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Abstract: Triple-negative breast cancer (TNBC) is characterized by extensive tumor heterogeneity
at both the pathologic and molecular levels, particularly accelerated aggressiveness, and terrible
metastasis. It is responsible for the increased mortality of breast cancer patients. Due to the negative
expression of estrogen receptors, progesterone receptors, and human epidermal growth factor recep-
tor 2, the progress of targeted therapy has been hindered. Higher immune response in TNBCs than
for other breast cancer types makes immunotherapy suitable for TNBC therapy. At present, promis-
ing treatments in immunotherapy of TNBC include immune checkpoints (ICs) blockade therapy,
adoptive T-cell immunotherapy, and tumor vaccine immunotherapy. In addition, nanomedicines
exhibit great potential in cancer therapy through the enhanced permeability and retention (EPR) ef-
fect. Immunotherapy-involved combination therapy may exert synergistic effects by combining with
other treatments, such as traditional chemotherapy and new treatments, including photodynamic
therapy (PTT), photodynamic therapy (PDT), and sonodynamic therapy (SDT). This review focuses
on introducing the principles and latest development as well as progress in using nanocarriers as
drug-delivery systems for the immunotherapy of TNBC.

Keywords: TNBC; immunotherapy; immune checkpoint; nanocarrier; drug delivery; combina-
tional immunotherapy

1. Immunotherapy in Triple-Negative Breast Cancer (TNBC)

Cancer constitutes the largest public health problem in the world. According to
the data released by the American Cancer Society (ACS), there are about 4950 patients
diagnosed with cancer and 1662 dying of it every day; Among them, breast cancer is the
most popular female cancer type, which is estimated to be nearly 30% of the new cases
and the death rate of which is as high as 15% in 2020 [1]. According to the expression of
estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor
receptor 2 (HER2), breast cancer is defined as three major subtypes: hormone-receptor (HR)
positive, HER2-enriched, and triple-negative breast cancer (TNBC). TNBC accounts for
15–20% of all breast cancers, particularly those in young women [2]. Compared with the
other subtypes, TNBC does not respond well to hormonal therapy or medicines targeting
HER2 protein receptors. It shows higher drug resistance and tumor heterogeneity and
aggressiveness, and is often accompanied by lung or brain metastasis. Lacking therapeutic
target is the main reason challenging the effective treatment of TNBC. Once the tumor
metastasizes, the median overall survival of TNBC patients is only 12 to 18 months due to
the limited therapeutic window [3]. Additionally, TNBC contains more immune cells [4],
and is easily recognized by the immune system due to its high genetic instability and
tumor mutational burden, making it one of the tumor types suitable for immunotherapy
intervention [5]. Although there are limited options for its treatment, TNBC is the most
immunogenic subtype of breast cancers. The robust antitumor responses of immunotherapy
in hematologic and solid malignancies bring hope to TNBC patients [6].
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Changes in the tumor microenvironment (TME), including tumor cell proliferation,
tumor metastasis, tumor recurrence, and tumor resistance, play a critical role in the pro-
gression of tumors as well as in their response to treatment and prognosis. In fact, the
success of immunotherapy links the TME with immunity [7,8]. In particular, tumor im-
mune microenvironment (TIME) composed of various immune cells has also attracted
much attention and exhibits significant importance to immunotherapy. Immune cells,
scattered in the tumor center and infiltrating edge or adjacent tertiary lymphoid tissue,
can be roughly divided into immunosuppressive cells and immune effector cells [9,10].
Similar to many other cancers, the antitumor immune killing effect in TNBC is performed
by cytotoxic T cells CD8+ and helper T cells CD4+ [10]. Regulatory T cells (Tregs) is a
major group of immunosuppressive cells, characterized by elevated Foxp3 expression and
tumor-associated macrophages [11]. They inhibit the immune function mediated by CD8+
and CD4+ T cells by secreting TGF-β, IL-10, and IL-35 in the process of immune escape.
Meanwhile, they can kill T cells directly through producing granzymes and perforin [12].
When Tregs dominate the immune function of tumor, immune escape would occur [13].

Immune checkpoints (ICs) are molecules playing a protective role similar to brakes in
the immune system. It can prevent inflammation damage and autoimmune diseases caused
by excessive activation of T cells (Figure 1). Tumor cells use human immune system to
over-express immune checkpoint molecules to inhibit the response of the human immune
system and to escape immune surveillance and killing [14,15]. In particular, programmed
cell death protein-1 (PD-1) and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4),
which weaken the immune function mediated by T cells, are of great importance to tumor
immunosuppression [16]. More potential checkpoints have been discovered, and their value in
immunotherapy is gradually being explored. Meanwhile, adoptive T-cell immunotherapy and
tumor vaccine are also constantly being studied as promising treatments.
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Figure 1. The regulatory mechanism of immune checkpoints (ICs) in TNBC tumor progress. The
programmed cell death-1/programmed death-ligand 1 (PD-1/PD-L1) and cytotoxic T-lymphocyte-
associated antigen-4 (CTLA-4) have been the primary immune checkpoint blockades. Some poten-
tially new immune ICs, such as T-cell immunoglobulin and mucin domain-containing protein 3
(TIM-3), indoleamine 2,3-dioxygenase (IDO), as well as V domain Ig suppressor of T-cell activation
(VISTA), are also demonstrated in the figure.
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1.1. Immune Checkpoint Blockades PD-1/PD-L1 and CTLA-4

Immune checkpoint blockades PD-1/PD-L1 and CTLA-4 are currently the primary
and most widely studied immunotherapy agents (Figure 1). PD-1 is a member of the CD28
superfamily and is mainly expressed in activated T and B lymphocytes, natural killer (NK)
cells, and myeloid cells. The structure of PD-1 includes an extracellular immunoglobulin
variable region (IGV), a hydrophobic transmembrane domain, and an intracellular domain.
The tail of the intracellular region contains the immune receptor tyrosine-based inhibitory
motif (ITIM) and the immune receptor tyrosine-based switch motif (ITSM) [17]. PD-L1 and
PD-L2 are two ligands of PD-1. The inhibitory signals often appear upon PD-1/PD-L1
binding, tyrosine phosphorylation in ITSM causes dephosphorylation of downstream
protein kinases Syk and PI3K, hinders downstream pathway activation, and inhibits
transcription and translation of genes and cytokines required for T-cell activation. Studies
have shown that PD-L1 expression is positive in about 20% of the TNBC patients, which
is significantly higher than that in non-TNBC patients [18]. CTLA-4 is a transmembrane
protein exclusively expressed on T cells and Tregs in tumor infiltrating lymphocytes (TILs).
It has a similar domain structure to CD28 (sharing 31% identity) and binds to B7.1 (CD 80)
and B7.2 (CD 86) with higher affinity [19]. Moreover, its engagement on Tregs could
strengthen the suppressive effect.

Currently, PD-1/PD-L1 inhibitors are mainly monoclonal antibodies (mAbs) and some
small molecules [20]. For example, pembrolizumab and emiplimab are humanized IgG4κ
monoclonal antibodies binding to PD-1 [21], nivolumab is an all humanized genetically
engineered monoclonal antibody against PD-1 [22,23], and atezolizumab and durvalumab
are both humanized IgG1κ type monoclonal antibodies against PD-L1 [24]. There are
many ongoing clinical trials in the treatment of TNBCs with mAbs (Table 1). Immune
checkpoint blockade therapy has been proved for the treatment of multiple types of cancer;
however, none of them has been approved for the treatment of TNBC so far. Some problems
came along with the clinical trials. Demaria et al. [25] concluded that CTLA-4 antibody
monotherapy could not inhibit the growth of metastatic tumor in mouse breast cancer cell
4T1. In the randomized phase II trial NCT02519322, grade III adverse events occurred in
8% of patients treated with nivolumab monotherapy and as high as 73% of patients treated
with both nivolumab and ipilimumab [26]. In the phase II clinical trial NCT02536794,
durvalumab combined with tremelimumab were administered, but was finally terminated
due to objective response rate (ORR) did not match the required criteria [27]. Fortunately,
the KEYNOTE-012 trial in Phase Ib and KEYNOTE-086 trial in phase II both revealed that
pembrolizumab had controllable safety and persistent antitumor activity in TNBC with
PD-L1 positive expression [28,29].

Table 1. Status of clinical trials with immune checkpoint blockade reagents for the treatment of TNBC [30].

Agent Target ClinicalTrials.Gov
Identifier Combinatorial Agent(s) Phase Recruitment

Status

Atezolizumab PD-L1 NCT02530489 Nab-paclitaxe Phase II Active, not
recruiting

Pembrolizumab PD-1 NCT02622074

Nab-paclitaxel + Doxorubicin +
Cyclophosphamide, Nab-paclitaxel +
Doxorubicin + Cyclophosphamide +

Carboplatin, Doxorubicin +
Cyclophosphamide +

Carboplatin + Paclitaxel

Phase I Completed

Pembrolizumab PD-1 NCT02734290 Paclitaxel, Capecitabine Phase I
Phase II

Active, not
recruiting

Pembrolizumab PD-1 NCT02768701 Cyclophosphamide Phase II Active, not
recruiting

Pembrolizumab PD-1 NCT02977468 Intraoperative radiation therapy (IORT) Phase I Recruiting
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Table 1. Cont.

Agent Target ClinicalTrials.Gov
Identifier Combinatorial Agent(s) Phase Recruitment

Status

Pembrolizumab PD-1 NCT02981303 Imprime PGG Phase II Completed
Pembrolizumab PD-1 NCT03012230 Ruxolitinib Phosphate Phase I Recruiting

Pembrolizumab PD-1 NCT03036488

Carboplatin + Paclitaxel + Doxorubicin
or Epirubicin + Cyclophosphamide +

Granulocyte colony-stimulating
factor (G-CSF)

Phase III Active, not
recruiting

Atezolizumab PD-L1 NCT03125902 Paclitaxel Phase III Active, not
recruiting

Atezolizumab PD-L1 NCT03164993 Pegylated liposomal doxorubicin,
Cyclophosphamide Phase II Recruiting

Durvalumab PD-L1 NCT03199040 Neoantigen DNA vaccine Phase I Active, not
recruiting

Atezolizumab PD-L1 NCT03206203 Carboplatin Phase II Active, not
recruiting

Atezolizumab PD-L1 NCT03281954
Paclitaxel + Carboplatin, Doxorubicin +

Cyclophosphamide or Epirubicin +
Cyclophosphamide

Phase III
Active, not
recruiting

Atezolizumab PD-L1 NCT03371017 Gemcitabine + Capecitabine or
Carboplatin Phase III Recruiting

Atezolizumab PD-L1 NCT03424005

Nab-paclitaxel, Nab-paclitaxel +
Tocilizumab, Sacituzumab Govitecan,
Ipatasertib, Landiratuzumab vedotin

(SGN-LIV1A), Selicrelumab +
Bevacizumab, Chemo (Gemcitabine +

Carboplatin or Eribulin)

Phase I
Phase II Recruiting

Nivolumab PD-1 NCT03487666 Capecitabine Phase II Active, not
recruiting

Atezolizumab PD-L1 NCT03498716
Chemo (Paclitaxel, Dose-dense

Doxorubicin or dose-dense Epirubicin),
Cyclophosphamide

Phase III Recruiting

Pembrolizumab PD-1 NCT03639948 Carboplatin + Docetaxel +
Pegfilgrastim Phase II Recruiting

Durvalumab PD-L1 NCT03742102
Paclitaxel, Paclitaxel + Capivasertib,

Paclitaxel + Oleclumab, Trastuzumab
deruxtecan, Datopotamab deruxtecan

Phase I
Phase II Recruiting

Pembrolizumab PD-1 NCT03752723 Cyclophosphamide + efineptakin alfa
(GX-I7)

Phase I
Phase II Recruiting

Atezolizumab PD-L1 NCT03756298 Capecitabine Phase II Recruiting

Durvalumab PD-L1 NCT03801369 Olaparib Phase II Recruiting

Nivolumab PD-1 NCT03818685 Ipilimumab Phase II Recruiting

Atezolizumab PD-L1 NCT03853707 Ipatasertib + Carboplatin Phase I
Phase II Suspended

Pembrolizumab PD-1 NCT04095689

Docetaxel + Interleukin-12 gene
therapy, Docetaxel +

NG-monomethyl-L-arginine
(L-NMMA)

Phase II Recruiting

Camrelizumab PD-1 NCT04129996 Nab-paclitaxel + famitinib Phase II Recruiting
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Table 1. Cont.

Agent Target ClinicalTrials.Gov
Identifier Combinatorial Agent(s) Phase Recruitment

Status

Atezolizumab PD-L1 NCT04148911 Nab-paclitaxel Phase III Recruiting

Atezolizumab PD-L1 NCT04177108 Ipatasertib Phase III Active, not
recruiting

Pembrolizumab PD-1 NCT04191135 Carboplatin + Gemcitabine,
Carboplatin + Gemcitabine + Olaparib

Phase II
Phase III

Active, not
recruiting

Camrelizumab PD-1 NCT04331067 Nivolumab + Paclitaxel + Carboplatin Phase I
Phase II Recruiting

Camrelizumab PD-1 NCT04335006 Nab-paclitaxel + Apatinib,
Nab-paclitaxel Phase III Recruiting

Camrelizumab PD-1 NCT04481763 Radiotherapy Phase I
Phase II Recruiting

Tiragolumab and
Atezolizumab PD-L1 NCT04584112

Nab-paclitaxel,
Nab-paclitaxel + Carboplatin +

Doxorubicin + Cyclophosphamide +
G-CSF or Granulocyte-macrophage
colony-stimulating factor (GM-CSF),

Nab-paclitaxel + Doxorubicin +
Cyclophosphamide + G-CSF + GM-CSF

Phase I Recruiting

Camrelizumab PD-1 NCT04613674 Chemotherapy Phase III Recruiting

Camrelizumab PD-1 NCT04676997 Nab-paclitaxel + Epirubicin +
Cyclophosphamide Phase II Recruiting

Pembrolizumab PD-1 NCT04683679 Olaparib + Radiation, Radiation Phase II Recruiting

1.2. T-Cell Immunoglobulin Domain and Mucin Domain-3 (TIM-3)

TIM-3, also known as HAVcr2 or CD366, is a type I cell-surface glycoprotein consisted
of an amino-terminal immunoglobulin variable domain (V domain) with five noncanonical
cysteines, a mucin-like stalk, a transmembrane domain, and an intracellular cytoplasmic
tail [31]. It contains four different ligands, including galectin-9 (Gal-9), phosphatidylserine
(PtdSer), carcinoembryonic antigen-related cell adhesion molecule-1 (CEACAM-1), and
high mobility group protein B-1 (HMGB-1) [32]. TIM-3 is associated with tumor immune
regulation and autoimmune diseases. Byun et al. [33] demonstrated that TIM-3 expression
is a positive prognostic factor in TNBC. Due to the diversity of receptors causing the
binding form to change under different situations, whether TIM-3 acts as a costimulatory
receptor or a co-inhibitory receptor has not been fully determined. However, a recent study
shows that TIM-3 mostly plays its role as an inhibitory receptor [34].

1.3. Indoleamine 2,3-Dioxygenase (IDO)

IDO is a rate-limiting enzyme in the catabolism of essential amino acid tryptophan
(Trp) to kynurenine (Kyn). The downstream signal transduction of IDO includes the
changes of general control non-derepressible-2 (GCN2), mammalian target of rapamycin
(mTOR) and aryl hydrocarbon receptor (AhR) [35]. Research has proved that with the
decrease of Trp followed by uncharged Trp tRNA accumulation, the GCN2 would be
activated. Then, phosphorylation of eukaryotic initiation factor-2α (eIF2α) induced by
GNC2 would inhibit the proliferation of effector T cells. Moreover, its metabolite Kyn can
bind to AhR, leading to an increase in the number of Tregs. The suppression of mTOR
and the increase of IL-6 secretion are both reasons why IDO exerts its immunosuppressive
effect [36]. In breast cancer therapy, it is closely related to poor prognosis and increased mi-
crovessel density [37]. Asghar et al. [38] conducted a study on 100 female breast cancer patients
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in Pakistani (including triple-negative and non-triple-negative ones), linking the expression of
IDO with median overall survival, proving that IDO plays a pivotal role in TNBCs. The overall
survival of patients with low IDO expression is about 91 ± 41.9 months, which is much higher
than the intermediate and high levels, 50 ± 4.4 and 24 ± 10.1 months, respectively. Because
of the potential effect of IDO in immunotherapy, some of the IDO inhibitors, including
Epacadostat, BMS986205, PF-06840003, Navoximod, Indoximod, NLG802, and LY3381916,
are under the latest ongoing clinical trials [39].

1.4. V Domain Ig Suppressor of T-Cell Activation (VISTA)

VISTA, also referred to as PD-1H, is a newly discovered negative immune checkpoint
related to immunotherapy resistance. VISTA is a type I transmembrane protein consisting
of an N-terminal IgV domain, a stalk of about 30 amino acids, a transmembrane domain,
and a cytoplasmic tail of 95 amino acids. Its molecule shares sequence homology with
PD-L1 and PD-L2 [40,41]. Similar to PD-1, VISTA also serves as a negative regulatory agent
for T cells by suppressing their activation, proliferation, and cytokine release. In breast
cancer, it is expressed on TILs, macrophages, and other immune cells. Xue et al. [42] found
that VISTA expression was higher in CD68+ tumor-associated macrophages (32.58%), CD4+ T
cells (4.97%), CD8+ cytotoxic T cells (4.48%), and CD20+ B cells (1.46%). Gao et al. [43] proved
that treating prostate cancer with ipilimumab can lead to a compensatory up-regulation of
VISTA, indicating that VISTA may be related to the development of resistance to immune
checkpoint blocking therapy. However, Cao et al. [44] evaluated the expression of VISTA
in a cohort of 254 untreated TNBC patients, and found that VISTA was expressed in 87.8%
(223/254) and 18.5% (47/254) of the immune cells and tumor cells, respectively. Meanwhile,
the expression of VISTA in ICs is positively correlated with some TILs, especially CD4+
TIL. The information confirms the regulatory role of VISTA in antitumor immunity, but it
has not been developed as a negative immune checkpoint so far.

1.5. Adoptive T-Cell Immunotherapy

The adoptive T-cell immunotherapy starts with isolating T cells, which are afterwards
genetically modified to express CRA, followed by proliferation, then are reinjected to
patients. The injected T cells combine with specific antigens, and ultimately eliminate
targeted tumor cells [45]. Moreover, using genetic engineering technology, two types of
engineered T cells, T cells with T-cell receptor (TCR) and Chimeric antigen receptor T-cell
(CAR-T), were given higher recognition. CAR-T immunotherapy, started in the late 1980s,
has been proved to play a key role in CD19 positive hematological malignancies [46]. CARs
are synthesized receptors which consist of extra- and intracellular domains: the extracellular
part is single chain fragment variable (scFv) domain composed of specific antibody, while
the intracellular domain contains CD3ζ and CD3ζ co-stimulate with CD28, ICOS, 4-1BB
(CD137), CD27, or OX40 signals domain. The main advantage of CAR-T technique is that
it can recognize cancer cells without the presence of major histocompatibility complex
(MHC) antigen.

To develop an effective CARs therapy for TNBCs, it is necessary to select a desired
tumor cell-surface antigen, which can be express stably in most tumor cells, and has
high tumor specificity [47]. For this purpose, Song et al. [48] designed a new folate
receptor α (FRα)-specific CAR-T, which was composed of MOv19 scFv and CD8a hinge
in extracellular region, and of CD27 costimulatory domain and CD3ζ signaling domain
in the intracellular region. The FRα-specific CAR-T cells show a more robust immune
effect in TNBCs with FRα protein overexpression. Zhou et al. [49] generated the MUC28z
CAR-T cell consisted of TAB004 scFv coupled with CD28 and CD3ζ, and demonstrated
that MUC28z CAR-T cells have high tumor antigen specificity, and refrained recognition of
normal tissues. Moreover, it is found that MUC28z CAR-T cells can lyse TNBCs and reduce
the tumor growth both in vitro and in vivo. Moreover, the growth factor receptor (EGFR)
is a potential tumor surface antigen, and EGFR-specific CAR-T has strong cytotoxicity.
However, the emergence of drug resistance is an urgent problem. Lin et al. [50] combined
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EGFR-specific CAR-T with THZ1, a CDK7 inhibitor, which together demonstrated a good
effect on TNBCs proliferation, tumor metastasis and suppressed immune resistance in
mice. Identically, Stuber et al. [51] combined ROR1-specific CAR-T cells to SD-208, a TGF-β
inhibitor, to weaken the immunosuppressive effects in therapy.

1.6. Tumor Vaccine Immunotherapy

In contrast to the traditional concept of vaccination, the definition of vaccine in modern
medicine is not only limited to prevention of diseases, but expanded to target disease-
specific antigens for the treatment of ongoing diseases. In the development of immune
vaccines, tumor-associated antigens and delivery technology are the main considerations.
The neoantigens is produced when gene coding contained non-synonymous mutations
and only expressed in tumors [52]. However, tumor-associated antigens can be expressed
in tumors and normal tissues at the same time. Studies have shown that neoantigens have
a stronger affinity to human leukocyte antigen (HLA) and T-cell receptors, and are not
limited by central tolerance and autoimmune problems [53] Therefore, it has been regarded
as one of the most potential tumor treatment targets since its discovery, and is the key to
the development of personalized immunization vaccines.

Immunization vaccine also offers a viable option in the treatment of TNBCs. In the
study by Liu et al. [54], an mRNA-based vaccine encoding tumor antigen MUC1 was
delivered to dendritic cells (DCs) in lymph nodes using a nano-delivery system, and anti-
CTLA-4 antibodies were used in combination to exert antitumor effects. Among them,
the nano-delivery system can enhance the stability, persistence and expression level of the
vaccine, and the vaccine that enters the body plays a role by activating and expanding
tumor-specific T cells. Compared with other groups, the combination treatment group has
the strongest effect of inhibiting tumor growth. Pack et al. [55] isolated tumor membrane
vesicles (TMV) form 4T1 tumor, and glycosylphosphatidylinositol (GPI) anchored form of
immunostimulatory B7-1 (CD80) and IL-12 molecules were combined to these TMVs to
prepare TMV vaccine. Compared with monotherapy, tumor-bearing mice administrated
with combined treatment of vaccine and anti-CTLA-4 antibody exhibited significantly
improved survival rate and reduced lung metastasis.

1.7. Immunotherapy-Involved Combination Therapies

In the treatment with immune checkpoint inhibitors (ICIs), though mAbs show cer-
tain therapeutic effect, the response rate is generally low. For instance, the response
rate of pembrolizumab monotherapy in TNBC is only 5.3% [29]. To solve this problem,
combination therapy, combining mAbs with various chemotherapeutics, such as nab-
paclitaxel, epirubicin, cyclophosphamide, with radiotherapy, or with some cytokines, has
been intensively used in clinic trials. Table 1 summarizes such clinical trials that are being
recruited or in progress. For example, the ongoing clinical phase II trial NCT02730130
was designed to assess the efficacy and safety of pembrolizumab with radiotherapy. Re-
sults show that the obtained ORR and progression-free survival (PFS) were dramatically
higher than those for pembrolizumab monotherapy, increased from 3% to 17.6% and 1.9
to 2.6 months, respectively [56]. As for the phase III clinical trial KEYNOTE-355 using
combined pembrolizumab, nab-paclitaxel, carboplatin, and paclitaxel/gemcitabine the
combination therapy resulted in a remarkable and clinically meaningful improvement in
median PFS (4.1 months longer) [57]. Similarly, phase III trial Impassion130 showed that
atezolizumab plus nab-paclitaxel would induce significantly longer PFS in TNBCs [58].
As for CTLA-4, Bernier et al. [59] demonstrated that combining DZ-2384 with CTLA-4
antibody could slow down tumor growth and increase overall survival rate. Li et al. [60]
demonstrated that compared with monotherapy in mice, matrix metalloproteinase inhibitor
plus CTLA-4 antibody could delay tumor growth and reduce distant metastases.

It is worth noticing that the combination therapy has been designed mostly for locally
advanced or metastatic TNBCs. Neoadjuvant therapy, which has been used in the treatment
of melanoma or colon cancer, is a promising strategy for early TNBC. The KEYNOTE-522
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trial (NCT03036488, phase III) using a combination of pembrolizumab (MK-3475) and
chemotherapy as adjuvant therapy for participants with early-stage TNBCs show that
the rate of pathological complete response is significantly higher than in the placebo-
chemotherapy group, even for patients with low PD-L1 expression [61].

2. Nanocarriers for the Immunotherapeutic Treatment of TNBC

The emergence of immunotherapy has shed light to the treatment of TNBC. How-
ever, due to the complex tumor microenvironment and complicated immunosuppressive
mechanism, conventional drug administration methods are still limited to relatively low
immune response and high adverse side effects. Thus, rational design of functional drug-
delivery systems is necessary to improve drug targeting, control drug release, and obtain
favorable pharmacokinetic behavior, enhanced drug absorption and more drug passing
through biological barriers. In particular, using nanocarriers for the delivery of immune-
responsive drugs can take advantage of the enhanced permeability and retention (EPR)
effect, making more drug accumulate at the tumor site and a longer time circulation pe-
riod [62–64]. The unique EPR effect and active targeting modification of drug-delivery
systems play significant roles in the therapies for tumor in deep positions or metastasized.
Therefore, nanocarrier-based immunotherapy may provide TNBC patients with safer and
more effective treatment [65,66].

2.1. Nanomaterials for Delivering the Immunotherapeutic Agents of TNBC

Commonly studied NPs for delivering immunotherapeutic drugs to treat TNBC in-
clude polymeric micelles, dendrimers, liposomes, inorganic NPs, and so on [67]. Illustration
of some representative NPs are presented in Figure 2.
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Figure 2. Schemes of structure of polymeric nanocarriers (a–c), lipid-based nanocarriers (d–e), and
inorganic NPs (g–i). (a) polymeric micelle, (b) polymeric NP, (c) dendrimer, (d) liposome, (e) lipid
emulsion, (f) lipid NPs, (g) Au-NPs, (h) silica NPs, and (i) magnetic NPs. Hydrophobic, hydrophilic,
as well as amphiphilic drugs can be embedded in corresponding regions. Meanwhile, it is possible
to conjugate immune checkpoint inhibitors and/or antibodies to the surface of nanocarriers for
therapeutic and/or targeting purposes. Usually, hybrid NPs are developed to obtain multiple
function or improved properties for delivering the drugs.
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The physiochemical properties of polymers, such as charge, hydrophobicity/hydroph
ilicity, as well as the features of the polymeric NPs, include size, shape, and rigidity, can be
tuned for encapsulating specific immune-responsive drugs and be designed to improve the
endocytic uptake, biodistribution, and body clearance properties as well [68–70]. Methods
for preparing nano-sized polymeric particles include polymeric micelles prepared by self-
assembling of co-polymer consisting of hydrophobic and hydrophilic sections, polymeric
NPs prepared by solvent evaporation, emulsification/solvent diffusion, nanoprecipitation
or emulsification/reverse salting-out, as well as dendrimers prepared by repetitive addition
of monomers initiated from a polyfunctional center [71–73]. Poly(lactic-co-glycolic acid)
(PLGA) and polylactic acid (PLA) are biocompatible and biodegradable polymers approved
by FDA in drug-delivery systems [74,75]. Dendrimers are composed of a hydrophobic
core, which favors the encapsulation of hydrophobic molecules, and the outer surface that
provides sites for functionalization.

Lipids are amphiphilic molecules composed of hydrophilic headgroup and hydropho-
bic tail(s). Lipid-based nanocarriers for drug delivery include solid lipid nanoparticles,
vesicular liposomes, nano-emulsions/nano-micelles, as well as non-spherical ones, such
as nanotubes. The configuration of the nanocarriers strongly depends on the packing pa-
rameter of the lipids [76]. Phospholipids, being the major components of cell membranes,
have attracted particular attention as drug-carrier materials due to their good biocompati-
ble, low toxicity and higher permeation. Liposomes prepared from aggregated synthetic
phospholipid(s) or even directly extracted from tumor cells are preferred as drug-delivery
carriers [77,78]. Similar to polymeric micelles, liposomes, lipid emulsions as well as lipid
NPs are composed of both hydrophobic and hydrophilic regions, which can be used to
encapsulate hydrophobic and hydrophilic drugs, respectively. Amphiphilic drugs may
also be encapsulated at the hydrophilic-hydrophobic interface.

Inorganic NPs are robust frameworks allowing encapsulation and incorporation of one
or more drugs or therapeutic molecules. Several inorganic NPs, including gold NPs (Au-
NPs), mesoporous silica NPs, magnetic NPs, and carbon nanotubes, have been investigated
as nanocarriers for drug delivery [79]. In addition to the loaded therapeutic agents, some
NPs exert specific functions by themselves. For example, Au-NPs can induce cell death [80],
and can also adsorb light in the NIR region and dissipate heat to the surroundings. As for
magnetic nanoparticles (MNPs), they not only generate nonuniform magnetic fields which
affect the morphology, differentiation and function of cells by generating magnetically
induced mechanical forces [81], but also activate anti-cancer immune responses through
their own immunomodulatory effects [82]. Inorganic NPs coated with polymers or lipid
bilayers, forming core-shell structures that enable surface modification and show enhanced
biocompatibility, have also been widely studied [83].

2.2. Nanocarriers for the Delivery of Immune Checkpoint Blockade Molecules

IC blockade is the primary strategy for TNBC immunotherapy, but the effect of
monotherapy is modest. Increasing the dose or choosing a combination of multiple ICIs
is commonly used to overcome this problem. However, the increase in drug toxicity
has led to the suspension of many clinical trials. For instance, in the randomized phase
II trial NCT02519322, grade III adverse events occurred in 8% of patients treated with
nivolumab monotherapy and in as high as 73% of patients treated with both nivolumab
and ipilimumab [26].

Combining more than one ICIs can exert more effects than using one ICI. Considering
there are more expressed CD155 and PD-L1 in TNBC than in other types of breast can-
cers, Chen et al. [84] designed mPEG-PLGA-PLL (PEAL) NPs loaded with CD155 siRNA
(siCD155) by a double-emulsion method followed by coated with a PD-L1 blockade, termed
as P/PEALsiCD155, for immunotherapy of TNBC. In CD8+ TIL cells, CD155 can bind to
different receptors, such as DNAM-1, TIGIT, and CD96 [85,86]. Based on the asynchronous
expression of the above-mentioned receptors, this study shows that siCD155-mediated
knockdown of CD155 by P/PEALsiCD155 can achieve spatiotemporal targeting of surface
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receptors and intracellular mRNA, making the antitumor effect take place in favorable
periods, i.e., promoted CD155-mediated immune surveillance in the early stage and inhib-
ited CD155-mediated immune evasion in the later stage. In the 4T1 TNBC tumor model,
P/PEALsiCD155 showed surprising biocompatibility, specific targeting, along with efficient
inhibition of TNBC tumor progression and metastasis [84].

Discovering more efficient molecules is another option overcoming the problems
along with monotherapy. NPs made of 100% BMS-200, a small-molecular inhibitor of
PD-1/PD-L1 interaction, has also been developed as potential alternatives to anti-PD-
L1 monoclonal antibody (α-PD-L1) [87]. Compared with α-PD-L1, BMS-202 NPs show
equivalent immunotherapy effect by inhibiting >90% primary and distant tumors, and
possible superior tumor penetration. The approach of using NPs for the delivery of
immune checkpoint blockade molecules may provide an alternative nanomedicine for
treating metastatic or advanced TNBC.

2.3. Nanoparticles for the Delivery of Combination Therapy Agents

The monotherapies of TNBC, including chemotherapy, radiotherapy, and immunother-
apy based on ICs, all demonstrate limited therapeutic effect. Based on the low pH levels,
endogenous H2O2, overexpressed enzymes, and other specific factors in the TME of
TNBCs, combination therapy using immunotherapy with other specific treatment, such as
chemotherapy, photothermal therapy (PTT), photodynamic therapy (PDT), and sonody-
namic therapy (SDT), to overcome the insufficient efficacy by monotherapy and improve the
therapeutic efficacy to TNBCs [88,89]. Combination therapy may also generate synergistic
effect to the treatment of TNBC [90].

2.3.1. Immunotherapy Combined with PTT

PTT is a process that converts light energy into heat to induce thermal ablation of the
tumor. Near-infrared region (700–1350 nm) is the most commonly used wavelength, and
recent studies have shown that light in the second near-infrared region (1000–1700 nm) has
deeper tissue penetration and tolerance [91]. The conversion of electromagnetic energy
into heat is achieved by photothermal agents (PAT). An excellent PAT is characterized by
strong light absorption, strong photothermal conversion ability, stability, good biocom-
patibility, and the ability to turn off PTT in the non-treatment stage [92]. Near-infrared
PAT include polyaniline [93], copper sulfides (CuS) NPs [94], as well as inorganic NPs,
such as gold-based NPs [95]. Inorganic NPs show high photothermal conversion efficiency
but relatively poor biocompatibility and toxicity [95], while liposome-based material and
organic-conjugated polymers exhibit relatively better biocompatibility [96].

As PTT cannot directly kill tumor cells but acts as an adjuvant at about 45 ◦C, Huang
et al. [97] developed a symbiotic mild photothermal-sensitized immunotherapy (SMPAI)
and put forward a hypothesis of a synergistic effect by combining mild PTT with im-
munotherapy. They encapsulated a photothermal and photodynamic therapy agent (IR820)
and an anti-PD-L1 antibody into a lipid gel composed of soybean phosphatidylcholine
(SPC) and glycerol dioleate (GDO), which undergoes a reversible gel-to-sol transition for
the controllable release of aPD-L1 and enhanced infiltration of T cells into tumor under
manually controlled NIR irradiation. Overall, mild PTT can activate the systemic immune
response, increase the number of TILs, and increase the expression of PD-L1 in tumor cells.

To specifically target CD44, Yasothamani et al. [93] designed a conjugation of hyaluro-
nan (HA)−polyaniline (PANi)−imiquimod (R837), denoted as HA-PANi/R837. The high
photothermal conversion efficiency of PANi means that it has a significant thermal ablation
effect in solid tumor. HA is a targeting ligand activating CD44 with high biosafety [98],
which compensates for the poor targeting and low cellular uptake of PANi. R837 is a
toll-like receptor 7 agonist, acting as an immunomodulator. In the TNBC model, HA-
PANi/R837 directly killed a part of cancer cells through thermal ablation, induced the
production of tumor-associated antigens, and activated immune response. Ultimately, the
combination of HA-PANi/R837 and anti-CTLA-4 antibody shows enhanced immunother-
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apy effect and played a synergistic antitumor effect. For research on PTT, it is clear that
it has a certain tumor-killing effect, immunostimulatory effect, and NPs-based PTT can
produce NPs-mediated antigen capture [99].

To suppress recurrence and metastasis of TNBC, Cheng et al. [94] designed a biomimetic
nanoplatform AM@DLMSN@CuS/R848, based on dendritic large-pore mesoporous silica
nanoparticles (DLMSNs) loaded with CuS NPs, immune adjuvant R848 (resiquimod),
TNBC cell membrane, and AUNP-12 (a PD-1/PD-L1 peptide inhibitor). AUNP-12 conju-
gated to the outer TNBC cell membrane by benzoic-imide bond readily released from the
nanoparticle in the weakly acidic pH of tumor microenvironment. This nanocarrier exhibits
targeted TNBC delivery, high photothermal efficiency of CuS NPs, photothermal-triggered
release of R848, and pH-responsive release of AUNP-12, which together lead to strong
antitumor efficacy and enhanced therapy against metastatic TNBC.

2.3.2. Immunotherapy Combined with PDT

PDT induces chemical cytotoxic effects to tumor cells on the generation of reactive
oxygen species (ROS) [100]. Light, photosensitizer, and molecular oxygen are three indis-
pensable elements for PDT. Light wavelengths in visible (400–700 nm) and near-infrared
ranges (700–1350 nm) are commonly used. The photosensitizer absorbs photons and trans-
forms from ground singlet state to excited singlet state, which afterwards generates excited
triplet state and relaxation by undergoing intersystem crossing, accompanied by energy
emitted as fluorescence, heat, and/or other photophysical energy [92]. The tetrapyrrole
structure is extremely common in photosensitizer, and it is related to the photon absorption
ability and the ability to convert the relatively low active triplet ground-state molecular
oxygen (3O2) into more active singlet oxygen (1O2) [101]. Because oxygen content in TME
is low (as TME is in a hypoxic state), it is challenging to provide enough molecular oxygen
at tumor site for oxygen-dependent PDT.

Combining PDT with immunotherapy could play a synergistic effect. The release of
ROS or PDT-induced exposure and/or release of damage-associated molecular patterns
(DAMPs) would stimulate the body’s immune system. The increase in immunogenicity
induces the maturation of DCs and activation of cytotoxic T lymphocytes to increase
the number of TILs [102]. In addition to the immune response caused by PDT itself,
the combination of PDT with ICB also plays a synergistic effect in preclinical research.
Zhang et al. [87] proved that BMS-202 NPs in combination with Ce6 NPs exhibited a better
antitumor and antimetastatic effects. Chung et al. [103] designed smart multifunctional
nanoparticle cluster, FM@VP, which combined co-assembly of a nanocomplex formed by a
functional polysaccharide fucoidan and a bioreducible polyamidoamine dendrimer, and
MnO2 NPs encapsulated with a photosensitizer verteporfin. It was able to target P-selectin-
overexpressed TNBC. Moreover, due to the high concentration of glutathione, FM@VP
clusters would rapidly disintegrate in tumor. The released verteporfin from the clusters
enhanced PDT and inhibited yes-associated protein (involved in tumor development),
which weakened tumor-mediated immunosuppression. Meanwhile, MnO2 NPs could
efficiently convert H2O2 into oxygen in TME, reducing the adverse impression caused
by low-oxygen environments [104]. This discovery provided a powerful strategy for
synergistic tumor targeting, PDT and immunotherapy.

2.3.3. Immunotherapy Combined with SDT

SDT is a non-invasive therapeutic modality based on ultrasound, which is more accept-
able to patients than chemotherapy and radiotherapy. Low-intensity focused ultrasound is
commonly used to activate sonosensitizers [105]. Compared with PTT and PDT, the tissue
penetration ability of SDT is extremely powerful, thus therapeutic effect for tumors in deep
positions is more significant [106,107]. Meanwhile, SDT generates many types of ROS, not
only 1O2, but also hydroxyl (•OH) and superoxide radicals (•O2

−) [108]. Its functions
include direct tumor cells killing, and indirect tumor-specific immunity activation through
damaging blood vessels or inhibiting the regeneration of tumor tissues, et al. Sonosensitiz-
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ers, including organic molecules (such as porphyrin derivatives), inorganic nanomaterials
(such as TiO2, ZnO) as well as the hybrid ones, have been developed for SDT [109]. To
better exert its immunomodulatory effect, the sonosensitizer was delivered through NPs
drug-delivery system (DDS) when combined with immune adjuvants in some research.

In TNBC therapy, Chen et al. [110] designed a liposome-encapsulated anganese-
protoporphyrin complex (MnP) and modified with folic acid (FA). In the 4T1 model, the
multifunctional nanosonosensitizer FA-MnPs exhibited significant effect on both deep-state
and superficial tumors. In addition to induce chemical damage to tumor cells, SDT could
also exert an effect through immune regulation. For instance, M2 macrophages would
develop towards the antitumor M1 phenotype. Similar to PDT, the damage-associated
molecular patterns caused by SDT can also stimulate systemic immunity, including the
maturation of DCs and the activation of cytotoxic T lymphocytes.

2.3.4. Others

In addition to the direct delivery of immunomodulatory agent to the tumor site through
the EPR effect, there are other studies focused on TME targeting. For example, although
chemotherapy exert less efficacy to the treatment of TNBC, it also shows immunomod-
ulatory effect on TME. Xu et al. [111] designed a peptide-based, structure-transformable
NPs, 2-(Nap)-FFKPt-2TPA-ADDGGGPLGVRG-WKYMVm-mPEG1000, for contemporaneous
delivery of chemotherapy agent for TNBC, cisplatin and adjudin, as well as WKYMVm—an
FPR-1 agonist functions as an immune adjuvant, which synergistically elicit and promote
immunogenic cell death for TNBC immunotherapy. In another study, Xu et al. [112] pre-
pared a pueratin nanoemulsion (nanoPue) surface modified with aminoethyl anisamide
as targeting ligand to tumor-associated fibroblasts (TAFs). Together with improved sol-
ubility and bioavailability, the delivered puerarin significantly deactivate the stromal
microenvironment, which synergistically enhances the activity of checkpoint blockade
immunotherapy in a TNBC mode when combined with α-PD-L1.

3. Conclusions and Perspective

In conclusion, immunotherapy has achieved many promising results in alleviating
TNBC. In addition to the classic immune checkpoints PD-1/PD-L1 and CTLA-4, new
immune checkpoints are constantly being discovered. At the same time, progress has been
made in new treatments, including CAR-T and tumor immunization vaccines. ICIs are com-
monly used in combination with other therapy, such as chemotherapy, radiotherapy, CAR-T,
and tumor vaccine, to obtain synergistic effects for more effective treatment of TNBCs.
Moreover, he nano-delivery system integrated with TNBC immunotherapy provides strat-
egy that can achieve precise targeting and reduce off-target effects. Immunotherapy has
indeed brought hope to the treatment of TNBC. Although there are problems need to be
solved, immunotherapy for TNBC is full of potential.

Finally, we may identify several issues and problems related to the immunotherapy
of TNBC. These include: (1) The fundamental understanding of tumor heterogeneity,
molecular changes, immunogenomics, and treatment resistance mechanisms in TNBC
should be advanced to give better treatments to the patients. (2) The narrow therapeutic
window is also a potential problem that needs to be resolved. Although the indication
of drugs for monotherapy is clear, it still needs be redefined in combination therapies.
Most importantly, because the drug-delivery system of combination therapy is complex, it
is more difficult to understand the mechanism. In particular, TME has changed tremen-
dously when it comes to immunotherapy. Most of the research focus on DCs and TILs,
but these are definitely not enough. Therefore, immune-regulatory mechanism needs to
be further clarified when nanocarrier is involved in immunotherapy. (3) The discovery
of new antigens specifically expressed in TNBC cells would facilitate the development
of new immunotherapies. (4) For nanocarrier in immunotherapy of TNBC, the safety of
nanomaterials is complicated. Particular attention should be paid to inorganic materials
with poor biocompatibility and organic nanomaterials with good biocompatibility but
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strong immunogenicity. (5) Immunoconjugates are effective with minimal toxicity, showing
promise for clinical translation. Trodelvy (Sacituzumab govitecan), an antibody-drug con-
jugate consisting of an antibody Sacituzumab targeting the Trop-2 protein (found in more
than 90% of TNBC), and coupled to chemotherapy drugs 7-ethyl-10-hydroxycamptothecin
(SN-38, a topoisomerase I inhibitor to interfere with the replication of cancer cells) with a
hydrolysable linker, is a first-in-class medicine for advanced TNBC therapy.
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