL PO. The MPT concentration was varied
as 10%, 20%, 30% and 40%. The spectra were pre-processed using mean centring, SNV, and
Savitzky-Golay. A total of forty spectra were collected from each extrusion run; twenty
spectra from each concentration level were used to train the PLS model; and a remaining
twenty spectra from each extrusion run were used as the validation data set. An RMSEP
value of 0.59% was achieved with two latent variables on the validation set.

In another study, Saerens et al. [11] used Kollidon®SR as a polymer carrier and
monitored the concentration of MPT in real-time using in-line NIR coupled with PLS.
Three different extrusion runs with MPT 20%, 30%, 40% (w/w) were performed. The
pre-processing steps were multiplicative scatter correction (MSC) followed by the second
derivative. A total of sixty spectra were collected and used to train the PLS model. The
predictive ability of the PLS calibration model was examined more rigorously here, using an
independent validation set. For the validation set, separate extrusion runs were performed
at different times, using the same MPT concentrations. The RMSEP of the PLS model for
the validation set was 1.54% with R2 = 0.97.

Vo et al. [34] used FT-NIR coupled with a PLS model to monitor the in-line concentra-
tion of ketoprofen in Eudragit. Seven different concentration levels of ketoprofen (from 40%
to 60%) were used. A total of eighty-five spectra were collected from these seven concen-
tration levels, and all the spectra were pre-processed using Norris second derivative and
SNV methods. Seventy-three spectra were used to train the PLS model, and the remaining
twelve spectra were used as a validation data set to analyse the predictive performance
of the PLS calibration model. The PLS model with five factors achieved an RMSEP value
of 0.62% for the validation set. To further investigate the robustness of the calibrated PLS
model, extrusion trials were carried out at 120 ◦C and the feed rate was maintained at
100 g/h. However, they induced ±10 ◦C variations in the temperature to simulate the
temperature variations during the actual process. The PLS model proved robust enough to
accurately predict the API concentration when the temperature varied between 110 and
130 ◦C.

Chirkot et al. [30] used in-line NIR coupled with a PLS model to monitor the con-
centration of ibuprofen used as a model drug, with Kollidon used as a polymer carrier
matrix. Firstly, ibuprofen (2.5–10%) was used at a fixed feed rate of 1 kgh−1, and at a screw
speed of 200 rpm. NIR spectra were pre-processed using second-order derivatives. The
PLS calibration model showed a good correlation (R2 of 0.992), with an acceptable error of
0.4%.

Kelly et al. [86] used in-line NIR coupled with a PLS model to monitor the concentra-
tion of carbamazepine (CBZ), used as a model drug, and polyethylene glycol (PEG) as a
plasticiser extruded with Kollidon® VA 64 as a polymer carrier. The purpose of this research
work was to monitor the concentration of CBZ and PEG in real-time. The concentration
of CBZ and PEG was varied from 5.0 to 27.5 and 5 to 20 w/w%, respectively. The second
derivative was used as a pre-processing step. Separate PLS models were trained using
sixty-six in-line collected spectra to monitor the CBZ and PEG contents. The predictive
performance of the PLS calibration model was tested on an independent validation set that
included twelve spectra from the concentration levels of CBZ and PEG, which were not
included in the PLS calibration model. For CBZ, a PLS model with four latent variables
showed excellent performance and achieved an RMSEP of 0.672%. For PEG, a PLS model
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with six latent variables achieved an RMSEP of 1.06%. A higher number of latent variables
were required for PEG than for CBZ, as the PEG peaks were less prominent in the spectra
as compared to CBZ. This work indicates the ability of the PLS model to predict the drug
and plasticiser content simultaneously. However, these experiments were carried out at
very low screw speeds and low throughput, resulting in a long residence time. In the actual
production process, the residence time is much shorter than in this study.

Overall, these studies indicate a good ability of the PLS model coupled with PAT to
monitor drug content accurately. The PLS models also showed good predictive ability
under varying processing conditions. However, the processing conditions that were used
for validation were not very different from those used for model calibration.

5.2. In-Process Monitoring of Cocrystal Concentration

Kelly et al. [87] used in-line NIR coupled with a PLS model to study the effect of
temperature (80 and 90 ◦C), screw speed (20, 30 and 40 rpm), and screw configuration on
the cocrystal formation of ibuprofen and nicotinamide. All the spectra were pre-processed
using second derivatives. PXRD (powder X-ray diffraction) was used off-line to determine
the relative cocrystal conversion of ibuprofen. For a PLS model, with the data sets from the
different screw configurations, a good correlation (0.903) between the actual and predicted
cocrystal purity was found. However, this PLS model could not generalise well for varying
screw speed. The author suggested that the poor generalisation performance was due to
temperature effects, as temperature influences absorption in the NIR region. To investigate
this, they calibrated a second PLS model using only the spectra collected at 90 ◦C, and two
screw configurations (with medium and high mixing intensity). This model performed
better than the previous one, as indicated by the better correlation coefficient (0.999).

Wood et al. [88] used in-line NIR spectroscopy coupled with PLS to study the co-crystal
concentration in a mixture of cocrystal and pure API. In this study, two different APIs,
ibuprofen (IBU) and carbamazepine (CBZ), were used with nicotinamide (NIC), which
was used as a co-former. A PLS regression model was developed using the in-line NIR
spectra of a mixture of 1:1 IBU/CBZ-NIC cocrystal and pure ibuprofen/carbamazepine.
The PLS calibration model was developed using twenty samples, while the validation set
consisted of ten samples. They used nine different NIR spectral regions along with using
five different types of pre-processing treatments, including first and second derivatives,
Savitzky-Golay smoothing, Norris smoothing, and SNV. The PLS model for IBU-NIC,
which included the spectral range 7450–7000 cm−1, and used SNV, second derivative, and
NS as pre-processing steps, achieved the best results. In the case of CBZ-NIC, a PLS model
with 9000–8500 cm−1 and using SNV, second derivative, and SGS as pre-processing steps
performed better than other PLS models. The PLS model with two latent variables for
IBU-NIC achieved better predictive accuracy than the PLS model with two latent variables
for CBZ-NIC.

Similarly, Karimi-Jafari et al. [89] also monitored the cocrystal concentration of ibupro-
fen and nicotinamide by using in-line Raman in combination with a PLS model. They also
calibrated the PLS models using different spectral ranges and pre-processing steps. Finally,
a PLS model, with five latent variables incorporating a full spectral range and using SNV
as a pre-processing step, achieved the lowest RMSE value of 0.834% for the validation set.

The works [88,89] highlight that the use of different spectral regions and different
pre-processing steps results in differences in the predictive accuracy. A better predictive
performance can be achieved by selecting the most relevant (according to the target variable)
spectral region. To date, the selection of optimal pre-processing steps has been presented
as a trial-and-error procedure, specific to the particular system being investigated.

5.3. In-Process Monitoring of the Polymer Blend Concentration and Filler Content

Rohe et al. [90] used in-line NIR coupled with PLS to monitor the concentration
of PE/PP, where the PE content varied from 0 to 100%. Twenty spectra were collected
from each composition and pre-processed using different combinations of the following
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steps: averaging a number of spectra, smoothing, data reduction (reduction in spectral
resolution by averaging neighbouring wavelength values to a single point), differentiation,
and MSC. The leverage correction method was used to test the performance of the PLS
model. Using leverage correction validation, all the samples are included in the calibration
set. A PLS model, with five latent variables, and using spectral averaging and smoothing
as pre-processing steps, yielded the lowest RMSEP value of 0.38% among all the models.
Moreover, the transferability of the PLS calibration model was also investigated. For
this purpose, thirteen different PLS models were trained: eleven PLS models included
measurements conducted at different times, and two models only included measurements
conducted at the same time. These latter models showed better performance. This study
highlights the difficulty of transferability of the PLS model from one set of measurements
to a new set.

Barnes et al. [91] employed FT-NIR for monitoring the concentration of magnesium
hydroxide, used as filler in LDPE. The concentration of Mg(OH)2 was varied from 0 to
15 wt.%, at screw speed 15 rpm and processing temperature 200 ◦C. Twenty spectra from
each concentration level were used to develop a PLS calibration model, while five spectra
from each concentration level were used as a validation set. The PLS model with two latent
variables achieved a standard error of prediction (SEP) of 0.27 wt.% in the validation set. In
the same study, they extruded seven random EVA copolymers with varying VA monomer
contents (2 to 43 wt.%) and used Raman and FT-NIR to monitor the EVA copolymer
contents. Baseline correction was applied to the FT-NIR spectra, while for the Raman
spectra, MSC was used as the pre-processing step. For FT-NIR, a PLS model with three
latent variables, and for Raman spectra, a PLS model with five latent variables, achieved
an SEP of ±0.38 wt.% and ±0.187%, respectively, for the validation set.

5.4. In-Process Monitoring of Polymer Degradation

Montano-Herrera et al. [37] extended their work on PCA to monitor the degradation
of four different polyhydroxyalkanoates (PHAs) (see Figure 4), by using PLS regression
to predict the presence of C–H groups in the degradation products. The NIR spectra
were pre-processed using MSC, second derivative, and mean centring. They used the
spectral range 4300–6200 cm−1 (identified via the PCA analysis) to build a PLS model. A
model with five latent variables achieved an RMSECV of 0.0126, and the quantification of
C–H groups predicted by the PLS model correlated with off-line proton nuclear magnetic
resonance spectroscopy (HNMR).

Guo et al. [36] used PLS with in-process Raman to monitor the degree of degradation
of polypropylene (PP). PP was repeatedly extruded fifteen times to investigate the ability
to monitor the increasing degradation of PP in real-time. The off-line GPC results indicated
a decrease in the molecular weight with successive extrusion runs. Raman spectra in the
range of 1600–600 cm−1, after baseline corrections, were used to calibrate a PLS model. The
PLS model to predict the degree of degradation was calibrated using in-line Raman spectra
and off-line GPC data. The PLS calibration model included data from the 1st, 4th, 7th, 10th
and 13th extrusion, and data from other extrusion runs were used in the validation set. A
PLS model with four latent variables showed good accuracy in predicting the degree of PP
degradation and achieved an RMSEP value of 1.7228%.

5.5. In-Process Monitoring of the Mechanical Properties of Polymer Product

Witschnigg et al. [92] used in-line FT-NIR coupled with a PLS model to predict the
Young’s modulus of PP filled with 5% organo-clay. During extrusion, two different screw
geometries (differing in number and position of kneading elements), termed as geometry 1
and geometry 2, and screw speeds of 100 to 300 rpm were used. The NIR spectra were pre-
treated using mean centring and SNV. The performance of the PLS model was evaluated
using RMSECV and R2 values. For geometry 2, more significant deviations in the actual
and predicted Young’s modulus values were observed. Furthermore, the authors optimised
a PLS model with mean-centring and normalisation, to predict the interlayer distance, i.e.,
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the spacing between the nano-clay particles. A good correlation was achieved for both
screw geometries. Finally, on-line drawing force was also measured and a PLS model was
optimised with mean-centring and MSC to predict this response variable. Table 1 lists the
R2 and RMSECV values for the PLS model to predict Young’s modulus, interlayer distance,
and drawing force.

Table 1. RMSECV for Young’s modulus, interlayer distance and drawing force using PLS.

Young’s Modulus Interlayer Distance Drawing Force

R2 RMSECV R2 RMSECV R2 RMSECV

Geometry 1 97.70% 30 MPa 93.44% 0.0.13 nm 94.59% 2.64 mN

Geometry 2 90.55% 94 MPa 93.51% 0.019 nm 97.50% 1.98 mN

5.6. In-Process Monitoring of Filler Particle Size

Whitaker et al. [31] used PLS and linear discriminant analysis (LDA) (a classification
algorithm) with UV–Vis spectroscopy to monitor the particle size (D50) of β-TCP (beta-
tricalcium phosphate (Ca3 (PO4)2) extruded in a packaging grade PLA. Two different
particle sizes of β-TCP (5 and 30 µm) were used and processed separately. To check
the robustness of the models, the experiments were repeated on different days. The
experiments performed on the first day were used to train the models for LDA and PLS;
the second- and third-day extrusion runs were used as the validation set. The predictive
accuracy of PLS was reasonable; for 30 µm particles, the predictions were 31.4 ± 0.64 and
30.40 ± 0.2, and for 5 µm particles, the predictions were 13.096 + 0.16 and 7.62 + 0.51, for
second- and third-day extrusion runs, respectively. Furthermore, to analyse the ability
of PLS and LDA models to detect when the concentration of larger particles exceeds a
set upper limit (as a model for detecting a high concentration of agglomerated particles),
different-sized particles were mixed in different ratios. The ratio of 5:30 µm was varied as
19:1, 18:2, and 15:5% w/w, while keeping the total concentration of the additive at 20% w/w.
The LDA model showed excellent ability and classified all the spectra correctly, except
two. Similarly, the PLS model also performed very well and demonstrated a maximum
deviation of 0.02% from the expected values. They further studied the transferability of the
PLS and LDA calibration models by using an independent validation set, which consisted
of a data set obtained from the extrusion of β-TCP with a medical-grade PLA. The LDA
model was relatively accurate in classifying the spectra into classes relating to either large
or small particles in the system. Similarly, the PLS model showed good accuracy for 30
µm particles but yielded higher variations for 5 µm particles. This work showed that
models for additive particle size could be trained using a cheap grade of PLA and applied
to processing of the more expensive medical-grade PLA.

These research works on the monitoring of polymer blend concentration, polymer
degradation, mechanical properties, and particle size may be useful for further investigation
in pharmaceutical HME processes where a blend of polymers is desired as the carrier
matrix; thermally sensitive polymers are used; the agglomeration or size of additive
particles is a concern; or in the manufacture of implant forms where mechanical properties
are important.

6. Application of PCA and PLS for Process Fault Detection and Statistical
Process Control

Statistical process control (SPC) enables quick insights into process data through the
use of graphical presentation of the data [93]. SPC charts are generally used to monitor
the critical process variables, to see if they are within the defined limits. In the case of
PCA-based methods of SPC, two important metrics are SPE (standard prediction error)
and T2 thresholds [94]. An SPE value higher than the threshold value is interpreted as a
breakdown in the data, which is an indication of a potential fault in the system. Similarly,
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a T2 value higher than the threshold value is an indication that the process is away from
being ‘normal’ [41]. Besides, D2 [95] is also used for detecting outliers after applying PCA.

Liu et al. [96] used PCA for the early detection of variations in the melt viscosity as an
indication of fault during the extrusion of low-density polyethylene (LDPE). An in-line slit
die rheometer was used to record the in-line shear viscosity. Due to the non-linear nature
of the polymer extrusion process, a non-linear PCA algorithm based on serial principal
curves and radial basis function (RBF) networks was used. Fault-free data (i.e., from a
process with consistent viscosity) were used to build a non-linear PCA model, and the
performance of the model to detect the faults in the extrusion process was examined using
data from a process where viscosity variations were deliberately induced. The performance
of the non-linear PCA model was compared with linear PCA and ICA-PCA (independent
components analysis PCA). The performance of the models was assessed based on both T2

and D2 statistics. The results showed that the ICA-PCA model performed better than the
linear PCA model; however, the non-linear PCA model outperformed both the methods
and detected the change/disturbance in the process much earlier.

Kazmer et al. [97] examined PLS and PCA models to detect faults in a tubing extrusion
process. They used nine different manipulated variables, including different blend ratios
of the polymers (LDPE and LLDPE), screw speeds, barrel temperatures, die temperatures,
linear-pull speeds, tubing internal pressures, temperatures and flow rates of the water bath,
and extrudate free lengths between the water bath and die lip. They trained four different
PCA and PLS (PCA1, PCA2, PLS1, PLS2) models, where each model had a different set of
input variables (selected from machine sensors, micrometer data, and process variables)
and differed from each other in terms of complexity. Separate validation experiments were
performed, in which eighteen different types of disturbances were introduced, and the
previously trained PCA and PLS models were used to detect the faults in the extrusion
process. All the models showed reasonably good performance in detecting the faults
related to viscosity changes, pressure, screw speed, temperature changes, etc. However,
the models were not very efficient in detecting physical variations that did not affect
the extrusion process dynamics, e.g., slight deviations in the extrudate diameters were
not readily detected by the models. The results showed that PCA outperformed PLS in
detecting the variations in the system. This work also indicated that the performance of
the models could be increased by adding more input variables in training the models, as
all the models showed better sensitivity in detecting the changes related to the variables
used for training the models.

Tahir et al. [41] developed two different soft sensors for the prediction of the concentra-
tion of paracetamol used as a model drug, with Affinisol used as a polymer carrier matrix.
The first PLS model was based on in-line Raman spectra, and the second model, called
a hybrid soft sensor model, was built using feeder process data, to predict the dynamic
concentration of the API at the end of the extruder outlet. Both the models showed good
accuracy in predicting API concentration. The predictions of these models, along with
the process data, were used by the PCA model with 2 PCs and an SPC model. These two
models were used as tools for the detection of various faults in the process. To compute
the ‘model mismatch’ signal, a Shewhart control chart [98] was developed. This chart com-
puted the upper and lower control limits (UCL, LCL) of the process. Different disturbances
were induced in the process, including the following: (1) API powder accumulation in
the barrel zone; (2) material deposition on the Raman probe; and (3) the presence of an
impurity in the API. For the case of API powder accumulation, the PLS model correctly
predicted the reduced API percentage in the extrudate. The hybrid soft sensor model was
unable to detect this change however, as this model was based on the amount of API and
excipient in the feeders. The SPC detected a mismatch in the signal, caused by divergent
model predictions in under 2 min. PCA was also able to detect the fault as observed by the
higher SPE value (see Figure 5). Similarly, in all other cases, the SPC and PCA models were
able to detect the process disturbances.
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7. Application of Non-Linear ML Algorithms for HME Process
7.1. Non-Linear ML Algorithms to Monitor CPP

Non-linear machine learning algorithms have been applied in monitoring critical
process parameters, such as melt temperature, melt pressure, and melt viscosity, for the
HME process. Melt temperature determines the process thermal stability and melt quality,
and influences the production rate [99,100]. Abeykoon et al. [101] developed a non-linear
static model using the fast recursive algorithm (FRA) to model the temperature profile
across the melt. Finally, an FRA model with 12 terms and of the 6th order, which achieved
the lowest RMSE of 2.89 for the validation set, was selected. Further, optimisation algo-
rithms were applied to the model to optimise the process settings. The results showed a
reduction in thermal variations when optimised process conditions were used compared
to the pre-set experimental conditions used earlier. In this study, screw speed and melting
zone temperature were identified by the FRA model as the most influential parameters
to affect the melt temperature. In another study, Abeykoon et al. [38] used FRA coupled
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with a backward elimination method to develop a non-linear dynamic model to predict
the die melt temperature. They tried different models, and a second order model with 20
terms achieved the best predictive accuracy. The metering zone temperature was identi-
fied as the most important barrel zone temperature to affect the melt homogeneity and
temperature level.

Melt pressure is another important process parameter to monitor during the HME
process. Abeykoon et al. [39] used FRA coupled with backward elimination and developed
a non-linear model to predict the static pressure and a linear model to predict the dynamic
pressure using different processing conditions. Both models showed good results; the screw
speed and barrel zone temperatures were identified as the most influential parameters to
affect the melt pressure.

Melt viscosity is also considered an important process parameter to monitor the quality
and homogeneity of the product. McAfee et al. [102,103] and Liu et al. [40], in a series of
studies, developed soft sensor models with a ‘predictor-corrector’ structure to monitor the
melt viscosity, with different materials and using different equipment. These soft sensors
used information on the process settings to estimate the resulting melt viscosity using
grey-box modelling approaches. This estimated viscosity is used to predict the process
melt pressure, and the error between the predicted and measured melt pressure is fed
back to continuously correct the viscosity estimates, despite changes in the feed material,
etc. The proposed soft sensors achieved good predictive ability on different grades of
material than those used in model training. Kugler et al. [104] developed a soft sensor
model using an artificial neural network (ANN) to predict the small changes in viscosity
caused by variations between batches of material in production. This work showed good
performance of the soft sensor model to predict the viscosity changes in real-time. However,
they observed significant deviation between the actual and predicted values at some points,
due to fluctuations in torque and pressure signals.

Good predictions of critical, but difficult-to-measure process parameters, such as
thermal homogeneity and melt viscosity, have been achieved with non-linear algorithms.
Such models also yield insight into the most important process variables and facilitate
optimisation of process settings. Some works have shown that such models can sometimes
be robust to changes in material batches and grades, depending on the design. However,
such models are also more complex, may require large data sets to train, and may be more
likely degrade in performance over time.

7.2. Application of Non-Linear ML Algorithms for On/In-Line Monitoring of Product Quality

A small number of research works have been reported that show the potential of
alternative methods (other than PCA and PLS), such as random forest (RF), ANN, k-NN,
and SVM in HME, to predict product drug content, dissolution profile, and mechanical
and dimensional properties.

Regev et al. [105] used an ANN model coupled with an evolutionary algorithm to
investigate the effect of barrel temperature, screw speed, and feed rate on the dissolution
profile, puncture strength, and drug content for vaginal film. Dapivirine (DPV), used as a
model drug, was blended with PEG, HPC, and vitamin acetate to manufacture vaginal films
using the HME process. Eighty percent of the experimental data was used to train the ANN
model, while the predictive performance of the model was investigated on the unused 20%
of the data. Different structures were explored and, finally, a fully connected, feed forward
network, with a single hidden layer, was found to be the best performing model. The
final ANN model achieved percentage errors of 15.46%, 5.32% and 8.71% for drug content,
puncture strength, and dissolution profile, respectively, for the 20% unseen data. A surface
response analysis of the ANN model indicated that changes in the barrel temperature
significantly affected all three response variables; the screw speed affected the puncture
strength more significantly than the drug content and dissolution; while changes in the
feed rate were found not to significantly affect any of the three targeted response variables.
Furthermore, they used an evolutionary algorithm to optimise the process parameters.
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The percent difference between the predicted and experimental data was less than 1%
for dissolution, drug content, and puncture strength, after using the optimised barrel
temperature, screw speed, and feed rate values suggested by the evolutionary algorithm.

Mulrennan et al. [33] used PCA coupled with random forest regression to predict
the yield stress of PLA processed at a range of different temperatures, screw speeds, and
feed rates. During the process, pressure and temperature data were captured, including
pressure drop along an instrumented slit die, which was used to estimate the shear viscosity
during processing. For the final calibration model, only the pressure data and the shear
viscosity estimates were used as very little variation was captured in the melt temperature
data. Eighty percent of the data was used to train the model, and the remaining 20% of the
data was used as unseen data, to test the predictive performance. Four different models
were trained, including PCA–random forest, PCA–bagging, random forest, and bagging,
to predict the yield stress of PLA. PCA–random forest showed the best performance, as
indicated by the lowest RMSE value; however, all the other methods also performed
reasonably well.

Garcia et al. [106] used different regression models, including k-NN, SVR, and MLR,
to predict the inner diameter (ID) and outer diameter (OD) of the tube during a tubing
extrusion process. In this study, data was captured on fifteen process variables, including
four barrel temperatures, four die temperatures, the hopper temperature, cooling tank
temperatures, screw speed, vacuum pressure, and pulling force. They predicted the
internal (ID) and outer (OD) diameter by using simple k-NN, two distance-weighted k-
NN models (termed as k-NNRw1 and k-NNRw2), a linear regression (LR) model, and
three different SVR algorithms (linear kernel (SVR-1), polynomial kernel (SVR-2), and
a radial basis function kernel (SVR-RBF)). To predict the OD, k-NNRw1 and SVR-RBF
achieved the lowest RMSE values. To predict the ID, k-NN and SVR-RBF yielded the lowest
RMSE values. However, to predict the ID, all the methods based on k-NN performed
reasonably well.

Zhu et al. [107] used both in-line Raman and NIR in a data fusion technique to monitor
PP/PS blend concentration. Data fusion is defined as a method to combine data from
different sources having the following three levels: low-level, combining all the raw data;
mid-level, combining only features extracted from the raw data; and high-level fusion,
where only the results from individual models are combined. Zhu et al. used low- and
mid-level data fusion methods. In this study, they used three different PP grades and two
different PS grades. Pre-processing methods for the NIR and Raman spectra included
baseline correction, and minimum and maximum normalisation. One calibration set and
three different validation sets were used. For the calibration set, the concentration of PP
was changed from 95% to 5 wt.%, while for the validation sets, the concentration of PP was
changed from 90 to 10 wt.%. For validation set 1, the same grades of PP and PS were used
as for the calibration set, while for validation set 2 and set 3, the PP and PS grades used
were different than those used in the calibration set. They compared the performance of
PLS, ANN, and extreme learning machine (ELM) regression models using NIR and Raman
data separately, and then using the low- and mid-level data fusion techniques. Table 2
summarises the results for all the models for the validation set. In all the approaches,
the linear PLS produced poorer predictive accuracy than the non-linear ANN and ELM
methods. Mid-level fusion produced better results, as it yielded lower RMSEP values
for both ANN and ELM than for low-level fusion. Nevertheless, low-level fusion also
performed reasonably well for ANN and ELM.
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Table 2. Summary of result for all validation sets.

Validation Set ELM ANN PLS

Data RMSEP RMSEP RMSEP

Raman spectra
Validation set 1 0.978 1.691 10.536
Validation set 2 2.357 3.13 25.755
Validation set 3 1.313 2.232 13.916

NIR spectra
Validation set 1 1.024 1.221 2.372
Validation set 2 2.186 2.381 3.079
Validation set 3 3.124 3.507 2.5311

Low-level data fusion (sample = 500, spectra = 657,
NIR spectra = 125, Raman = 532)

Validation set 1 0.658 1.087 1.601
Validation set 2 0.95 1.291 2.02
Validation set 3 1.74 1.838 5.119

Mid-level data fusion (sample = 500, spectra = 10, 5
features each from NIR and Raman)

Validation set 1 0.992 0.941 1.915
Validation set 2 1.411 1.375 2.459
Validation set 3 1.68 1.617 5.45

Tables 3 and 4 summarise the application of machine learning algorithms for pharma-
ceutical and polymer HME processes, respectively.

Table 3. Application of ML for pharmaceutical HME process.

Algorithm
Used

In/On-Line
Monitoring Purpose Pre-

Processing
RMSE on Unseen

Data Polymer Drug Software
Used Reference

PCA

Raman and
NIR Solid state SNV - EVA MPT SIMCA P+ [70]

Raman Solid state SNV - Eudragit MPT SIMCA P+ [10]

Raman Solid state SNV and
mean centring - Eudragit CEL SIMCA P+ [2]

Raman Solid state SNV - Eudragit MPT SIMCA P+ [3]

Raman Fault detection - - Affinsole Paracetamol
PharmaMV
(Perceptive

APC)
[41]

- API concentration - - Calcium
stearate Paracetamol SIMCA-Q [82]

PLS

Raman API concentration Second
derivative

ketoprofen = 0.94%,
clotrimazole = 0.97% PEO Ketoprofen,

Clotrimazole Grams™ [85]

Raman API concentration SNV, SG 0.59% Eudragit MPT SIMCA P+ [9]

NIR API concentration MSC, second
derivative 1.54% Kollidon MPT SIMCA P+ [11]

NIR Co-crystal
concentration

Second
derivative R2 = 0.99 Nicotinamide Ibuprofen TQ Analyst™ [87]

NIR Co-crystal
concentration

SNV, Second
derivative, NS

and SGS

0.95% (Ibuprofen),
3.53%

(Carbamazepine)
Nicotinamide

Ibuprofen and
Carba-

mazepine
TQ Analyst™ [88]

Raman Co-crystal
concentration SNV 0.83% Nicotinamide Ibuprofen MATLAB [89]

Raman API concentration MCR 1.09% Eudragit MPT SIMCA P+ [108]

UV-Vis API concentration Normalisation Kollidon Piroxicam MATLAB [35]

PLS

FT-NIR API concentration
Norris second

derivative,
SNV,

0.62% Eudragit Ketoprofen TQ Analyst™ [34]

Raman API concentration - - Soluplus Itraconazole MATLAB [109]

NIR API/plasticiser
concentration

Second
derivative

PEG = 0.67%, CBZ =
1.06% Kollidon Carbamazepine TQ Analyst™ [86]

NIR
Raman

API concentration
API concentration

Second
derivative

SNV, ID, MSC,
SG

0.40%
RMP = 1.007%

HCTZ = 1.237%

Kollidon
Eudragit

Ibuprofen
RMP

HCTZ

TQ Analyst™
SIMCA

[30]
[84]

ANN -
Dissolution profile,
puncture strength
and drug content

- 8.71, 15.46 and 5.32 PEG, HPC,
and vitamin E Dapivirine Python [105]
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Table 4. Application of machine learning for polymer HME process.

Algorithm Used In/On-Line
Monitoring Purpose Pre-Processing RMSE on Unseen Data Polymer Reference

PCA

Slit die Fault detection - - LDPE [96]

- Fault detection - - LDPE,
LLDPE [97]

PLS NIR Additive
concentration

Spectral averaging and
smoothing 0.38% PP/PE [90]

PLS FT-NIR Filler
concentration - 0.27% LDPE [91]

PLS FT-NIR, Raman VA monomer
contents

Baseline correction (for
FT-NIR spectra), MSC
(for Raman spectra)

0.38% (FT-NIR), 0.187%
(for Raman) EVA [91]

PLS Raman Degradation Baseline correction 1.72% PP [36]

PLS NIR Degradation MSC, second derivative,
mean centring 0.0126 PHA [37]

LDA and PLS UV-Vis Particle size - - PLA [37]

PLS NIR Mechanical
properties

Mean centring, SNV,
normalisation - PP [92]

PCA-Random
forest Slit die Yield stress - 0.25% PLA [33]

k-NN, SVR, LR - Inner and outer
diameter of tube Normalisation

0.00965 (outer
diameter), 0.00107
(inner diameter)

- [106]

ANN, PLS, and
ELM NIR and Raman Polymer blend

concentration
Baseline correction, and

normalisation 0.6583 (best result) PP/PS [107]

Although not heavily investigated in the HME process to date, non-linear ML tech-
niques have been shown to be useful in the monitoring of complex product quality at-
tributes using heterogenous process data.

8. Discussion

The application of machine learning algorithms clearly has an important role in
monitoring product and process parameters that are relevant to achieving a robust phar-
maceutical HME process. In particular, the methods of PCA and PLS enable the rapid
identification of critical quality attributes such as solid state and quantification of drug
contents, as well as having a role in detecting faults in the process. In this section, we
evaluate the main challenges in developing and applying ML to quality control in industrial
pharmaceutical processes, and also consider the future directions in ML developments for
pharmaceutical HME under Industry 4.0.

8.1. Improvement of Conventional Linear Methods

For the HME of a polymer–drug matrix, it is evident from the literature that PCA
and PLS have been used in almost all applications, not least because of their tried and
tested effectiveness for chemometric applications and suitability for application with
relatively small data sets—as is usually the case in pharmaceutical process development.
The majority of research works address the interpretation solely of spectroscopic data
(typically NIR or Raman spectra) to monitor chemical properties, usually at fixed process
conditions. Although PCA and PLS have shown promising results in various applications,
these methods have some limitations. PCA and PLS may not perform well with non-linear
data [110]. Also, the use of PLS and PCA may, in some cases, reduce the access or the
interpretability of the data, as information on which regions of the spectrum are responsible
for the majority of the variation is obscured.

Recently, a number of researchers have examined PLS extensions to improve per-
formance in non-linear settings and eliminate redundant features, resulting in a sparser
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and more interpretable model, and often with improved accuracy. It has been shown that
feature selection methods coupled with multivariate regression methods, such as PLS,
can significantly improve the predictive performance over a simple PLS model [111]. The
genetic algorithm with PLS (GA-PLS) has been used to detect relevant spectral regions and
eliminate redundant regions. However, one of the limitations associated with GA-PLS is
that when the number of wavelength features are high (usually greater than 200), the detec-
tion of relevant spectral regions becomes difficult. To overcome this challenge, backward
interval (bi-PLS) following GA for feature selection can be used. Bi-PLS splits the spectrum
into a given number of intervals and performs backward elimination. With the removal
of one interval at each stage, the performance of the model is improved (i.e., RMSECV
reduces). Ultimately, the bi-PLS method selects the most-relevant spectral region [112].
Marini et al. [113] used bi-PLS coupled with a GA to predict the enantiomeric excess in
both mandelic acid and ketoprofen in pellets. The performance of a PLS model that was
developed using the features selected by bi-PLS coupled with GA was compared with
full PLS (including all the features and a full spectrum range). For both ketoprofen and
mandelic acid, the PLS model with fewer features achieved better predictive accuracy than
the full PLS model. Table 5 summarises the results of this study.

Table 5. Summary of bi-PLS-GA and final PLS model result.

Drug Original
Features

Features
Selected by

Bi-PLS

Features
Selected by

GA

RMSEP of
Final PLS

Model

RMSEP of PLS
Model (with All

Features)

Ketoprofen 1661 196 9 2.12 2.32

Mandelic
acid 1391 121 31 4.57 6.87

Shah et al. [111] proposed using a statistical pattern analysis (SPA) feature-based soft
sensor for the analysis of in-process spectral data. In SPA, instead of monitoring the process
variables, the process operation status is monitored by monitoring various statistics of
key process variables [114,115]. In this study, firstly, the whole spectrum was divided into
various non-overlapping segments using synergy interval segment PLS (SiPLS). Secondly,
they extracted different summary statistics from each spectrum segment, and used these
to train a PLS model. The hyperparameters used to tune the PLS model performance
included using different numbers of segment intervals, different numbers of PCs, and
different summary features from the wavelength segments. Using this methodology, they
analysed the NIR spectra of the pharmaceutical tablet data set, and compared this method
with the SiPLS, full PLS model, and LASSO. The SPA feature-based model showed better
performance than the full PLS model and LASSO. The benefit of using the SPA feature-
based soft sensor is that it utilises information from the entire spectrum but reduces the
number of variables for training the model.

8.2. The Role of Sensor Integrity and Location

Models based on machine learning algorithms are trained using process inputs that
are recorded using physical sensors, such as pressure and temperature sensors, and in/on-
line spectrometers. The performance of the machine learning models depends heavily on
the accuracy of these physical sensors. In the case of using an in-line spectrometer, it is
important to make sure that the changes in the spectral features represent the changes
materials go through during the process. The spectral changes should be sufficient enough
to monitor the desired system property, and the signal strength should be high enough
to distinguish between the instrument noise and the spectral changes [116]. Similarly,
wrongly positioned or poorly calibrated physical sensors used during the process can
affect the predictive performance of the machine learning models. Verstraeten et al. [117]
developed a PLS model to monitor API concentration during a bottle-filling step of a
pharmaceutical process. However, when they plotted the predicted NIR assay as a function
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of time, continuous fluctuations were observed in the assays, which was in contradiction
with ultra-performance liquid chromatography (UPLC) results. Further investigation was
made by using a CFD model, which confirmed the presence of a recirculation zone very
close to the location of the NIR probe—indicating that the flow was not in fully developed
conditions when the NIR measurements were taken. To address this issue, they increased
the distance between the NIR probe and interface inlet. Assay predictions as a function of
time for optimised arrangement were then consistent and did not exceed the assay control
limits of 95% and 105%.

8.3. Potential for Non-Linear ML Methods

It has been shown that ML algorithms have a role not only in the analysis of spectro-
scopic data, but also in monitoring the process health more generally, e.g., in identification
of fluctuations in feeding, melt temperature, and viscosity, etc. The application of more-
complex ML algorithms in other pharmaceutical processes indicates the future potential of
ML in HME in a more holistic way to develop process models for the purposes of process
optimisation and control. A few brief examples are given here to indicate the potential of
more-sophisticated ML algorithms for process modelling and monitoring.

For other pharmaceutical processes, ANNs, in particular, have shown good predictive
ability in different applications, including predicting granule size distribution (GSD) for
a dry granulation process [118], particle size for a wet granulation process [119], and the
prediction of tensile strength for a tabletting process [120].

Dengler et al. [121] used machine learning models for the quality control of a medical
product formation system, to identify different types of errors and to minimise the false
rejection rate. They used different machine learning algorithms at different stages of
the process, including anomaly detection, decision tree, support vector machine and a
convolutional neural network. Overall, the proposed approach was able to detect the
defective components and reduce the false rejection rate to an acceptable limit.

He et al. [122] used both linear and non-linear machine learning algorithms, including
the following: DNN, SVM, RF, MLR, PLS, k-NN, and light gradient boosting machine
(LightGBM), to predict the particle size and polydispersity index of nanocrystals. In both
cases, out of all the models, LightGBM yielded the lowest MAE (Mean Absolute Error).

One of the main challenges associated with the application of ML algorithms for
the pharmaceutical HME process is related to the ‘small data’ problem, especially at the
development stage. Most of the more complex, non-linear machine learning algorithms
require large training data for model development; however, some recent works indicate
potential with small data sets. Harms et al. [123] used an extended iterative optimisation
technology (EIOT) approach to analyse the API content in a small data set during a
continuous drug manufacturing production (CDMP) process. EIOT is an optimisation
technique based on the Lambert-Beer’s law for spectral decomposition. This method
typically includes pure component spectra collected before analysis and mixture spectra
collected during analysis [124]. They first compared the performance of NIR and Raman
to monitor low drug concentration, and PCA analysis indicated a better ability of Raman
to detect the low API content at varying process conditions than NIR. The Raman spectra
with 1% API concentration were further optimised using extended iterative optimisation
technology. A good agreement was observed between API concentration predicted by EIOT,
and off-line API concentration found by HPLC. This method can be used as an alternative
to an ML method at the early development stage, when the API supply is not enough to
perform regression via PLS, ANN, etc., as EIOT requires very limited training data.

Yang et al. [125] compared the performance of the following six machine learning algo-
rithms: MLR, PLSR, RF, k-NN, and SVM, with a deep neural network (DNN) for prediction
of the drug release profile from data on the formulation of different oral sustained-release
matrix tablets (SRMT), and oral fast-disintegrating films (OFDF). Specifically, the study
aimed to predict the disintegration time for OFDF, and the cumulative dissolution pro-
files for SRMT. In both cases, DNN achieved better accuracy than conventional machine
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learning methods. SVM and k-NN showed reasonable performance in the prediction of
the release profile of OFDF. However, none of the conventional machine learning methods
could demonstrate reasonable accuracy for SRMT. This study demonstrates the possibility
of using DNN to predict pharmaceutical formulations using a small data set.

Blazhko et al. [70] proposed a method for data augmentation (i.e., extending a data
set where it is not sufficiently large for training an ML model), based on augmenting IR
spectra with physical distortions. It was found that the method can replace pre-processing
when combined with DNNs for classification and is especially successful for small data
sets. The concept of data augmentation may be a useful avenue for further research in the
application of DNNs to HME problems and may also be useful to solve the problem of
which pre-processing steps to apply to give the best performance.

A barrier to the adoption of non-linear and complex ML algorithms is the issue
of regulatory acceptance. To this end, further research will be needed to ensure the
robustness of such models, and the issue of ‘explainability’—understanding how and why
the algorithm works—is likely to be a key factor in future adoption by the industry.

8.4. Transferability Challenges for ML Models

To implement machine learning methods on a production scale, ideally, one model
should be robust enough to be used under different conditions, as the calibration and
validation of a model for different conditions is time and cost consuming. As described
above, a few studies have been reported in which the transferability of machine learning
models was studied in HME processes. Whitaker et al. [31] studied the transferability of
PLS and LDA calibration models for monitoring filler particle size in different grades of
PLA (packaging and medical grade). They achieved good model transferability, attributed
to the similar optical properties of the melt in each case. McAfee et al. [102,103] and
Liu et al. [40] investigated the transferability of the soft sensor models with a ‘predictor-
corrector’ structure (using feedback from pressure sensors), to monitor melt viscosity when
applied to different materials and different equipment and found good transferability of
the soft sensor models. However, for monitoring physio-chemical properties, such as API
content, there is no obvious relationship between such properties and a real-time process
measurement, such as melt pressure.

Rohe et al. [90], in their study to monitor polymer additive contents using HME,
investigated the transferability of a PLS model that was trained on NIR data collected at
one time to data that was collected at different times, and could not get good accuracy.
However, Tumuluri et al. [85] investigated the transferability of a PLS-based model to
predict the concentration of API in different extrusion equipment. A PLS model was
calibrated using on-line Raman data from a pilot-scale extruder, and the transferability
of the PLS model was studied on a lab-scale extruder. A number of the parameters were
adjusted in the calibration model to compensate for differences in the extruders, such
as, the thickness of the extruded film, and differences in the path length because of film
undulation. After these adjustments, the PLS model achieved good predictions for the
lab-scale machine.

However, the transferability of machine learning models for the pharmaceutical HME
process has not been addressed in most of the studies. The performance of the machine
learning models has primarily been assessed on a validation set where the processing
conditions used for the validation set were not significantly different from the ones used
for the calibration model. In the field of chemometrics more generally, significant research
is ongoing to avoid the need for rebuilding a model from scratch for different conditions.
One of the approaches that has been investigated in the chemometrics literature is to use
adaptively updating calibration models. In the adaptive methods, the existing model
requires the tuning of hyperparameters in order to adapt to new data. Recursive partial
least squares regression (RPLS) is one such adaptive method. In RPLS, after acquiring new
data, the previously calibrated model is updated by adjusting the hyperparameter/s, which
controls the level of down-weighting of old training data. However, the implementation
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of adaptive methods is complex and requires extensive effort to tune the updating of the
adaptive hyperparameters of the model. Another method that can be used to update
the calibration model for new data is to use a ‘moving window’ modelling approach.
Adaptive methods require extensive training data to calibrate a model, while the moving
window modelling approach is fast, can be used with small historical data, and is easy to
implement [126].

8.5. Validation of ML Models

In the literature, most of the authors have used the same approach for the validation
of the model, i.e., using the RMSE, RMSECV, and RMSEP values to assess the predictive
ability of the model. These metrics are a good way to assess the quantitative performance
of the models but are not sufficient for regulatory compliance of the validation of analytical
procedures under ICH Q2 [127]. According to these guidelines, the validation methods
should include evaluation of trueness, precision (repetitive and intermediate), accuracy,
linearity, specificity, and robustness of the model.

Based on these requirements, The Société Francaise des Sciences et Techniques Phar-
maceutiques (SFSTP) introduced the concept of an “accuracy profile” for the validation of
analytical procedures. An accuracy profile-based validation approach is ICH Q2 compliant
but is more demanding than the model evaluation metrics commonly reported in the
literature. The approach is based on ‘total error’ (which is the sum of bias and standard
deviation) and introduces the concept of a tolerance interval (β-tolerance interval). The
accuracy profile is a reliable tool to evaluate the model’s actual performance and assess
what kind of results the same analytical procedure will produce when used in the future
for routine analysis [108,128,129]. A detailed summary of this approach has been explained
in [128,130,131]. Further, a detailed review of different validation methods specifically for
the application of NIR in pharmaceutical processes has been published [129]. Here, we
present the few research works that have been reported to date in the literature specific to
the application of accuracy profile validation methods in HME.

Saerens et al. [108] evaluated the validation performance of different PLS models
developed using Raman spectra, to predict the concentration of MPT in an HME process.
During the process, the MPT concentration was varied and also the extrusion trials were
conducted over three days with two different operators. Four separate PLS models were
developed using different spectral pre-processing steps and using all or an average of
the spectra. In this case, MCR pre-processing and an average of 10 consecutive spectra
showed a better accuracy profile than other PLS models, as it was the only model where
β-expectation tolerance intervals remained within the defined acceptable limit (±10). The
authors further investigated the robustness of the best performing PLS model by introduc-
ing minor changes in the processing conditions. The resulting model performance was
evaluated by using the Q2 statistic and by using two F-tests (regression model significance
test and the lack-of-fit test). The results of these tests validated that the model is robust to
the small changes in the process conditions.

Netchacovitch et al. [109] used an accuracy profile for the validation of models de-
veloped from in-line Raman spectra, to predict the concentration of itraconazole (ITZ) in
Soluplus. The amount of API used as a reference to calibrate the PLS model was deter-
mined in the following two ways: (1) by using an off-line confocal Raman microscope, and
(2) by determining the theoretical value of the API based on its amount in the sample. The
purpose of this step was to investigate the effect of the reference method on the model
performance. Training and validation experiments were performed at different times. A
linear univariate model and multivariate PLS models were developed to quantify the ITZ
concentration. In the case when the API concentration was measured using a confocal Ra-
man microscope, the multivariate PLS model showed a better accuracy profile (acceptance
limit ±15) result than the univariate model. The accuracy profile results showed that 95%
of the future measurement would fall within the defined limits using a multivariate PLS
model. For both the models, when the models were developed using the theoretical API
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amount the accuracy decreased. These results highlight the importance of using absolute
concentrations instead of the theoretical values of the samples.

Almeida et al. [35] monitored and optimised the concentration of piroxicam (PRX) in
Kollidon® VA 64 using in-line UV–Vis coupled with PLS. They developed one calibration
model and two validation data sets; all three data sets (calibration and validation sets)
included data from extrusion runs performed on different days. Normalisation was per-
formed as a part of the pre-processing step, and a PLS model with four latent variables
was selected as a final model. Validation was based on the accuracy profile strategy and
ICH Q2 (R1) validation criteria. The parameters used for performance assessment of the
models included the following: trueness, linearity, precision, limit of quantification and
range, total error, and uncertainty. The accuracy profile for both the validation sets showed
that with an acceptance limit of ±5, 95% of the future measurement would fall within the
defined limits.

9. Conclusions

The application of machine learning in pharmaceutical processing is a rapidly de-
veloping field, with many potential benefits for process optimisation and control. A
well-designed machine learning model can speed up the development process, aid optimi-
sation of the process, reduce the process cost, enhance product consistency, reduce process
faults, and enable rapid validation of product quality. However, the use of machine learn-
ing algorithms for pharmaceutical HME is relatively new and is as yet underdeveloped.
Most of the works reported in the literature have been conducted to predict/monitor the
solid state of the polymer–drug extrudate and the API concentration. Few works have been
published to date on predicting the final properties of the product such as, degradation of
the polymer–drug matrix, mechanical properties and rate of loss of mechanical properties,
drug release profile, etc., from in-process data. Recent works examining the application of
more-complex ML models, both in HME and more widely in pharmaceutical processing,
indicate that with careful design of the sensing system, the experimental procedures, and
the modelling algorithms that prediction of such properties from in-process data may
be possible in the future. Further, the application of machine learning for automating
process control, for example, by using reinforcement learning, has not yet been explored
in the literature. Future work should be in the direction of examining the suitability of
different machine learning methods, their robustness, and limitations to predict and control
the final properties of the polymer–drug matrix. It is stressed that if such models are to
meet the industrial requirements for product validation that appropriately rigorous model
validation procedures should be applied.
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