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Abstract: Respiratory toxicity is a serious public health concern caused by the adverse effects of
drugs or chemicals, so the pharmaceutical and chemical industries demand reliable and precise
computational tools to assess the respiratory toxicity of compounds. The purpose of this study is to
develop quantitative structure-activity relationship models for a large dataset of chemical compounds
associated with respiratory system toxicity. First, several feature selection techniques are explored
to find the optimal subset of molecular descriptors for efficient modeling. Then, eight different
machine learning algorithms are utilized to construct respiratory toxicity prediction models. The
support vector machine classifier outperforms all other optimized models in 10-fold cross-validation.
Additionally, it outperforms the prior study by 2% in prediction accuracy and 4% in MCC. The best
SVM model achieves a prediction accuracy of 86.2% and a MCC of 0.722 on the test set. The proposed
SVM model predictions are explained using the SHapley Additive exPlanations approach, which
prioritizes the relevance of key modeling descriptors influencing the prediction of respiratory toxicity.
Thus, our proposed model would be incredibly beneficial in the early stages of drug development for
predicting and understanding potential respiratory toxic compounds.

Keywords: respiratory toxicity; molecular descriptors; feature selection; machine learning; SHapley
Additive exPlanations

1. Introduction

Drug toxicity and safety evaluation studies are significant issues in the pharmaceutical
industry, frequently impeding the commercialization of new drug candidates [1]. Despite
preclinical assessments, drug failure is primarily due to high toxicity, accounting for two-
thirds of post-approval drug withdrawals and one-fifth of clinical trial drug failures [2].
Among the concerns regarding drug toxicity, chemical-induced respiratory toxicity is a sig-
nificant contributor to drug failure due to clinically significant adverse drug reactions [3,4].
Respiratory toxicity can have a significant influence on human health and can even result in
death. The most frequently seen clinical signs are asthma, bronchitis, rhinitis, pneumonia,
and wheezing [5–8]. In general, the adverse effects of common medications on the human
respiratory system are not apparent in the initial stages [9]. Thus, it is critical to establish
methods for evaluating the potential respiratory toxicity of chemicals as early as possible in
the drug development process. The most concerning endpoints among the different types
of drug-induced respiratory injury issues are respiratory sensitization and interstitial lung
disease [10,11]. The most commonly found drugs that cause respiratory toxicity include
anticancer agents, antibiotics, immunosuppressive agents, and cardiac medicines [12,13].
Cytotoxic medications such as bleomycin, cyclophosphamide, and methotrexate, as well
as non-cytotoxic drugs including nitrofurantoin and amiodarone, have the potential to be
toxic to the lungs [14–16].
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Earlier, the respiratory toxicity of chemicals was investigated using a variety of animal
and non-animal experimental techniques. However, these conventional experiments are
expensive and time-consuming. Considering animal welfare and cost savings, a growing
number of alternative toxicity evaluation methodologies have been implemented [17,18]. In
comparison to experimental procedures, computational methods enable the rapid and cost-
effective identification of potential respiratory toxicants from a list of chemicals. Among
the several computational techniques, quantitative structure-activity relationship (QSAR)
models have been extensively utilized to evaluate the toxicity of chemicals [19,20]. Nu-
merous machine learning techniques, including support vector machines, artificial neural
networks, and decision trees have been employed to develop QSAR models for predicting
the toxicity of novel compounds [21,22].

Even though many QSAR models have been developed to predict chemical respiratory
toxicity, the vast majority of them were developed using a small number of chemical
compounds with respiratory sensitization as the primary endpoint [23–25]. As a result,
the applicability domain of such models has been constrained, because adverse effects
of chemicals on the respiratory system have additional symptoms, including bronchitis,
rhinitis, or pneumonia [26–28]. Lei et al. [26] developed classification models for respiratory
toxicity using six machine learning algorithms on a dataset of 1403 compounds. The
best prediction model for the test set had an MCC of 0.644 and a global accuracy of
82.62%. Zhang et al. [27] constructed respiratory toxicity prediction models based on
1241 compounds using Naive Bayes classifiers. The best Naive Bayes model gave an overall
prediction accuracy of 84.3% for the external test set. Wang et al. [28] recently employed six
machine learning approaches with molecular fingerprints to build prediction models for
chemical respiratory toxicity. The best RF model with the PubChem fingerprint obtained
a prediction accuracy of 85.9%. Although previous machine learning models had good
prediction accuracy, their practical application was limited due to the lack of explainable
predictions.

Apart from model performance, model explainability is a significant criterion for the
implementation of computational methods in pharmaceutical research [29–31]. Certain
intrinsically explainable models, for example, linear models and basic decision trees, are
not powerful. On the other hand, complex models such as support vector machines and
artificial neural networks are highly successful yet difficult to explain [32,33]. Various
explanations for black-box prediction models have been presented in the literature. In gen-
eral, these explanation methods can be categorized as the model and instance explanation
approaches. Model-based and instance-based explanations are also known as global and
local explanations, respectively. Additionally, these explanation approaches can be model-
specific or model-independent (agnostic). Unlike model-specific explanation methods,
model-agnostic explanation methods can be applied to any ML model and are typically
applied post-hoc [34,35]. The well-known Shapely additive explanations [36] (SHAP) algo-
rithm can be used to provide global explanations for chemical classification and molecular
activity prediction of any machine learning model [37].

In this paper, an extensive respiratory toxicity dataset containing 2527 compounds
was used to develop predictive models using machine learning algorithms. Initially, several
feature selection approaches were examined to identify significant molecular descriptors
associated with respiratory toxicity. Then, a hybrid feature selection method that combines
the best of the filter and wrapper methods was employed to select the optimal subset
of descriptors. The classification models were built with the selected descriptors using
eight different machine learning methods. The internal 10-fold cross-validation procedure
was used to compare the prediction performance of the optimized models. Additionally,
a test set and an external validation set were used to evaluate the reliability of the best
performing SVM model. Finally, the SHAP method was used to explain the proposed
black box model predictions at both local and global levels to prioritize the importance of
key input molecular descriptors that influence the chemical respiratory toxicity prediction
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results. Figure 1 depicts the proposed explainable respiratory toxicity prediction model’s
schematic workflow.

Figure 1. The schematic workflow of the proposed explainable respiratory toxicity prediction model.

2. Materials and Methods
2.1. Dataset Preparation

The chemical substances related to respiratory system toxicity were identified through
a review of the literature. Wang et al. [28] compiled a list of chemical compounds known to
be hazardous to the respiratory system from the repositories PNEUMOTOX [38],
ADReCS [3], and Hazardous Chemical Information System [39], as well as from perti-
nent literature [24,40]. Respiratory toxicants are chemicals that have negative impacts on
the human respiratory system, while respiratory non-toxicants are substances that are not
harmful to the respiratory system. In this study, the respiratory non-toxicants comprise
both respiratory non-sensitizers and human skin non-sensitizers, as skin non-sensitizers do
not cause respiratory sensitization [28,40]. First, each compound’s chemical structure was
thoroughly studied and compared to a standardized simplified molecular-input line-entry
system (SMILES) in the ChemIDplus database. Following that, metals, inorganic chemicals,
salts, mixtures, and duplicate compounds were removed. Finally, the compounds were
randomly split into the training and test sets in an 8:2 ratio. To further validate the model’s
generalizability, an external validation set was obtained from previous research [28] that
incorporated chemicals from the SIDER [41] and IntSide [42] databases and literature [43].
A detailed description of the list of chemicals used in this study is given in Table 1.

Table 1. The number of compounds associated with respiratory toxicity in the modeling datasets.

Datasets Toxicants Non-Toxicants Total

Training set 1043 826 1869
Test set 259 206 465

External validation set 136 57 193
Total 3772 1089 2527

2.2. Computation of Molecular Descriptors

Molecular descriptors were used to quantitatively represent the properties of
molecules [44]. The open-source web-based platform ChemDes was used to compute
various classes of PaDEL molecular descriptors for each molecule used in this work [45].
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This descriptor set includes physiochemical properties as well as structural one- and
two-dimensional descriptors (Table 2). The list of molecular descriptors for the training
dataset, test dataset, and external validation set compounds can be found in Supplementary
Tables S1–S3.

Table 2. The list of molecular descriptors.

Descriptor Class Dimension Number of Descriptors

Constitutional descriptors 1 120
Autocorrelation descriptors 2 346

Basak descriptors 2 42
BCUT descriptors 2 6

Burden descriptors 2 96
Connectivity descriptors 2 56

E-state descriptors 2 489
Kappa descriptors 2 3

Molecular property descriptors 2 15
Quantum chemical descriptors 2 6

Topological descriptors 2 265

2.3. Data Preprocessing and Feature Selection Methods

Data preprocessing and feature selection are critical steps in efficiently processing high-
dimensional feature space while discarding noisy, non-informative, and redundant data to
reduce computing time, improve learning accuracy, and provide a better understanding of
machine learning models and features [46]. In the first step, we dropped the empty or null-
valued descriptors from the original descriptor set followed by a feature scaling technique
as the range of features affects the prediction performance of distance-based algorithms
(KNN and SVM), whereas tree-based algorithms (RF and XGB) are relatively insensitive
to feature scaling [47,48]. Finally, the selection of optimized descriptors is essential for
respiratory toxicity prediction model development using the training set.

In general, feature selection approaches can be classified into three broad categories
based on their mechanisms of selection: filters, wrappers, and embedding methods. Filter
techniques play a prominent part in feature selection, as they can be integrated with
any machine learning model and are also computationally inexpensive in the case of
high-dimensional feature spaces [49]. Filter approaches assess the goodness of feature
subsets solely on the basis of their essential statistical properties, by comparing a single
feature or collection of features to the class label. In this investigation, we used basic
multivariate filters to eliminate constant, duplicated, and almost zero variant descriptors.
Additionally, correlation filtering methods were used to eliminate redundant descriptors
with a high degree of mutual correlation between them and irrelevant descriptors with a
very low correlation with the respiratory toxicity class [50]. The Pearson’s linear correlation
coefficient, Spearman’s and Kendall’s rank correlation coefficients (nonlinear methods),
were used to determine the correlation coefficient [51].

Wrapper methods were used to find the optimal subset of descriptors for the specified
machine learning algorithm. To automatically select and cross-validate the optimal subset
of descriptors, we employed logistic regression (LR), support vector machine (SVM),
and random forest (RF) algorithms in conjunction with a recursive feature elimination
search strategy [52]. In this investigation, the significant features were also selected using
embedded tree-based (RF and XGB) feature selection methods based on their trained
model’s feature importance. Additionally, we studied another embedded feature selection
approach that relies on regularization. To select descriptors with non-zero coefficients,
LASSO regularization (L1) can be used for linear classifiers (LR and Linear SVC). The
performance evaluation metrics (classification accuracy, F1-score, and MCC) of the SVM
classifier on 10-fold cross-validation (CV) and feature reduction rate were used to compare
the prediction performance of individual feature selection techniques. Finally, various
hybrid techniques for feature selection [53] (combing filters with wrappers and filters
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with embedded methods) were developed and analyzed to determine the final optimum
feature subset.

2.4. Model Development and Optimization

Machine learning techniques were used to develop classification models for the predic-
tion of chemical-induced respiratory toxicity [24,25]. Eight machine learning models were
used to build the models in this study: support vector machine (SVM) [54], multi-layer
perceptron (MLP) [55], extreme gradient boosting (XGB) [56], random forest (RF) [57],
logistic regression (LR) [58], adaptive boosting decision tree (ABDT) [59], k-nearest neigh-
bors (KNN) [60], and naive Bayes (NB) [61]. The above machine learning methods were
implemented using Python libraries, including scikit-learn [62] and XGBoost [63]. The grid
search optimization method was used to determine the optimal parameters of the models.

SVM is a well-known supervised machine learning technique used in QSAR modeling
in the drug discovery field [64]. The purpose of SVM is to determine the optimum sepa-
rating hyperplane that maximizes the sum of the shortest distances between data points
and the hyperplane. The hyperparameters of the SVM can be tuned to avoid overfitting.
The regularization parameter (C) denotes the error penalty, which regulates the trade-off
between correct classification and a more smooth decision boundary. The linearity or
nonlinearity of the hyperplane is determined by the kernel parameter. The kernel width
(gamma) parameter is used with non-linear kernels. A brief description of the other models
compared with the SVM classifier along with their optimal parameter values is given in
Supplementary Table S4.

2.5. Model Validation and Evaluation Measures

Internal and external validations were used in this work to evaluate the developed
model’s predictability and reliability. Internal validation was performed by tenfold cross-
validation (CV), and external validation was accomplished using predictions from the
test set and external validation set. Based on true positives (A), true negatives (D), false
negatives (B), and false positives (C), each classifier was evaluated using the following
parameters: accuracy (ACC), sensitivity (SEN) or recall, specificity (SPE), F1-score, and
Matthews correlation coefficient (MCC) [65].

Accuracy (ACC) =
TP + TN

TP + TN + FN + FP
(1)

Sensitivity (SEN) or Recall =
TP

TP + FN
(2)

Specificity (SPE) =
TN

TN + FP
(3)

F1-Score =
2 × TP

(2 × TP) + FN + FP
(4)

MCC =
(TP × TN)− (FP × FN)√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(5)

where TP (true positives) denotes successfully identified toxicants; TN (true negatives)
indicates correctly identified non-toxicants; FP (false positives) signifies non-toxicants that
were incorrectly classified as toxicants; and FN (false negatives) represents toxicants that
were wrongly predicted to be non-toxic. MCC values range between −1 and 1, with a
perfect classification yielding a value of 1 and a random classification yielding a value of 0.
Additionally, the area under the receiver operating characteristic curve (AUROC) and the
area under the precision recall curve (AUPRC) were also used to determine classification
capability.
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2.6. Model Explainability

With the current pace of advancement of AI in drug development and related do-
mains, there will be a growing demand for techniques that aid in the understanding of
the complex machine learning models [29]. To address the explainability gap in several
complex models and to enhance human understanding and decision-making, explainable
AI (XAI) techniques have been emphasized. Explainability of supervised machine learning
models is critically important in healthcare applications, especially in drug discovery, in
addition to model performance [30,66]. The inherent black-box nature of machine learning
methods such as neural networks and SVM algorithms may result in a lack of explainability.
The explanation of machine learning predictions might be model-agnostic (independent)
or model-specific. Additionally, model explanation methods can be global or local. Global
model explanations can be generated using the ML model, trained on the training data, to
provide insights regarding the internal workings of the complete model. However, instance
explanations can be used to explain only a specific model prediction for a specific data
sample [35].

The model-independent kernel SHAP approach was used in this work to explain the
respiratory toxicity predictions. Lundberg and Lee invented the SHAP (SHapley Addi-
tive exPlanations) method to provide model transparency [36] for any machine learning
algorithm. This approach was first developed to quantify the relevance of an individual
player in a team. The goal of this theory was to distribute the overall reward among
players based on their relative contributions to the game’s outcome. Shapley values were
used to determine a reasonable and fair payoff for each player [67]. In the perspective of
toxicity predictions, Shapley values were used to estimate the importance of descriptors
(the magnitude of the impact) and also their direction (sign). The positive sign molecular
descriptors contributed to the prediction of respiratory toxicants, whereas the negative sign
descriptors contributed to the prediction of non-toxicants.

3. Results and Discussion
3.1. Data Distribution and Chemical Structural Diversity

From the literature [28], we have gathered a total of 2527 chemical compounds as-
sociated with respiratory system toxicity. Among these chemicals, 1438 were respiratory
toxicants, and 1089 were non-toxicants. The diversity of the chemical compounds uti-
lized in training, testing, and external validation sets was analyzed in order to build a
reliable classification model. As shown in Figure 2, we explored the chemical space of the
whole dataset using molecular weight and Ghose-Crippen Logkow (ALogP). The molecular
weight distribution is mostly between 50 and 800, while the ALogP variation is mostly
between −8.5 and 5.0. It can be observed that the training set, test set, and external valida-
tion data are mostly covered by the same spatial distribution. Thus, the prediction results
from the test set and external validation set can be used to evaluate the reliability of the
prediction models built by the training set.

In addition, we used principal component analysis (PCA), one of the most widely used
approaches, to evaluate the chemical space coverage of molecular descriptors across the
entire 2527 molecules. However, the first two principal components account for only 38%
of the total variation in the data. When the number of principal components was increased
from 2 to 50, the overall variance of the data was 88%. Thus, another dimensionality
reduction technique named t-distributed stochastic neighbor embedding (t-SNE) was
applied with 50 principal components to obtain a reasonably accurate representation of the
chemical space of the whole dataset (Figure 2).
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(a) (b)

(c)

Figure 2. (a) The chemical spacedistribution of the respiratory toxicity training set (circle marker),
test set (cross marker), and external validation set (square marker) defined by molecular weight and
Ghose-Crippen LogKow (ALogP). The deep pink color indicates the respiratory toxic compounds and
the green color indicates the respiratory non-toxic compounds. (b) The chemical space visualization
using t-distributed stochastic neighbor embedding (t-SNE) using 50 principal components (represents
88% of the total variation) of the entire dataset. The deep pink color circle markers represent the
respiratory toxic chemicals and the green color cross markers represent the respiratory non-toxic
chemicals. (c) The heatmap of the Tanimotto similarity index of the compounds in the whole dataset.
The pink color shows the low similarity index and green color shows the high similarity index of the
compounds.

To investigate more about the prediction model’s generalization ability, we analyzed
the structural diversity of the compounds used in this study. The Morgan fingerprint is
used to estimate the Tanimoto similarity index of the entire molecules, and the average
similarity value is 0.082. The lower Tanimoto similarity index demonstrates the greater
structural diversity of the compounds. The heatmap of the similarity index distribution is
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depicted in Figure 2. The heatmap is predominantly pink, implying that the compounds in
the entire dataset exhibit significant structural diversity.

3.2. Selection of Important Chemical Descriptors

Molecular descriptors are properties of a molecule that have been determined experi-
mentally or theoretically. More precisely, they are numerical representations of molecules’
physical, chemical, or topological properties that represent the knowledge of molecular
structure and activity from a variety of perspectives. We have calculated a total of 1544 num-
bers of 1D and 2D PaDEL molecular descriptors for the chemical compounds used in this
research to develop QSAR models for respiratory system toxicity prediction [45]. The
majority of the computed descriptors are autocorrelation, topological, and electrotopolog-
ical state descriptors. We have removed the features with empty and noisy values from
the original descriptor set during the data preprocessing phase. We have normalized the
descriptors using the min-max normalization technique before training the model on them.
The low variance filtering feature selection method was used to automatically filter out
nearly all zero-variance descriptors that do not contribute useful information to predic-
tion. Additionally, we investigated the effects of various feature selection approaches on
the selection of more informative features. To examine the effectiveness of the selected
descriptors, these feature selection approaches were combined with an SVM classifier.

3.2.1. Single Feature Selection Methods

We have compared the cross-validation performance of an optimized SVM classifier
using descriptors obtained from several single feature selection methodologies, including
filters, wrappers, and embedded methods. Filter-based feature selection techniques can
reduce the computational time and resources required to train the model by discarding
redundant and non-informative features from the high dimensional feature space. In
filter methods, the multivariate correlation filtering methods were applied, including high
correlation filtering with Pearson’s linear correlation coefficient (HCFP), Kendall’s rank
correlation coefficient (HCFK), and Spearman’s rank correlation coefficient (HCFS). To
reduce redundancy, we retained one of the descriptors with a mutual correlation greater
than 90%. Furthermore, we discarded descriptors that had a very low correlation with
the respiratory toxicity endpoint. The cross-validation performance of the correlation
filter-based feature selection methods was compared in terms of F1-score, classification
accuracy, MCC, and feature reduction rate (FRR) (Figure 3). The performance of descriptors
selected using Pearson correlation coefficients outperforms other correlation-based filtering
methods. This most widely used linear correlation method selects less than half of the
descriptors from the useful descriptors set.

In contrast to the filter techniques, wrapper approaches use prediction accuracy to as-
sess the relevance of a descriptor subset via an extensive search of the potential descriptors.
An automatic feature selection approach in the form of a wrapper type RFECV was used in
combination with LR, SVM, and RF algorithms to eliminate irrelevant features based on the
cross-validation performance (Figure 3). The SVM-based RFECV technique outperformed
the RF-based wrapper method in terms of prediction performance and also achieved the
highest feature reduction rate of 84.5% of the initial descriptor set. Cross-validation accu-
racy and the number of descriptors selected by RFECV with LR, RF, and SVM algorithms
are shown in Supplementary Figure S1.

In embedded tree-based feature selection, the RF classifier selects a few more signifi-
cant descriptors with higher feature importance scores than the XGB classifier (Figure 3).
However, the performance of the selected descriptors by RF and XGB had comparable
performance in terms of prediction accuracy and F1-score metrics. For embedded methods,
we also utilized the Linear SVC and LR models for Lasso regularization (L1) to eliminate
unimportant features from the high-dimensional feature space. Lasso shrinks the coeffi-
cient of the less significant features to zero, effectively removing them from the original
descriptor set. With a higher rate of feature reduction, the classification performance of
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the L1 regularization-based feature selection was higher than tree-based feature selection
methods. According to Figure 3, the wrapper-based RFECV-SVM feature selection method
achieved a high classification performance for the SVM classifier as well as the highest
feature reduction rate of the single feature selection approaches used in this study. Sup-
plementary Table S5 contains the number of descriptors selected by each single feature
selection approach, along with a comparison of their performance.

(a) (b)

(c)

Figure 3. (a) Performance of correlation filters based feature selection methods. NFS: No feature
selection; HCFP: High correlation filtering using Pearson’s correlation coefficient; HCFK: High
correlation filtering using Kendall’s rank correlation coefficient; HCFS: High correlation filtering
using Spearman’s rank correlation coefficient. (b) Wrapper methods. (c) Embedded Methods.
NFS: No feature selection; RF-FI: Random Forest Classifier based feature importance; XGB-FI: XGB
Classifier based feature importance; LR-L1: Logistic regression with L1-based feature selection; Linear
SVC-L1: Linear SVC with L1-based feature selection.

3.2.2. Hybrid Feature Selection Methods

While there are several methods for selecting features, including filters, wrappers, and
embedded methods, each has its own set of advantages and disadvantages. As shown in
Figure 4, we compared the classification performance of different two-stage hybrid feature
selection (HFS) approaches using an SVM classifier, as well as the feature reduction rate
for each method. In a high-dimensional feature space, wrapper-based feature selection is
computationally expensive. Filtering techniques are much faster than wrapper approaches,
so they are preferable for high-dimensional data. As a result, we employed a hybrid feature
selection strategy in this work, which incorporates both filter and wrapper methods for
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selecting the best optimal descriptor subset. The first stage involved condensing the feature
space using a zero variation filter and a high correlation filter based on Pearson linear
correlation coefficients (correlation > 90%). The descriptors with a very low correlation
with the respiratory toxicity endpoint are also eliminated based on the feature importance
score (F-score). The second phase utilizes a wrapper–based RFECV to automatically find
the optimal subset of descriptors from the filtered features to improve the classification
performance. In terms of classification accuracy and MCC, the hybrid combination of filters
and wrapper-based RFECV-SVM outperforms other HFS approaches depicted in Figure 4.
The final number of descriptors selected using the best performing two-stage hybrid feature
selection method is given in Supplementary Figure S2.

Figure 4. Hybrid feature selection methods with 2-stages. NFS: No feature selection; Stage 1: Fs
(Low variance filtering and high correlation filtering using Pearson’s correlation coefficient); Stage
2: Wrapper based RFECV feature selection, Tree based embedded feature selection (FI-Feature
Importance), and L1-based embedded feature selection.

3.2.3. Selected Descriptors Analysis

The final set of descriptors selected for respiratory toxicity prediction includes de-
scriptors from several classes, including autocorrelation, E-state, topological, Basak, and
molecular-property descriptors (Figure 5). The donut chart also depicts the number of final
descriptors in each class, along with their percentage contribution.

Figure 5. Donut chart to display descriptor class’s proportion (percentage contribution) in selected
final descriptors subset (optimal set of descriptors).
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As illustrated in Figure 5, the majority of the selected descriptors belong to the au-
tocorrelation, E-state, and topological descriptor classes. Table 3 lists the overall num-
ber of descriptors in these significant descriptor classes, as well as the corresponding
descriptor types. Autocorrelation descriptors encode both the molecular structure and
physicochemical properties of a molecule [68]. Autocorrelations are calculated by Geary
(GATS), Moran (MATS), average Broto-Moreau (AATS), centered Broto-Moreau (ATSC),
and average centered Broto-Moreau (AATSC) algorithms from lag 1 to lag 8 for various
weighting schemes [69]. The term “lag” refers to the topological distance between two
atoms. The lag parameter can take on any value in the range [0, 1, 2, 3, 4, 5, 6, 7, and 8]. The
weight can be specified in terms of m (relative atomic mass), p (polarizability), e (Sanderson
electronegativity), I (ionization potential), c (charges), and v (Van der Waals volume). For
example, MATS2i is a Moran autocorrelation descriptor of lag 2 that is weighted by first
ionization potential, and ATSC4e is a centered Broto-Moreau autocorrelation descriptor of
lag 4 that is weighted by Sanderson electronegativities.

Electrotopological state (E-state) descriptors are used to describe a molecule’s molec-
ular structure utilizing both electronic and topological properties [70]. There are thirty
atom type electrotopological state descriptors in the selected optimal set of descriptors,
e.g., minHother, maxHCsats. Electrotopological intrinsic states (E-state numbers) and
E-state Indices (E-state contributions) are atomic-type electrotopological descriptors in
which each skeletal atom or group is allocated an intrinsic state value. Several extended
topological chemical atom descriptors (ETA), molecular distance-edge (MDE) descriptors,
and mean topological charge index (JGI) descriptors are also included in the list of de-
scriptors selected for modeling respiratory toxicity prediction [71,72]. The description
of all the selected descriptors and their corresponding descriptor types can be found in
Supplementary Table S6.

Table 3. The total number of descriptors in each significant descriptor class, with associated descriptor
category.

Descriptor Class Count Descriptor Category Count

Autocorrelation 75

Geary Autocorrelation Descriptor 25
Moran Autocorrelation Descriptor 13

Centered Broto-Moreau Autocorrelation Descriptor 13
Average Broto-Moreau Autocorrelation Descriptor 12

Average centered Broto-Moreau Autocorrelation Descriptor 12

E-state 33 Electro topological State Atom Type Descriptor 30
Detour Matrix Descriptor 3

Topological 24

Extended Topo chemical Atom Descriptor 8
Molecular Distance-Edge Descriptor 7

Topological Charge Descriptor 6
Others 3

3.3. Prediction Performance of the Classification Models

We have employed hybrid feature selection methods to identify the optimal descriptors
for 1869 compounds in the training dataset, which included 1043 respiratory toxicants
and 826 non-toxic respiratory compounds. After selecting informative and significant
representative molecular descriptors, various machine learning approaches were used to
construct classification models of chemical-induced respiratory toxicity, including support
vector machine (SVM), multi-layer perceptron (MLP), extreme gradient boosting (XGB),
random forest (RF), logistic regression (LR), adaptive boosting decision tree (ABDT), k-
nearest neighbors (KNN), and Naive Bayes (NB). In this study, the most extensively used
data partitioning technique, tenfold cross-validation, is employed to efficiently utilize the
training dataset to develop a more generalized model. The training dataset is randomly
divided into 10 independent folds, nine of which are used to train the model and one of
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which is used to evaluate performance. The cross-validation procedure is then performed
ten times, with each of the ten folds serving as validation data exactly once, and the results
can be averaged to obtain the final prediction.

As shown in the radar chart (Figure 6), the performance of all optimized models was
compared using internal validations for the training set. The structure of the plot can
also be used to describe the quality of the models. A circle in the shape of the entire plot
would represent a maximum score on all performance measures. The accuracy, specificity,
sensitivity, F1-score, Matthews correlation coefficient, AUROC, AUPRC, and confusion
matrix statistical values of all trained models have been reported in Supplementary Table S7.
The plot clearly shows that the Naive Bayes classifier performs poorly across all metrics.
The next-worst performing model is the KNN classification method. Except for these
two models, all others have a model accuracy of over 84%, specificity of more than 78%,
sensitivity greater than 86%, F1 score greater than 85%, MCC higher than 0.65, and an
area under the ROC and PRC curves greater than 90%. The SVM model outperforms all
other classification models in terms of ACC (0.862), MCC (0.720), and F1-score (0.876) for
10-fold cross-validation. Additionally, this model has the highest sensitivity (87.99%) and
specificity (83.85%). Taking the ACC, MCC, and F1-score into account, the classification
performance of all models was ranked from highest to lowest as SVM > MLP > XGB > LR >
ABDT > RF > KNN > NB.

In Figure 6, the receiver operating characteristic (ROC) curves for all models were
compared to the 10-fold CV. According to the AUROC scores, the SVM (0.9150) model
performs comparably to the XGB model (0.9155). It is worth mentioning that the overall
prediction performance of SVM is better than that of the MLP classifier and the XGB model
(except AUROC and AUPRC by a very small margin of 0.1%) and also significantly better
than that of the other reported models. MCC is a good predictor of binary classification
performance for unbalanced datasets [73,74]. Based on the MCC and other performance
metrics, the SVM model was proposed to develop classification models for predicting
chemical-induced respiratory toxicity.

A test set of 465 compounds was used to evaluate the robustness and prediction power
of the proposed classification model. The proposed model predicts 227 toxicants correctly
out of 259; the sensitivity was 87.6%; and it also predicts 175 non-toxicants correctly out of
206, and the specificity was 84.9%. The F1-score, MCC, AUROC, and AUPRC scores for
the test set are 0.874, 0.722, 0.916, and 0.927, respectively. When the radar plots are studied
(Figure 6), it is clear that the proposed SVM model’s results for 10-fold cross-validation
and the test set were virtually identical. The greater the shape of the test set, the more
accurate the model. To assess the model’s generalizability, the model’s performance was
evaluated against another external validation dataset of 193 chemical compounds. The
suggested model reliably predicted 126 toxicants out of 136, with a sensitivity of 92.6%,
and 50 non-toxicants out of 57, with a specificity of 87.9%.

As displayed in Figure 2, the chemical space distribution of the compounds in the
model’s external validation set is more condensed than that of the test set, and they are
primarily concentrated in the same area as the compounds in the training set. It indicates
that the external validation set’s chemical structure is more comparable to that of the
training set, implying that the model will predict them more accurately. The overall
prediction results of the external validation set reveal that the proposed respiratory toxicity
prediction model performs well across a variety of datasets. Additionally, our model’s
predictions outperform earlier findings on chemical-induced respiratory toxicity (Table 4).



Pharmaceutics 2022, 14, 832 13 of 19

(a) (b)

(c)

Figure 6. (a) Radar chart for 10-fold cross-validation performance comparison of ML models. (b) AU-
ROC plots comparison for of ML models using 10-fold cross-validation. (c) Radar chart for comparing
the proposed SVM model performance on respiratory toxicity training (10-fold CV), test and external
validation data.

Table 4. Comparison with existing classifiers.

No. Model Name No. of Compounds Test
Method ACC SPE SEN MCC

1 XGBoost [26] 468 Test set 0.826 0.832 0.822 0.644

2 NB-2 [27] 248 Test set 0.844 0.853 0.835 0.684

3 PubchemFP-RF [28] 1869 10-fold CV 0.840 0.805 0.868 0.675
467 Test set 0.859 0.825 0.885 0.713

4 Proposed Model 1869 10-fold CV 0.862 0.838 0.879 0.717
465 Test set 0.862 0.849 0.876 0.722
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3.4. Model Explainability

The explainability of the models is often contingent upon evaluating the contribution
of independent features (descriptors) to predictions. Although complex non-linear ma-
chine learning models are difficult to interpret, they are frequently utilized in molecular
activity prediction and QSAR research. As a result, agnostic approaches for estimating the
importance of features regardless of model complexity are essentially needed. To meet
these demands, the SHAP technique was developed and validated by examining class label
predictions of chemical compounds using a variety of machine learning algorithms.

3.4.1. Global Feature Explanation

The main purpose of this work is to investigate the significant molecular descriptors
that influence the classification model to provide accurate predictions of chemical-induced
respiratory toxicity. According to the prediction performance of the optimized SVM model
described previously, the optimal descriptors selected are capable of classifying the majority
of respiratory toxicants from respiratory non-toxicants. This part focuses on identifying the
most significant descriptors to confirm the black-box model’s reliability and improve its
interpretability. The kernel SHAP approach is used to further explore the impact of selected
molecular descriptors on the prediction of the proposed SVM model for chemical-induced
respiratory toxicity.

The SHAP summary plot shows the positive and negative relationships of the top
twenty modeling descriptors with the respiratory toxicity class (Figure 7). The horizontal
axis shows the actual SHAP values, representing the impact that the descriptors had
on the model’s output. Descriptors are arranged in descending order along the vertical
axis based on their importance. The most important descriptor, JGI2, is a two-ordered
mean topological charge descriptor and has a positive impact on respiratory toxicity
prediction. Atom type electrotopological state descriptor minssNH and molecular distance-
edge descriptor MDEC-22 are the next most important descriptors that are positively
correlated with respiratory toxicity. The description of the top ten important descriptors
from the summary plot has been given in Table 5.

It is important to mention that when the top twenty selected molecular descriptors
from the SHAP summary plot are studied, the majority of the electrotopological state
atom types and topological descriptors contribute positively to the respiratory toxicity
prediction. Likewise, the majority of Geary autocorrelation descriptors had a negative
contribution towards the prediction. The most relevant descriptors reveal that electronic
and structural descriptors are important for predicting chemical compounds’ respiratory
toxicity. It is worth noting that E-state descriptors are capable of efficiently extracting
structural information related to the toxicity of chemical compounds.

Table 5. Details of the top ten important descriptors that contribute to the prediction of respiratory
toxicity.

Descriptor Name Descriptor Class Description Impact

JGI2 Topological descriptors Mean topological charge index of order 2 Positive
minssNH E-state descriptors Minimum atom-type E-State: -NH- Positive
MDEC-22 Topological descriptors Molecular distance edge between all secondary carbons Positive
minsssN E-state descriptors Minimum atom-type E-State: >N- Positive

nBase Constitutional descriptors Number of basic groups. Positive
maxwHBa E-state descriptors Maximum E-States for weak Hydrogen Bond acceptors Negative

GATS4c Autocorrelation descriptors Geary autocorrelation - lag 4/weighted by charges Negative
minaasC E-state descriptors Minimum atom-type E-State: :C:- Positive

C3SP3 Topological descriptors Singly bound carbon bound to three other carbons Positive
minddssS E-state descriptors Minimum atom-type E-State: >S== Positive
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Figure 7. SHAP summary plot. Visualization of the Shapley values and molecular descriptor values in
the SVM model. Each point is associated with a Shapley value for a single compound and descriptor.
The color of the points is determined by their descriptor values, while the horizontal axis displays
the Shapley values calculated. The vertical axis depicts both the descriptors and their distribution,
arranged by their mean absolute Shapley values. The model’s most important descriptor is at the
very top of the plot.

3.4.2. Local Feature Explanation

In addition to global explanations, the SHAP values for each instance can be inves-
tigated to find the impact of each modeling descriptor on the model prediction output.
Local explanations generated using the SHAP force plot explain how many features work
together to push the model’s output from the base value to the predicted value. The average
of all Shapley values is used as the base value. Each Shapley value is marked with an
arrow throughout the plot, indicating whether to increase or decrease the prediction. The
descriptors that contribute to a high prediction value are highlighted in red, and those that
contribute to a low prediction value are highlighted in blue.

The SHAP force plot (Figure 8) illustrates the impact of each descriptor on the model
output to predict a specific compound as a respiratory toxicant or non-toxicant. The
impact of each descriptor is proportionate to its bar length. In the given first example, the
descriptors MDEC-22, minssN, nBase, and minaasC can enhance model output, whereas
the autocorrelation descriptor GATS2e can decrease prediction. MDEC-22, a topological
descriptor, has the greatest impact on the model, followed by E-state descriptors such as
minsssN and minaasC. As shown in the second example, the ALogP descriptor closest
to the diving border has a greater effect on negative prediction. The negative prediction
score is lowered by the topological descriptor JGI2 and the structural information content
descriptor SIC3. As a result, descriptors of topological, E-state, and structural information
content can be considered the primary contributors in predicting respiratory toxicity.
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(a)

(b)

Figure 8. (a) Local explanation using SHAP force plot to explain a specific instance where the
respiratory toxicity prediction is 1, and shows descriptors contributing towards the decision. (b) Local
explanation using SHAP force plot to explain a specific instance where the respiratory toxicity
prediction is 0.

4. Conclusions

In this research, a large dataset of diverse chemical compounds was used to develop
prediction models for chemical-induced respiratory toxicity. Numerous feature selection
methods were investigated, and a hybrid approach combining the best correlation filter
and the RFECV wrapper technique was used to determine the most significant molecular
descriptors for effective modeling. Then, eight machine learning classifiers for respiratory
toxicity were constructed and validated using 10-fold cross-validation. The optimized SVM
classifier performed better than the other classifiers. The proposed SVM model achieves an
MCC of 0.722 and a prediction accuracy of 86.2% for the test set, and an external validation
set was used to verify the model’s generalizability for different compounds. In addition,
the SHAP explanation technique was explored to provide more relevant explanations that
enhance model prediction transparency and also prioritize the significance of key modeling
descriptors affecting the prediction results. The SHAP results revealed that the majority of
E-state and topological descriptors have a positive impact on the prediction of respiratory
toxicity. We believe that the explainable SVM classification model could be employed in
pharmaceutical research as a tool for predicting and screening potential respiratory toxic
chemicals. In the future, different global and local explanation techniques can be used to
better understand the respiratory toxicity prediction models.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14040832/s1, Table S1: Training set compounds
with molecular descriptors information.; Table S2: Testing set compounds with molecular descriptors
information; Table S3: External validation set compounds with molecular descriptors information;
Table S4: The optimal parameter values of the machine learning models; Table S5: The performance
of various single and hybrid feature selection methods; Table S6: The details of the selected optimal
descriptors; Table S7: The performance of machine learning classifiers using the optimal descriptors.
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