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Abstract: In recent years, the development of self-injectable formulations has attracted much attention,
and the development of formulations to control pharmacokinetics, as well as drug release and
migration in the skin, has become an active research area. In the present study, the development
of a lipid-based depot formulation containing leuprorelin acetate (LA) as an easily metabolizable
drug in the skin was prepared with a novel non-lamellar liquid-crystal-forming lipid of mono-O-
(5,9,13-trimethyl-4-tetradecenyl) glycerol ester (MGE). Small-angle X-ray scattering, cryo-transmission
electron microscopy, and nuclear magnetic resonance observations showed that the MGE-containing
formulations had a face-centered cubic packed micellar structure. In addition, the bioavailability (BA)
of LA after subcutaneous injection was significantly improved with the MGE-containing formulation
compared with the administration of LA solution. Notably, higher Cmax and faster Tmax were
obtained with the MGE-containing formulation, and the BA increased with increasing MGE content
in the formulation, suggesting that LA migration into the systemic circulation and its stability might
be enhanced by MGE. These results may support the development of self-administered formulations
of peptide drugs as well as nucleic acids, which are easily metabolized in the skin.

Keywords: lipid-based formulation; peptide drug; self-administered injection; leuprorelin acetate; micelles

1. Introduction

Recently, many middle- and high-molecular-weight peptides have been approved for
use because they show potent pharmacological effects in small doses. There is extensive
ongoing research into the development of drug delivery methods for such peptides [1–4];
however, intravenous (i.v.) and subcutaneous (s.c.) routes are preferred because of their
systemic effects due to the low membrane permeability of peptides. Drug delivery with
s.c. injection has several advantages against i.v. administration because it can offer self-
administration, reduced treatment burden, and lower health care costs [5–7]. In addition,
i.v. drug administration provides the maximum plasma concentration (Cmax) just after
administration, whereas a slower time to maximum plasma concentration (Tmax) and lower
Cmax are observed after s.c. injection due to slow absorption. These characteristics of
s.c. injection might result in fewer hypersensitivity and infusion-related reactions than
i.v. injection when a monoclonal antibody is administered [8]. However, incomplete
bioavailability (BA) of biotherapeutic agents was observed after s.c. administration, for
example leuprolide acetate (LA, M.W. 1.3 kDa) was unstable in the skin due to hydrolysis
by enzymes and had a low absolute BA [9]. Ito et al. reported that microneedles based on
sodium chondroitin sulfate improved skin stability by protecting LA degradation, resulting
in increased the relative bioavailability [10]. Rahimi et al. have reported that improvement
of LA stability by making complex with ß-cyclodextrin at various pH values (2.0–7.4) [11].
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In addition, incomplete BA after s.c. injection might be related to the composition, volume,
pH, and viscosity of the administered formulation [12].

Improvements in formulations may allow a lower frequency of s.c. injection by increas-
ing the drug half-life and physicochemical stability in the administration site. Lipid-based
liposomal formulations have attracted attention as a tool for depot formulations because
they can encapsulate both hydrophilic and lipophilic drugs and show good biocompat-
ibility, biodegradability, and low toxicity [13]. To increase the stabilization of liposomal
formulations, Pluronic, linear nonionic triblock copolymers comprising polyethylene oxide
(PEO) and poly-propylene oxide (PPO) is broadly used [14,15]. In addition, several reports
have been published that formulations composed of phospholipid and Pluronic may im-
prove the BA of hydrophobic compounds [16–18]. Furthermore, Shriky et al. [19] reported
that injectable gel formulation consisted of Pluronic® F-127 for controlled drug delivery.

Recently, mono-O-(5,9,13-trimethyl-4-tetradecenyl) glycerol ester (MGE), an amphiphilic
material, has gained attention as a novel additive to improve drug absorption. A formula-
tion containing MGE enhanced direct nose-to-brain migration of an entrapped drug [20]
and increased the transdermal permeation of a hydrophilic drug by altering membrane flu-
idity [21]. Therefore, the incorporation of MGE in a vehicle might be effective in improving
the BA of middle and high molecular weight peptides by enhancing their migration into
the systemic circulation.

In the present study, leuprorelin acetate (LA) was selected as a model middle-molecular-
weight peptide that is easily metabolizable in the skin, and MGE-containing vehicles were
prepared with Pluronic® F-127 and phospholipids to improve the BA of leuprorelin acetate.
As a phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphoglycerol, sodium salt (DOPG), and
1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) were selected to enhance entrapment
efficacy of negatively charged LA with a positively charged vehicle.

2. Materials and Methods
2.1. Materials

MGE was kindly provided by Farnex Incorporated (Yokohama, Japan). LA was
selected as the model drug and purchased from Japan Pharma Co., Ltd., (Tokyo, Japan).
DOPG and DOPC were selected as unsaturated phospholipids and purchased from NOF
Corporation (Tokyo, Japan). Pluronic® F-127, nonionic surfactant, was purchased from
Sigma-Aldrich (St. Louis, MO, USA). Other reagents and solvents were of special grade.
The structural formulae of MGE, LA, and various phospholipids are shown in Table 1.

Table 1. Structure and physicochemical properties of drug and formulation components used in the
present study.

Structure M.W. XLogP3 PI

Leuprolide acetate
(LA)
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2.2. Methods
2.2.1. Preparation of Lipid Particles

DOPC and DOPG with a molar ratio of 25:75 at 1.0 mM total lipid concentration
were dissolved in ethanol in a flask, then evaporated at 50 ◦C to obtain a thin lipid layer.
This ratio was chosen based on a preliminary study with different molar ratios of DOPC
and DOPG (100:0, 75:25, 55: 45, 25:75) because it gave a small particle size with a small
polydispersity index value (PDI) (Figure S1). Next, MGE: Pluronic® F-127: DOPG was
dissolved in ethanol at a molar ratio of 1:1:1 at total lipid concentrations of 1.0, 5.0, and
10 mM. After evaporation of ethanol, LA solution, prepared by dissolving in pH 7.4
phosphate-buffered saline (PBS) at 1.0 mg/mL concentration was added, followed by
ultrasonic (VC-505, Sonics & Materials, Inc., Newtown, CT, USA) treatment for 30 s. This
ultrasonic application process was repeated three times to obtain lipid suspensions. Finally,
the lipid layer composed of DOPC and DOPG was hydrated with the lipid suspensions,
followed by three ultrasonic treatments for 30 s each to obtain lipid formulations.

As a comparison, LA-entrapping liposomes were prepared by hydration of a thin
lipid layer composed of DOPC and DOPG at a molar ratio of 25:75 with 1.0 mg/mL of LA
solution. In addition, a lipid formulation with Pluronic® F-127: DOPG at a molar ratio 1:1,
MGE-free formulation, was also prepared. Furthermore, an LA-free formulation (blank
formulation) was prepared with the same procedure without the addition of LA. Table 2
shows the formulation codes prepared in the present study. A physically mixed blank
formulation was also prepared by mixing a blank formulation and 1 mM LA solution using
a vortex mixer for 5 min at room temperature. Physically mixed formulations are indicated
with Phy- at the beginning of the code name shown in Table 2. Figure 1 shows a schematic
diagram of the preparation procedure of lipid-based self-administrated formulations.

Table 2. Composition of the prepared formulations.

mM LA sol. MP1.0 MP5.0 MP10 P Lipo1.0 Lipo10

MGE - 1 5 10 - - -
Pluronic® F-127 - 1 5 10 10 - -

DOPG - 1.75 5.75 10.75 10.75 0.75 7.5
DOPC - 0.25 0.25 0.25 0.25 0.25 2.5

2.2.2. Apparent Entrapment Efficacy

The entrapment efficacy (EE) of LA in the prepared formulation except for liposomal
ones (Lipo1.0 and Lipo10) was determined using an ultracentrifugation technique. The
total LA content in the formulation (Ctotal) was measured after disruption with acetonitrile,
then centrifugation at 21,500× g for 5 min at 4 ◦C. Further centrifugation (21,500× g for
5 min at 4 ◦C) was done after mixing the obtained supernatant and PBS at a 1:1 ratio.
LA-containing formulations, except for liposomal formulations, were filtered with Amicon
Ultra 3k (Merck Millipore Ltd., MA, USA). Then LA concentration in the supernatant
was measured to detect unentrapped LA in the formulation (Cout). In case of liposomal
formulations, the LA concentration in the obtained supernatant after centrifugation at
289,000 g for 60 min at 4 ◦C (Himac CS120GXII, Hitachi Koki Co., Ltd., Tokyo, Japan) was
used to calculate Cout. LA content was determined by liquid chromatography-tandem
mass spectrometry (LC-MS/MS) to calculate %EE. %EE was calculated by the following
equation: %EE = (Ctotal − Cout)/Ctotal × 100.
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2.2.3. Physicochemical Characteristics of Prepared Formulations

Particle size and zeta-potential of the prepared formulations were measured using a
Zetasizer Nano ZS (ZEN3600, Malvern Instruments Ltd., Malvern, Worcestershire, UK)
using dynamic light scattering and electrophoretic light scattering, respectively. PDI was
also calculated using Zetasizer software from the obtained size distribution of the prepared
formulation. The prepared formulation was diluted 10 times with purified water to prepare
the measurement sample, and then the measurement was carried out.

2.2.4. Small-Angle X-ray Analysis

The liquid structure was analyzed using a small-angle X-ray diffractometer (SAXSpace
(Anton Paar, Graz, Austria) equipped with a one-dimensional detector (Mythen R 1k) using
Cu Kα radiation (λ = 0.154 nm) with an accelerating voltage of 50 kV and an applied current
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of 40 mA. The samples were measured in line collimation mode using a TCStage 150 with
quartz capillary for a 2 h exposure period.

2.2.5. Observation with a Cryo-Transmission Electron Microscope

The formulation was observed using a cryo-transmission electron microscope (Cryo-TEM)
(JEM-3100FEF, JEOL Ltd., Akishima, Tokyo, Japan). For imaging, 1 µL of a 20-fold dilu-
tion of the formulation was dropped onto a hydrophilized copper grid (200 mesh, JEOL
Corporation) and blotted. The samples were rapidly frozen using ethane as a freezing
solvent with a rapid freezing system (EM-CPC, Leica Microsystems Japan, Tokyo, Japan)
for observation using the Cryo-TEM at 5–10 µm defocus.

2.2.6. H-1H Nuclear Overhauser Effect Spectroscopy (NOESY) Nuclear Magnetic
Resonance Spectroscopy

The formulations were prepared using the same method as described in Section 2.2.1,
but deuterium oxide (D2O) was used instead of distilled water with the same volume to
prepare the formulations. In addition, formulation components, except for MGE due to the
self-organization property of non-lamellar liquid crystal (NLLC) structure by contacting
with water, were dissolved in D2O. Nuclear magnetic resonance (NMR) spectroscopy anal-
ysis was performed using an NMR spectrometer (Varian NMR System 700 MHz, Agilent
Technologies, Inc., Santa Clara, CA, USA) equipped with a cold probe (1H{13C/15N} 5 mm
Triple Resonance 13C Enhanced Cold Probe, VT, 700NB). The measurement was conducted
using the following conditions: a pulse width of 10.05 µs and 10.75 µs for P and MP formu-
lations, respectively, a relaxation delay of 1.0 s, an accumulation number of 16, a mixing
time of 500 s, and a temperature of 298 K.

2.2.7. Measurement of Viscosity

An electron-magnetically spinning viscometer [22–24] (EMS-100, Kyoto Electronics
Manufacturing Co., Ltd., Kyoto, Japan) was used to measure the viscosity of prepared
formulations. The viscometer has a couple of magnets attached to the rotator, which apply
a rotating magnetic field. A test tube with a smooth concave bottom, in which the sample
and 2-mm aluminum spheres were included, set at the center of the magnetic field. The
measurement was conducted at 25 ◦C (n = 50). The viscosity was shown as the average
value measured 50 times for each sample.

2.2.8. In Vitro LA Release from the Prepared Formulations

The prepared formulation (100 µL) was added to a Pur-A-Lyzer TM mini 12,000 dialy-
sis kit with a fractional molecular weight of 12,000 (Sigma Aldrich, St. Louis, MO, USA)
and placed in a vial containing 40 mL PBS (1/30 M) with a stirrer bar. An in vitro release
test was conducted for 6 h in a water bath at 37 ± 0.02 ◦C with a stirring speed of 100 rpm.
At predetermined times, 500 µL of the solution was collected from the receiver side and the
same volume of PBS was added to maintain a constant volume. The sample was mixed
with the same volume of acetonitrile, then mixed using a vortex mixer for 5 min. Then, the
obtained samples were stored at −80 ◦C until measurement.

2.2.9. In Vivo Experiment

Male Wistar rats (body weight 200 ± 20 g, 8-weeks old (Sankyo Labo Service Corporation,
Inc., Tokyo, Japan)) were selected. The rats were housed in a room regulated at 25 ± 2 ◦C
with a light/dark cycle (on, off time: 09:00–21:00) every 12 h. Water and feed (MF (Oriental
Yeast Co., ltd., Tokyo, Japan)) were freely accessed. All procedures were approved by
the Josai University Animal Care and Use Committee and complied with the National
Institutes of Health’s Guide for the Care and Use of Laboratory Animals. After approval
by the Josai University Ethics Committee (approved number: JU20005), the experimental
animals were used in accordance with the Josai University Laboratory Animal Regulations.
After the rats were anesthetized with triple anesthesia (intraperitoneal administration of
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0.15 mg/kg medetomidine hydrochloride, 2.5 mg/kg butorphanol, 2 mg/kg midazolam
tartrate), they were placed on their backs and the jugular vein and abdomen, which were
the blood collection points, were shaved with clippers. LA solution or prepared formulation
was administered subcutaneously into the rat abdomen using a 23 G needle (TERUMO
Co., Tokyo, Japan) at an LA dose of 2.0 mg/kg. After blood collection, the same volume of
saline solution was injected through the tail vein using a 27 G winged needle (TERUMO
Co., Tokyo, Japan). The obtained blood sample was centrifuged (21,500× g, 5 min, 4 ◦C)
to obtain plasma. The same amount of acetonitrile was added to the obtained plasma
and mixed for 5 min with a vortex mixer, then centrifuged again (21,500× g, 5 min, 4 ◦C)
to remove the protein, and the sample was stored at −80 ◦C until measurement. The
area under the concentration–time curve until 12 h after administration (AUC12h), was
calculated using the trapezoidal rule. Relative BA was calculated as the ratio of AUC12h
obtained from s.c. administration of each prepared formulation to that of the LA solution.

2.2.10. Liquid Chromatography-Tandem Mass Spectrometry Condition to Detect LA

The LC-MS/MS system consisted of a system controller (CBM-20A; Shimadzu Corporation,
Kyoto, Japan), pump (LC-20AD; Shimadzu Corporation), auto-sampler (SIL-20AC; Shimadzu
Corporation), column oven (CTO-20AC; Shimadzu Corporation), detector (3200 QTRAP; AB
Sciex, Tokyo, Japan), and analysis software (Analyst® version 1.4.2; Shimadzu Corporation).
The column and the guard column were Shodex® ODP2 HP-2B 2.0 mm × 50 mm and
ODP2 HPG-2A 2.0 mm × 10 mm, respectively (each from Showa Denko, Tokyo, Japan).
The column temperature was adjusted to 40 ◦C. An internal standard method was used
for the TA assay, with betamethasone valerate used for this purpose. A mixed solution
(A:B, 70:30) was used for the mobile phase, where A was 0.1% formic acid purified water,
and B was acetonitrile. The flow rate was 0.2 mL/min, and the injection volume was set
to 10 µL. Electrospray ionization was used for LA ionization. The measured molecular
weight of LA was set to m/z 605.30 for the precursor ion and m/z 249.00 for the product
ion. The ion spray voltage was 5000 V, the nebulizer gas pressure was 80 psi, the drying
gas flow rate was 10 L/min, and the drying gas temperature was 600 ◦C. The lower limit of
quantification of this assay was 1 ng/mL.

2.2.11. Statistical Analysis

Statistical analysis was performed using JMP® Pro (ver. 15.0.0, SAS Institute Inc., Cary,
NC, USA). The statistical significance of differences was examined using a one-way analysis
of variance (ANOVA) followed by a Tukey–Kramer post hoc test. The significance level
was set at p < 0.05. All experimental measurements were performed at least in triplicate.

3. Results
3.1. Characteristics of the Prepared Formulations

Figure 2 shows naked eye observation of the dispersion results of the prepared formu-
lations. A highly transparent dispersion was observed for the prepared formulations. The
size (a), zeta-potential (b), PDI (c), and %EE (d) of LA for the prepared formulations are
shown in Figure 3. The particle size decreased with the increase in MGE concentration in
the MP formulations. In addition, MP10 displayed a small PDI compared with the other for-
mulations. On the other hand, Lipo formulations exhibited a large particle size compared
with MP and P formulations, the mean particle sizes for Lipo1.0 and Lipo10 were 250 nm and
320 nm, respectively. Although the zeta-potential of all prepared formulations exhibited
negative values, especially Lipo formulations showed a high negative zeta potential.

The %EE of LA in the MP and P formulations showed a higher value (above 79%EE),
although Lipo formulations exhibited lower LA contents (Lipo1.0 and Lipo10 were 22.3%EE
and 66.9%EE, respectively). The viscosity of the prepared formulations of LA solution,
MP10, and P10 were 9.4 × 10−1, 2.0 × 101, and 1.4 × 101 mPa·s, respectively, which were
suitable for an injectable viscosity with a needle.
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3.2. Cryo-TEM Observation

Figure 4 shows cryo-TEM observation results of MP1.0, MP5.0, MP10, P, and Lipo10.
Micelle structures were confirmed from observations of MP1.0, MP5.0, MP10, and P. On
the other hand, Lipo10 displayed a unilamellar structure. Negative-stained cryo-TEM
observations were performed with MP5.0, MP10, and P to confirm the internal structure.
Clusters constructed with well-ordered micelles were confirmed in both formulations of
MP5.0, MP10, and P from negative-stained cryo-TEM observations. The size of clusters and
unilamellar particles observed in cryo-TEM observations almost corresponded with the
particle size measured using a Zetasizer Nano ZS.
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3.3. SAXS Analysis

Figure 5 shows the X-ray diffraction patterns of MP1.0, MP5, MP10, and P. Peaks
were observed in formulations with higher concentrations of Pluronic® F-127 (MP5, MP10,
and P). A closely similar peak ratio with

(√3 : √4 : √8
)

was observed in both MP10

and P, although the first peak of MP5 was broadened. According to the peak ratio, the
structure of MP10 and P was identified as face-centered cubic (FCC). Together with cryo-
TEM observation results, MP5, MP10, and P constructed FCC-packed micelles.
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3.4. Nuclear Magnetic Resonance

{1H-1H} NOESY NMR spectroscopy was performed to investigate the interactions
between the formulation components of P (Figure 6a,b) and MP10 (Figure 6c,d). A compari-
son of the obtained NOESY NMR spectra of P and MP10 showed that an MGE-related peak
appeared around 4.96 ppm only in MP10 (Figure 6c,d, f 2). MGE showed cross-peaks with
Pluronic® F-127 (Figure 6c,d, f 1 = 0.93 ppm), oleyl groups of DOPG and DOPC (Figure 6c,d,
f 1 = 1.50 ppm and 2.19 ppm, respectively), and LA (Figure 6c,d, f 1 = 1.77 ppm), indicating
the presence of interactions. The interaction of the methyl group of the PPO segment in
Pluronic® F-127 appeared at around 0.97 ppm (Figure 6, f 2), and that of the methylene
group (Figure 6, f 1) observed at around 3.46 ppm was also confirmed.
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3.5. In Vitro Release Results

Figure 7 shows the LA release profiles from the prepared formulations. The observed
Q was higher in the following order; Lipo1.0 > MP1.0 > MP5.0 > MP10 ∼= P. Lipo formulations
showed the 40 to 60% of LA release, whereas MP and P formulations exhibited less than
20% of Q value. Especially, MP formulations showed lower LA release as the lipid and
Pluronic® F-127 concentrations were increased. The LA release from the Phy-MP10 and
Phy-P formulations was higher than that of the MP10 and P formulations.
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Figure 7. LA release profile from each formulation against the time as the X-axis. Symbols; O: MP1.0,
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3.6. In Vivo Experiment

Figure 8 shows the blood concentration profile of LA after s.c. injection. When
LA solution was administered, the LA concentration increased, and Cmax of 34.2 ng/mL
was observed around 1.0 h after administration. An almost similar blood concentration
profile of LA (Cmax and Tmax) was observed as Lipo10 was administered. The highest LA
concentration (Cmax: 98.5 ng/mL) was confirmed 4 h after the administration of MP10,
whereas the other MP formulations showed only slightly higher Cmax values. On the other
hand, P10 showed delayed Tmax (6 h) with slightly higher Cmax compared with LA solution.Pharmaceutics 2022, 13, x FOR PEER REVIEW 12 of 16 
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MP1.0, Lipo1.0, and Lipo10 formulations show similar absolute BA values compared
with an LA solution, whereas about 11- and 7-fold higher absolute BA were observed with
MP10 and P10, respectively, when a 23 G needle was used for administration.

The effect of encapsulation of LA in the formulation on the blood concentration profile
of LA was also investigated with a physically mixed blank formulation and LA solution.
Figure 7 shows the blood concentration profile of LA after s.c. administration of Phy-MP10
and Phy-P formulations (Figure 8b). When Phy-P was administered, the observed Cmax
value was almost the same, although a lower Tmax value was confirmed when P1 was
administered. On the other hand, lower Tmax and Cmax were observed when Phy-MP10
was administered compared with MP10. MP10 exhibited an approximately 2-fold higher
blood concentration of LA and BA than Phy-MP10 (Table 3).

Table 3. Calculated AUC after i.v. or s.c. administration of formulation.

Formulation Route AUC0–24 h (ng · h/mL)

LA sol. # i.v. 3816 ± 458
LA sol. s.c. 59.7 ± 6.49
MP1.0 s.c. 61.1 ± 16.0
MP5.0 s.c. 193 ± 23.0
MP10 s.c. 683 ± 41.1

# The BA value after i.v. injection of LA sol. (5 mg/kg ) was calculated by the blood concentration-time profile
until 6 h after the administration with a trapezoidal method [25].

4. Discussion

LA-containing lipid dispersions incorporating NLLC forming lipids were prepared
successfully. However, typical NLLC structures such as hexagonal and reverse hexagonal
structures were not confirmed, and micelles with ordered structures were observed using
cryo-TEM observation. Block copolymer such as Pluronic® F-127 has been used to prepare
micelles in nanomedicine applications [14,15]. Pluronic spontaneously forms micelles at
concentrations equal to or above the critical micellar concentration (cmc; 0.8 wt%) [26–28].
The prepared formulation in the present study had a higher concentration than cmc
(MP1.0:1.26 wt%, MP5.0: 6.30 wt%, MP10: 12.6 wt%, respectively, when dissolved in 10 mL),
so the micellar structures were observed in cryo-TEM observations.

NMR and SAXS results revealed that prepared MP formulations formed micellar
structures, and SAXS observation results showed that FCC-packed micelles were ob-
tained [29,30]. Pluronic® F-127 has a triblock polymer with two hydrophilic tails in the
structure. Interactions were observed between the methyl and methylene groups of the
PPO segment in Pluronic® F-127, suggesting the construction of micellar structures [31],
as illustrated in Figure 9. Cryo-TEM observation results also supported the particle struc-
ture. The first peak in the SAXS diffraction pattern for MP1.0 was, however, not obviously
observed in the current experiment condition. According to cryo-TEM observation result
in MP1.0, the number of constructed particles was less than MP5.0 and MP10 formulations
that had higher lipid concentrations. Thus, increasing the total lipid concentration in the
formulation would be related to the construction of a face-centered cubic structure in the
present study, which was also confirmed by cryo-TEM observation results.

LA absorption from P after s.c. injection displayed an improved BA compared to LA
solution and Lipo formulations. Because P formed a micellar structure, a long length of
hydrophilic chain derived from Pluronic® F-127 has the potential to improve the BA by
reducing enzymatic degradation [32]. The hydrophilic block of poly (ethylene oxide) in
Pluronic® F-127 can form hydrogen bonds with the aqueous surroundings and form a
tight shell around the micellar core. The micelles with PEO corona could resist protein
adsorption. As a result, the structure is effectively protected against enzymatic degradation
and hydrolysis. Physically mixed formulations composed of LA solution and blank P
(Phy-P) were administered via s.c. injection and decreased BA was observed compared
with s.c. administration of P.
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Cervin et al. reported that the BA of somatostatin was improved after intravenous
administration by the protective effect of encapsulation into lipid-based liquid crystalline
nanoparticles from enzymatic degradation [33]. Therefore, our results also suggested
that LA entrapped in the micelles may be helpful to improve the stability at the injection
site. Even though LA was distributed in the external phase of micelles, higher BA was
confirmed in Phy-P compared with LA. Thus, the interaction of LA with a long length of
hydrophilic block tail of PEO, the hydrophilic moieties in Pluronic® F-127 might happen
to hinder enzymatic degradation. The same tendency was also observed when Phy-
MP10 was administrated. On the other hand, BA values obtained from the administration
of Lipo formulations and MP1.0 were similar to that of the LA solution. For the Lipo
formulations, positively charged LA may be located in the negatively charged hydrophilic
region, the external phase of liposomes. The presence of LA in the external region of
the prepared formulations also occurred in physically mixed formulations. However, LA
release from the Lipo formulations was faster than from other formulations, except for the
LA solution. Therefore, a weak interaction might be the reason for the lower BA provided
by Lipo formulations. In the case of MP1.0, LA was located in the internal and external
phases of micelles. The Pluronic concentration in MP1.0 (1.26 wt%) was lower than in
MP10 and P formulations (12.6 wt%, respectively). Thus, the complexity of the external
phase structure induced by Pluronic might be related to LA stability. Figure 9 shows a
schematic representation of the morphology of the prepared formulations illustrated from
the NMR observation.

MP10 exhibited higher Cmax and significantly improved BA compared with other for-
mulations. The obtained BA increased with an increase in MGE content in the formulation;
4.0% for MP1.0, 12.7% for MP5.0, 44.8% for MP10. Libster et al. reported that hydrophilic
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proteins interact with the polar moieties of glycerin monooleate, an NLLC structure forming
lipid [18]; this interaction may improve the thermal stability of the formulation. Further-
more, increased lipophilicity caused by the interaction might be effective for increasing
membrane permeation. In a study of antimicrobial activity, a ß-turn conformation of the
peptide was induced by the addition of micelles [34]. Moreover, rapid permeation via a
transcellular route was confirmed with a peptide that formed a ß-turn conformation due to
the greater lipophilic properties. In the present study, the interaction of LA with MGE was
also confirmed by NMR observation. Several reports have been published that improved
drug permeation by MGE was caused by increased membrane fluidity [21]. Furthermore,
enhancement of the effect by MGE was higher in forming an unorganized state than in
constructing an NLLC structure [21]. Thus, an increase in the lipophilicity provided by
a weak interaction with the hydrophilic moieties of MGE and LA and the permeation
enhancement effect by MGE might be reasons for the improvement of blood transfer from
the injection site. In addition, regarding the effect of constructed MP formulation forms, a
crystalline state on the bioavailability of LA was unrevealed. Further experiments should
be done to reveal the constructed formulation forms and improved BA of LA.

5. Conclusions

In the present study, micelles incorporating MGE significantly improved the BA of
LA, suggesting that MGE would be a useful additive to injectable formulation to increase
the utilization of LA after s.c. administration. Although further experiments should be
performed to reveal the usefulness of micelles containing MGE through investigations with
other middle-molecular-weight compounds, this result may contribute to the development
of self-injectable formulations.
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