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Abstract: The purpose of this work is to simulate the powder compaction of pharmaceutical materials
at the microscopic scale in order to better understand the interplay of mechanical forces between
particles, and to predict their compression profiles by controlling the microstructure. For this task, the
new framework of multi-contact discrete element method (MC-DEM) was applied. In contrast to the
conventional discrete element method (DEM), MC-DEM interactions between multiple contacts on
the same particle are now explicitly taken into account. A new adhesive elastic-plastic multi-contact
model invoking neighboring contact interaction was introduced and implemented. The uniaxial
compaction of two microcrystalline cellulose grades (Avicel® PH 200 (FMC BioPolymer, Philadelphia,
PA, USA) and Pharmacel® 102 (DFE Pharma, Nörten-Hardenberg, Germany) subjected to high
confining conditions was studied. The objectives of these simulations were: (1) to investigate the
micromechanical behavior; (2) to predict the macroscopic behavior; and (3) to develop a methodology
for the calibration of the model parameters needed for the MC-DEM simulations. A two-stage cali-
bration strategy was followed: first, the model parameters were directly measured at the micro-scale
(particle level) and second, a meso-scale calibration was established between MC-DEM parameters
and compression profiles of the pharmaceutical powders. The new MC-DEM framework could
capture the main compressibility characteristics of pharmaceutical materials and could successfully
provide predictions on compression profiles at high relative densities.

Keywords: compaction; multi-contact DEM; plastic deformation; MCC; tableting

1. Introduction

The ability to predict the bulk behavior of granular materials is of great importance
for many industrial applications (i.e., tableting, metal forming) when deformation has to
be handled in a controlled manner. Pharmaceutical powders are a branch of granular mate-
rials and while undergoing high loaded compression under confined conditions, allow the
formation of compact granules, especially tablets, a process known as compaction or tablet-
ing. Pharmaceutical powder compaction is a crucial production process for pharmaceutical
manufacturing due to the prevalence of tablets as solid dosage forms. Understanding
the compaction behavior is of practical importance to improve the efficiency of product
development and the manufacturing performance [1,2].

Powder compaction is frequently modeled using either continuous or discrete numeri-
cal techniques, or a combination of both. On the one hand, the finite element method (FEM)
is a continuum approach that allows for the representation of deformation at a larger scale
when combined with a suitable constitutive law, such as the Drucker–Prager cap (DPC) [3]
or modified DPC [4], but does not reveal the physics of the system at the particle level. For
this reason, one way to model the mechanical response of discrete elements at a particle
level is the application of the multiple particle finite element method (MPFEM) [5–7] where
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each individual particle is being meshed with finite elements. Another way is to combine
FEM and discrete element method (DEM), referred as meshed discrete element method
(MDEM) [8,9], an approach that uses the contact detection algorithm from DEM and applies
it in the FEM context. The capability to consider particles as deformable bodies is the key
benefit of these approaches. The critical problem is their computational complexity, which
prevents them from being used in large-scale industrial operations.

On the contrary, granular materials are mathematically described as a collection of
particles by using the soft discrete element method (DEM) [10], and the bulk behavior of
the granular materials is determined based on the interactions between pairs of particles.
Newton’s second law of motion is used to define the trajectories of each particle, and
particle deformation is proportional to the overlap between particles that are in contact.
When an overlap is detected, an appropriate contact model is called, which associates the
overlap with the force experienced at the contact point.

The DEM is the only currently available technique that can provide insight at the
particle level and has been used in a wide variety of applications, such as ceramics [11],
pharmaceutical, and food industries [12,13]. Given that the DEM is an excellent tool
for studying these applications, modeling of confined powder compression with DEM
remains a challenge. Based on Hertz’s theory, particles are considered to be rigid bodies
to which deformation occurs locally and concentrated at the contact points. However,
the basic assumptions of Hertz’s theory (classical DEM) is limited on capturing small
deformations [14] and is rendered invalid for large strains, which typically occur under
high relative densities and high loads. As a result, Hertz’s contact theory must be extended
or modified to account for the fact that a larger (flattening) contact area results in a higher
contact stiffness. To address this issue, many existing classical DEM contact models have
added contact stiffness depending on plastic deformation and flattening in the contact
areas. Ganrer et al. [15] proposed another adhesive elastic-plastic contact model to simulate
powder compaction. The authors calibrated the contact stiffness between-particles (p-p)
and particles-walls (p-w) using simulations of mono-sized particles, to reach high relative
densities, at the macro-scale, and to predict the compression profiles. In a similar way, Y.
Gao et al. [16]. applied the Luding’s elastioplastic [17] contact model to model powder
compaction. Coarse-grained particles were used in this method and contact stiffness
between particles (and p-w) was calibrated for one material under uni-axial compaction
and the calibrated values were then used to predict the compression profiles of mixtures of
additional materials.

In fact, many of the existing classical DEM contact models regard each contact of
the same particle as independent of neighboring contacts, which is reasonable for loose
powders but unrealistic for high relative densities. Three important characteristics of the
mechanical behavior of elastic-plastic contacts are induced by a packing of simultaneously
deforming particles undergoing uni-axial compaction (Figure 1): (a) the die filling and
rearranging of the particles in the first phase; (b) the deformation is initially elastic, at this
phase the contact areas between the particles are small with each contact independent of
its neighbors; (c) the material yields entering the plastic zone and, because the pores are
now almost closed the spatial confinement creates high contact pressures that allows for
an additional degree of resistance that becomes more significant with time. Fischmeister
and Arzt [18] refer to this as “geometrical hardening”. At this last phase, the compact
is pressed to (nearly) full density [19], and mechanically behaves like a porous solid.
The development of contact pressure originates from changes in the crystal lattices or
intermolecular interactions. It has been suggested that contact dependency arises at
relative densities of 0.7 and higher [14,20,21]. In practice, a relative density higher than
0.8 is required to produce commercial pharmaceutical tablets with adequate mechanical
strength. As a result, multiple-contact DEM contact models are necessary.
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Figure 1. The three phases of a packing of simultaneously deforming particles. 
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In this regard, researchers have made efforts on the formulation of the multi-contact
discrete element method (MC-DEM) as an attempt to implicitly introduce particles’ de-
formability. One way is to enhance Hertz’s elastic contact theory and rewrite its classical
equations such that not only local particle deformation but also the global deformation is
taken into account. The global deformation is defined as the result of multiple contacts im-
posed on a single particle by neighboring particles. Brodu et al. [22] suggested a technique
wherein the strain field acting on a single particle is coupled with the classical Hertz’s
equation to account for the global deformation. Brodu et al. [22], validated their novel
model by predicting the compression profiles of a packing of hydrogel balls compressed
at low stresses. As an alternative, the stress field might be used in the equations. As a
result, a multi-contact model that takes contact dependency into account was proposed by
Frenning [23]. The particle global deformation was related to the isotropic stress tensor
in this case. Giannis et al. [24] introduced a stress-based multi-contact model that takes
anisotropic particle deformation into account and was validated for relevant materials with
in the elastic regime. Attempts have also been made to explicitly introduce deformable
particles in the framework of the DEM in order to address the basic assumptions of Hertz’s
theory. A sophisticated model was presented by Rojek et al. [25] proposed the approach of
the so-called deformable discrete element method (DDEM). This method is conceptually
similar to the method provided by Brodu et al. [22]. The main difference is that particle
deformability is introduced explicitly with the DDEM. The per particle stress tensor gen-
erates the isotropic particle deformation. As a result, the new deformable shape induces
the formation of new contact points (not accessible with classical DEM). The main issues
of this method are that (a) only isotropic particle deformation is considered, and (b) the
high computing cost limits its use to 2D cases [25] or 3-D [26] cases with a small number
of particles.

This work is divided into two parts: (a) using an extension of Giannis et al. [24]
multi-contact model, to consider plastic deformation of pharmaceutical particles, and
(b) to compare the results of the experiments with model calculations based on the
MC-DEM framework.

The article’s outline is as follows: Section 2.1 contains the basic equations of the
classical formulation of the DEM; multi-contact modeling is being discussed in Section 2.2
of this document; the materials used in this study are given in Section 3 of this article;
Section 4 presents the calibration strategy and numerical results; and the last section,
concludes with some final thoughts.
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2. DEM’s Theoretical Background

Particle deformations are reproduced in soft-particle DEM by overlaps between inter-
acting particles. When an overlap is detected, a contact law is used to compute the contact
forces (force–displacement) between two particles. The underlying assumption is that
particle contacts are independent of one another, and therefore contact forces are resolved
locally. Newton’s equations of motion are used in this method to determine the connection
between particle motion and forces acting on each particle. The equations of a particle’s
translational and rotational motion are:

mi
..
ai = ∑

j

(
Fnij + Ftij

)
+ mig and Ii

.
ωi = τij (1)

where mi,
..
ai, Ii and

.
ωi are the mass, acceleration, moment of inertia and angular velocity

for particle i, respectively; Fnij, Ftij, τij are the normal force, tangential force, and torque
acting on particles i and j at contact points, respectively; g is the acceleration due to gravity.

Different contact models can be used to express force–displacement laws at contact
points. This study does not go into great depth on the various contact models and their
related equations. Rojek [27] and Thakur [28] summarize the many contact models that are
used in discrete particle simulations. In their works, O’Sullivan [29] and Thornton [30] go
into deep details on contact models.

2.1. Classical Hertz–Mindlin Contact Model

The linear spring-dashpot model [31], in which the spring stiffness is considered to
be constant, is the simplest contact configuration. To enhance the linear contact model,
the Hertz theory [32] (classical) is used to calculate the force-displacement relation for
contacting particles (e.g., nonlinear spring-dashpot model). In this case, the normal stiffness
varies depending on the degree of overlap. The Hertz–Mindlin [33–36] contact model is
another contact model for representing the force-displacement relation. This nonlinear
model combines accuracy and simplicity of the Hertz theory in the normal direction with
the Mindlin model in the tangential direction. This model includes a contact force as well
as a viscous contact damping force at contact points. In the normal (n) and tangential (t)
axes, these forces were calculated using elastic springs and dashpots (Figure 2). The normal
repulsive contact force is:

Fn = knδ3/2
n + γn

.
δn (2)

where kn = 4
3 E∗
√

R∗ is the normal stiffness coefficient, with R∗ =
Ri Rj

Ri+Rj
the effective

radius and E∗ = 1−ν2
i

Ei
+

1−ν2
j

Ej
is the effective Young’s modulus. In this expression, ν and

G represent the particles Poisson’s ratio and shear modulus, respectively. The normal
overlap is δn,

.
δn is the relative velocity in normal direction of interacting particles and γn

the viscoelastic damping constant for normal contact viscosity. The tangential force is [24]:

Ft = ktδ
3/2
t + γt

.
δt (3)

where kt = 8G∗
√

R∗ is the tangential stiffness coefficient and G∗ = 2−νi
Gi

+
2−νj

Gj
the effec-

tive shear modulus. The tangential overlap is δt,
.
δt is the relative velocity in tangential

direction of interacting particles and γt the viscoelastic damping constant for tangential
contact viscosity.
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Figure 2. Contact force model illustrating particle interaction with normal and tangential forces.

The tangential overlap, δt, between particles obtained by integrating surface relative
tangential velocities during elastic deformation of the contact is given as [37,38]:

δt =
∫ t+∆t

t
vtdt→ δt ≈ vtdt (4)

where vt is the velocity component tangential to the contact surface and ∆t is the time-step.
The tangential and normal forces are connected by Coulomb’s law, Ft ≤ µFn, in the

event of sliding, there is dynamic friction. Ft = µFn. The dynamic and static friction
coefficients are assumed to be equal in this case., µ = µd = µs. In order to allow for
a restoring force, a static situation requires the use of an elastic spring, i.e., a non-zero
remaining tangential force in static equilibrium due to activated Coulomb friction. By
applying a torque to the contacting surfaces, rolling friction can be controlled. The rolling
friction constant directional torque (CDT), τij, used for this study, is given by [39]:

τij = −
ωrel
|ωrel |

µrRrFn (5)

The particles in these models are assumed to be spherical and do not deform during
simulation. In a strict sense, it is assumed that particles are undergoing some kind of
pseudo deformation, and this model is known as the truncated Hertz–Mindlin model [40].
Moreover, these models include binary interactions between two particles, which implies
that during contacts, particles are in touch through a single point.

2.2. Multi-Contact Adhesive Elastic-Plastic Model

The linear or non-linear elasticity theory, on the other hand, is only applicable to
small deformations. However, when it comes to powder compaction, plasticity prevails
(flattening in contact areas), necessitating the modeling of elastic-plastic spheres in contact.
As a result, Hertz theory must be extended to cases in which particles are deformed
plastically. Persson and Frenning [40], for instance, presented an extension of classical
Hertz theory to account for elastic-plastic contacts. In this example, a limiting contact
pressure was added, whereas adhesion was not added, such that plastic deformation begins
after the contact region’s maximum pressure is achieved.

We propose a novel adhesive elastic-plastic multi-contact model that combines con-
cepts from the Luding [17] and Edinburgh [28] adhesive elastic-plastic (hysteretic) contact
models and the multi-contact model proposed by Giannis et al. [24], the pseudo-code of
the algorithm utilized is briefly described in the Appendix A. For the first time, this model
is being used in this study to investigate the behavior of elastic-plastic medicinal materi-
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als. When two particles collide with one another elastic and plastic deformation (linear
and non-linear force-displacement curve) occur. A nonlinear contact model is proposed
that takes into consideration both elastic-plastic contact deformation and adhesion. The
adhesive plastic force is:

Fn =


F0 + k1δ3/2

n i f k2

(
δ3/2

n − δ3/2
0

)
≥ k1δ3/2

n

F0 + k∗2
(

δ3/2
n − δ3/2

0

)
i f k1δ3/2

n > k∗2
(

δ3/2
n − δ3/2

0

)
> −kcδ3/2

n

F0 − kcδ3/2
n i f − kcδ3/2

n ≥ k∗2
(

δ3/2
n − δ3/2

0

) (6)

Figure 3 illustrates the force-displacement curve. The term “displacement” refers to
the overlap of particles. The loading, unloading, re-loading, and adhesive branches e is
defined by the loading branch stiffness k1, the loading-unloading branch stiffness k2, the
adhesion branch stiffness kc, the plastic overlap (deformation) δ0 and the constant pull-off
force F0. During initial loading the contact model follows the virgin loading path k1, until
the maximum overlap is reached at δmax. The maximum overlap δmax is a contact-specific
history-dependent parameter that is updated and saved. During unloading the contact
will alter from virgin loading k1 to unloading/reloading k2, which depends on δmax. At
δmax, the force is decreasing from its value to zero at overlap δ0, which resembles the plastic
contact deformation (remaining overlap). The plastic overlap is defined as:

δ =

(
1− k1

k2

) 2
3
δmax (7)

for cases where the limit is met, with k1 = k2 results in δ = 0 (no remaining overlap) yields
to a special case of non-linear elasticity. Hence, the non-linear elastic Hertz–Mindlin contact
model is included as a special case. On the other hand, k2 → ∞ captures a perfectly plastic
contact. Unloading below δ results in attractive adhesion forces until the minimum force
is equal:

Fmin = −kcδ3/2
min (8)
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And the overlap δmin is:

δmin =

(
k2 − k1

k2 − kc

) 2
3
δmax (9)

Attractive forces emerge as the unloading process continues.

Fn = −kcδ3/2
n (10)

In order to account for the fact that a larger contact surface leads to a higher contact
stiffness, the coefficient k2 is made dependent on the maximum overlap δmax (history
dependent parameter):

k∗2(δmax) =

{
k2 i f δmax ≥ δ∗max

k1 + (k2 − k1)
δ∗max
δmax

i f δmax < δ∗max
(11)

The behavior of the unloading slope described by Equation (11) is similar to that
assumed by Luding [10,17], with the exception that nonlinear behavior is addressed here.
Likewise, the limit of plastic flow overlap is given:

δ∗max =
k2

k2 − k1
ϕ f

2RiRj

Ri + Rj
(12)

where ϕ f is the dimensionless plasticity depth, defined in relation to the reduced radius.
The original contact model proposed by Luding can be characterized as a piecewise linear
hysteretic model [17]. For the virgin loading, the contact normal stiffness k1 and normal
overlap δn is used to calculate the force. While stiffness k1 is not a physical parameter
according to Luding’s contact model, in this work it is depending on the Young’s modulus.
The new stiffness is kn = 4

3 E∗
√

R∗ is identical to the one of Hertz theory (Section 2.1) and
similar to the one of Edinburgh contact model. Furthermore, in contrast with Luding’s and
in line with the Edinburgh [28] contact model, a non-linear force-displacement relation
is proposed Fn = k1δ3/2

n . By contrast, the unloading stiffness k2 is load dependent as in
Luding’s model. Additionally, the new contact model was supplied with a non-linear
adhesion Fn = −kcδ3/2

n .
Moreover, to address the fundamental assumption of the classical DEM, which treats

each contact locally as a binary pair interaction, Giannis et al. [24] presented a nonlocal
model which takes into account the mutual influence between contacts. While this model
has been verified for cases in the elastic regime, in this study we will extend its applicability
to capture plasticity.

The main idea of the on how to account for multi contact effect is shown in Figure 4.
Multiple contacts acting on a particle have been taken into account by using the trace of
the average stress tensor coupled with the Poisson’s ratio (v), the contact area (A) between
interacting particles, and a material-dependent prefactor (β). More information may be
found here [24]. The new multi-contact law formulation yields to this equation:

Fn = knδ3/2
n +

(
βνAij

)
Pij (13)
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The first term in Equation (13) was defined before in Section 2.1 of this article
(Equation (2)). The second term carries the information from neighboring particles operat-
ing on the particle. In this expression, β is a dimensionless empirical prefactor that allows
for particle geometry changes to be taken into consideration indirectly, ν is the Poisson’s
ratio, and Aij is the contact are between the interacting particles. The isotropic component
of the stress is the pressure Pij =

1
3
(
tr(σi) + tr

(
σj
))

, with tr(σ) =
(
σxx + σyy + σzz

)
and

σi, σj the stress tensors of particle i and j, respectively. By combining Equations (6) and (13),
the multi-contact model can be extended from linear to plastic deformation, yielding a
new equation:

Fn =


F0 + k1δ3/2

n +
(

βνAij
)

Pij i f k2

(
δ3/2

n − δ3/2
0

)
≥ k1δ3/2

n

F0 + k∗2
(

δ3/2
n − δ3/2

0

)
+
(

βνAij
)

Pij i f k1δ3/2
n > k∗2

(
δ3/2

n − δ3/2
0

)
> −kcδ3/2

n

F0 − kcδ3/2
n +

(
βνAij

)
Pij i f − kcδ3/2

n ≥ k∗2
(

δ3/2
n − δ3/2

0

) (14)

In the next sections, this new equation (Equation (14)) will be investigated and verified
for the modeling cases of uni-axial compaction of pharmaceutical materials.

3. Materials and Methods
3.1. Materials

Two microcrystalline cellulose grades Avicel® PH 200 (FMC BioPolymer, Philadelphia,
PA, USA) and Pharmacel® 102 (DFE Pharma, Nörten-Hardenberg, Germany) were studied
in depth. Henceforth, the powders shall be referred to by the abbreviations MCC-A and
MCC-P. A certain proportion of the MCC particles, particularly the larger particle sizes, are
rounded agglomerates. Taking this into account, and due to the simplicity of this approach
in simulation, spherical shapes are used in DEM simulations. The powder characteristics
particle size distribution (PSD) and true density, are given in Table 1 and are available in
the literature [41].

Table 1. Powder characteristics: PSD and densities [41].

Material x10 (Q3) (µm) x50 (Q3) (µm) x90 (Q3) (µm) Span (-) True Density (kg m−3)

MCC-A 82.9 224.6 379.3 1.32 1541.1
MCC-P 28.3 86.5 173.8 1.68 1533.7

3.2. Experimental Methods

Compaction experiments were performed applying a Styl’One evolution compaction
simulator (CS; Medel’Pharm, Beynost, France). This equipment can accurately control the
compaction process and allows for in-depth investigation of powder properties and to
extract force/displacement profiles. In-die data were evaluated by applying the software
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ANALIS (Medel’Pharm, Beynost, France). Generic profile was applied for compaction to
reach compression stresses of approx. 30, and 180 MPa.

3.3. Numerical Methods

In a wide range of applications, including this study, the discrete element method
(DEM) is used to model and analyze granular materials. However, predictions can only
be correct if the input parameter values are carefully chosen. There are a number of input
parameters that need to be tuned depending on the contact model used; this procedure
is known as calibration. An in-depth review into calibration is provided by [42–45]. If
Luding’s [17] original contact model is to be used, a total of 19 input parameters must be
predefined or calibrated. A comprehensive experimental determination of these parameters
would be highly time-consuming and labor-intensive to accomplish. Fortunately, not all
parameters have the same effect on the simulation output. As a consequence, only the
parameters that are most significant to the validity of the simulation results are considered.
Material parameters for the single particles and used in this study were obtained from
the study of Cabiscol et al. [41]. The calibration technique consists of bibliographical
sources, experiments, and their replication by DEM simulations. DEM simulations of
nano-indentation experiments were used to determine the fitting parameter that expresses
the identical experimental results, in terms of force and displacement; therefore the Young’s
modulus (E) of a single particle may be determined. The ring shear tester and the Jenike
wall test were used for a direct determination of the sliding friction between particles
(µs(pp)) and between particles and walls (µs(pw)). Later, the tumbling drum test was used
to determine the final frictional and rotational DEM related parameters µs(pw), µr(pp), and
µr(pw). This test functioned as a calibration test for the rolling friction as well as a second
and final iteration for µs(pw), starting from the values obtained from the ring shear tester
and the Jenike wall test. The complete calibration method is described in depth in the
Cabiscol et al. study [41]. The DEM input parameters for the material properties are
summarized in Table 1. The calibration of the input parameters of the new multi-contact
model will be discussed in Section 4.1.1.

4. Results and Discussion
4.1. Determination of a Representative Volume Element (RVE)

Full-scale DEM simulations need a significant amount of computational power; to
bypass this limitation, a representative volume element is used. The literature has several
definitions of the representative volume element (RVE), the most notable of which are
discussed in [46–49]. Although there is no single and exact definition of the RVE, the basic
concept is that the RVE should be large enough to retain the microstructural information
while being small enough in relation to the macroscopic structural dimensions to eliminate
fluctuations. In this study, the RVE concept was used to speed up the simulations. The
method used to determine an RVE was similar to that described by Wiącek et al. [50].
The basic ideas are as follows: (a) set an initial packing contained in a small domain
(the smallest possible); (b) gradually expand the domain’s dimensions while maintaining
the same particle size distribution (PSD) and packing density; (c) carry out numerical
simulations to obtain the force-displacement curve; and (d) analyze the results to determine
if they are converging.

The simulations presented here involve a series of uni-axial compaction tests in cubes
of the following ranging sizes: (0.6 mm)3 (1stRVE), (0.8 mm)3 (2nd RVE), (1.0 mm)3 (3nd
RVE), and (1.4 mm)3 (4th RVE) (see Figure 5). To eliminate the wall boundary effect,
periodic boundaries were used along the X and Y axes. The cubes contain a top and a
bottom plate. A series of uniaxial compression simulations were performed using our new
multi-contact DEM model. After calibration, as will be discussed later in Section 4.1.1, and
based on the data shown in Figure 6 we can confirm the existence of an RVE since the
results are converging. However, due to the small size of the sample, the results of the first
RVE underestimated its macroscopic stress–strain response. There is excellent agreement
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between the results of the following RVEs, as well as with the experimental data. It is
therefore decided to use the second RVE for practical reasons (less computational time)
as follows.
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4.1.1. Calibration Method for the Input Parameters of the Multi-Contact Model

In this section, the calibration for the new multi-contact model is shown. In this
case, and as discussed in Section 4.1, the system under consideration is a cube with
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dimensions (0.8 mm)3 (2nd RVE in Figure 5) along x-y-z directions. The system under
consideration contains 698 particles for the MCC-A material and 1193 particles for the
MCC-P material with a particle size distribution for both materials given in Section 3.1 and
Table 1. The particles are initially randomly positioned in a cubic system with periodic
boundary constraints in order to minimize wall effects. After initial deposition, the particles
are allowed to grow. Growth is terminated as soon as the desired packing density of
approximately 59% is reached and is in line with experimental results reported in the
literature [41,51]. The sample was then compressed uni-axially along the z-axis to a
maximum target strain of 57% for MCC-A and 53% for MCC-P, then it was decompressed. A
strain-driven simulation was used to achieve the maximum desired stress of 29 MPa for the
MCC-A material and 25 MPa for the MCC-P material. The calibrated material parameters
presented in Table 2 (Section 3.2) were used here. However, the input parameters for the
multi-contact model were obtained using an iterative process to determine the optimum
parameters that better fits the experimental results. A parameter optimization method
was used based on a series of simulations, similar to the one presented by Gao et al. [16].
Given the experimental macroscopic stress and strain response the R2 value between the
experimental and simulated data was calculated from:

R2 = 1− ∑ (y− ŷ)2

∑ (y− y)2 (15)

where y indicates the stress response of the experimental data, ŷ indicates the stress
response of the simulated data and y indicates the mean of the stress response of the
experimental data. The value of R2 was used to evaluate the accuracy with which the
simulated input parameters fit the experimental data; a successful fit was attained when
R2 was close to 1. Therefore, when R2 exceeded 0.95, the iterations needed for calibration
were terminated. Figure 7 shows that experimental and simulated results are in excellent
agreement, indicating that the calibration was successful. Table 3 summarizes the input
parameters that were calibrated. For the dimensionless plasticity depth ϕ f , a high and
constant value was selected (low contact stiffness) to achieve a high contact stiffness; when
necessary, the prefactor βwas tuned accordingly.

Table 2. The input parameters for single particles and walls [41].

Property Symbol Units MCC-A MCC-P

Young’s modulus—particle (p) E Nm−2 2.58 × 108 1.34 × 109

Young’s modulus—wall (w) E Nm−2 7.62 × 1010 7.62 × 1010

Poisson’s ratio—particle ν - 0.30 0.30

Poisson’s ratio—wall ν - 0.31 0.31

Coefficient of restitution particle COR(p-p) - 0.352 0.346

Coefficient of restitutio—wall COR(p-w) - 0.352 0.346

Coefficient of sliding fric—(p-p) µs(pp) - 0.561 0.548

Coefficient of sliding f—(p-w) µs(pw) - 0.707 0.715

Coefficient of rollin—(p-p) µr(pp) - 0.3 0.3

Coefficient of rol—(p-w) µr(pp) - 0.01 0.01

Density ρ kg/m3 1541.1 1533.7
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Table 3. Multi-contact model input parameters.

Property Symbol Units MCC-A MCC-P

Unloading stiffness k2/k1 - 120 120

Adhesion stiffness ratio Kc/k1 - 0.5 0.5

Dimensionless plasticity depth ϕf - 0.99 0.99

Prefactor of the MC-dem β - 1.3 1.5

4.1.2. Verification for Uni-Axial Compaction for MCC-A

In this section, the simulation results for compaction of the MCC-A material are
shown. The system is identical to the one presented in Section 4.1.1. The sample was
compressed uni-axially along the z-direction to a maximum target strain of 71%, and then
decompressed. The target stress for this case is 180 MPa. The calibrated material input
parameters given in Section 3.2 (Table 2) and, for the multi-contact DEM model given in
Section 4.1.1 (Table 3), were used. When the calibrated prefactor β = 1.3 (Section 4.1.1
(Table 3)) was used, an excellent agreement between experimental and simulated results
was achieved, as shown in Figure 8b. A value of prefactor β = 0.0 indicates that the multi-
contact effect is not included and when β = 0.0 conventional DEM underestimates the
macroscopic stress–strain response, as shown in Figure 8a. It is also clear from comparing
Figure 8a,b the multi-contact effect predominates for strains higher than 0.2.

4.1.3. Verification for Uni-Axial Compaction for MCC-P

In this section, the simulation results for compaction of the MCC-P material are shown.
The system is identical to the one presented in Section 4.1.1 for the MCC-P material. The
sample was compressed uni-axially along the z-direction to a maximum target strain of
69%, and then decompressed. The target stress for this case is 185 MPa. The calibrated
material input parameters given in Section 3.2 (Table 2) and, for the multi-contact DEM
model given in Section 4.1.1 (Table 3), were used. When the calibrated prefactor β = 1.5
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(Section 4.1.1 (Table 3)) was used, an excellent agreement between experimental and simu-
lated results was achieved, as shown in Figure 9b. As expected with β = 0.0 conventional
DEM underestimates, the macroscopic stress–strain response is shown in Figure 9a. It
is also clear from comparing Figure 9a,b that the multi-contact effect predominates for
strains higher than 0.2, around the same point as that seen for a the MCC-A material in
Section 4.1.2.
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5. Conclusions

In this study, by employing our new elastic-plastic multi-contact DEM model, the
compaction profiles (stress–strain) of microcrystalline cellulose grades Avicel® PH 200
(FMC BioPolymer, Philadelphia, PA, USA) and Pharmacel® 102 (DFE Pharma, Nörten-
Hardenberg, Germany) were successfully predicted. It was also shown that the multi-
contact effect predominates for strains higher than 0.2. A calibration strategy to calibrate
the input parameters, prefactor β, for the multi-contact model was presented here. The pref-
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actor β was calibrated at low relative densities (low macroscopic stress) and subsequently
used for high relative densities (high macroscopic stress). The new multi-contact model
requires a separate calibration for each material as prefactor β is a material-dependent
parameter. However, more research is needed to determine if this is also true for a mixture
of other relevant materials.

In terms of the input parameters for the multi-contact model prefactor β, the unloading
stiffness κ2 and the cohesion stiffness κc were the only parameters that were calibrated. The
loading stiffness κ1 was related to the Young’s modulus of the material. The material input
parameters were calibrated separately. The concept of a representative volume element
(RVE) was used to speed up simulations. In comparison to alternative approaches that use
coarse-grained particles, the RVE was preferred because the particle size distribution (PSD)
can be maintained while using the RVE.

In future work, we will aim to calibrate the prefactor β as an intrinsic material param-
eter. The aim is to conduct uni-axial compaction simulation in a series of relevant materials,
then create a comprehensive database, and finally, with the assistance of artificial intelli-
gence (e.g., neural network), generalize the results. Furthermore, the results presented
here are based on the assumption of perfect spherical particles; in a future attempt, the real
shape of the particles should be addressed.
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the real shape of the particles should be addressed. 
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Figure A1. Pseudo-code used in to obtain the non-local contact forces acting on a particle. 
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