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Abstract: The antiplatelet agent clopidogrel is listed by the FDA as a strong clinical index inhibitor
of cytochrome P450 (CYP) 2C8 and weak clinical inhibitor of CYP2B6. Moreover, clopidogrel is
a substrate of—among others—CYP2C19 and CYP3A4. This work presents the development of
a whole-body physiologically based pharmacokinetic (PBPK) model of clopidogrel including the
relevant metabolites, clopidogrel carboxylic acid, clopidogrel acyl glucuronide, 2-oxo-clopidogrel,
and the active thiol metabolite, with subsequent application for drug–gene interaction (DGI) and
drug–drug interaction (DDI) predictions. Model building was performed in PK-Sim® using 66 plasma
concentration-time profiles of clopidogrel and its metabolites. The comprehensive parent-metabolite
model covers biotransformation via carboxylesterase (CES) 1, CES2, CYP2C19, CYP3A4, and uridine
5′-diphospho-glucuronosyltransferase 2B7. Moreover, CYP2C19 was incorporated for normal, inter-
mediate, and poor metabolizer phenotypes. Good predictive performance of the model was demon-
strated for the DGI involving CYP2C19, with 17/19 predicted DGI AUClast and 19/19 predicted
DGI Cmax ratios within 2-fold of their observed values. Furthermore, DDIs involving bupropion,
omeprazole, montelukast, pioglitazone, repaglinide, and rifampicin showed 13/13 predicted DDI
AUClast and 13/13 predicted DDI Cmax ratios within 2-fold of their observed ratios. After publication,
the model will be made publicly accessible in the Open Systems Pharmacology repository.

Keywords: physiologically based pharmacokinetic (PBPK) modeling; clopidogrel; clopidogrel acyl
glucuronide; clopidogrel active metabolite; drug–gene interaction (DGI); drug–drug interaction (DDI);
cytochrome P450 2C8 (CYP2C8); cytochrome P450 2C19 (CYP2C19); mechanism-based inactivation;
model-informed drug development and discovery (MID3)

1. Introduction

The antiplatelet agent clopidogrel is widely used in the prevention of atherothrombotic
events, such as secondary prophylaxis after a myocardial infarction or in the event of
an acute coronary syndrome [1]. In 2019, it was listed 36th in the outpatient prescription
statistics for the United States [2]. Clopidogrel is a prodrug, and the therapeutic effect
is due to irreversible binding of its active metabolite to the platelet P2Y12 receptor with
subsequent inhibition of adenosine diphosphate (ADP)-induced platelet aggregation [3–5].

Clopidogrel is classified as a BCS class II drug [6]. Oral uptake is followed by
a rapid absorption coupled with extensive first-pass metabolism [5,7]. After adminis-
tration of a single dose (SD) of 75 mg clopidogrel, approximately 50% of clopidogrel-related
products are detectable in urine and 46% in feces over a 120-h period, indicating an ab-
sorption of over 50% of the applied dose [8]. In vitro, clopidogrel has been identified
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as a substrate of P-glycoprotein (P-gp) [9]. The metabolism of clopidogrel can be di-
vided into two pathways: 85–90% of the absorbed dose is converted via carboxylesterases
(CES) into the inactive main metabolite, a carboxylic acid derivative (Clo-COOH), which
undergoes further metabolism to clopidogrel acyl glucuronide (Clo-AG) via uridine 5′-
diphospho-glucuronosyltransferases (UGTs) [1,10–14]. The remainder is transformed into
2-oxo-clopidogrel (2-Oxo-Clo), with subsequent metabolization to the active metabolite
clopidogrel thiol H4 (Clo-AM), both steps via various cytochrome P450 (CYP) enzymes [15].

A high interindividual variability in plasma levels of clopidogrel and the effect on
platelet aggregation can be observed, resulting mainly from the so-called “clopidogrel resis-
tance”. Not well defined, this term is generally associated with a considerable attenuation
of the inhibitory effect on platelet aggregation, with the specific mechanisms not yet conclu-
sively investigated [16]. Genetic polymorphisms have been proposed as a possible cause,
particularly of the CYP2C19 gene, resulting in rapid (RM), normal (NM), intermediate (IM),
or poor metabolizer (PM) phenotypes [16–18]. About 3% of Caucasians exhibit a CYP2C19
PM phenotype, whereas the frequency is much higher in Asians, e.g., about 14% among
Chinese, making the drug–gene interactions (DGIs) clinically relevant [19]. In 2010, the
United States Food and Drug Administration (FDA) added a boxed warning to the label of
clopidogrel to specifically draw attention to its impaired efficacy in PMs of CYP2C19 [20].

Furthermore, drug–drug interactions (DDIs) are suspected to play a role with clopi-
dogrel as the victim, especially in association with CYP3A4 and CYP2C19 interacting
perpetrators [17,21]. While inhibitors (e.g., omeprazole, fluoxetine, grapefruit juice, keto-
conazole) are reported to significantly decrease plasma levels of Clo-AM, inducers (e.g.,
rifampicin) have shown the opposite effect [22–27]. For example, concomitant intake
of the proton pump inhibitor omeprazole and clopidogrel over several days decreases
the area under the plasma concentration-time curve (AUC) of Clo-AM by approximately
half, whereas pretreatment with the antibiotic agent rifampicin increases the AUC of Clo-
AM by 4-fold [25,27]. However, clopidogrel does not only act as a victim but also as
a perpetrator. The FDA lists clopidogrel as a strong clinical index inhibitor of CYP2C8
(specifically Clo-AG) and weak clinical inhibitor of CYP2B6 [28]. DDI studies conducted
with various substrates of CYP2C8 (e.g., montelukast, pioglitazone, repaglinide, dasabuvir,
desloratadine, selexipag) confirmed Clo-AG to be a potent, mechanism-based inactivator of
CYP2C8 [29–34], increasing for instance the AUC of the antidiabetic agent repaglinide by
3.9-fold following a 75 mg maintenance dose (MD) of clopidogrel, potentially contributing
to the risk of adverse events [33]. Moreover, clopidogrel proved to be the most potent
CYP2B6 inhibitor (mechanism-based) out of 227 drugs analyzed [35]. Following pretreat-
ment with 75 mg clopidogrel daily and subsequent intake of the antidepressant/smoking
cessation agent bupropion, the AUC of its metabolite hydroxybupropion was reduced by
52% [36]. While DDIs and DGIs are usually investigated separately in studies, real-life
occurrence of drug–drug–gene interactions (DDGIs) is rarely analyzed.

To ensure effective therapy of clopidogrel and concurrent drugs while maintaining
adequate control of adverse events, the complex pharmacokinetics (PK) of clopidogrel and
its metabolites, characterized by their high potential for DDIs, DGIs, and DDGIs, should
be thoroughly investigated. Physiologically based pharmacokinetic (PBPK) modeling has
been a capable tool for such approaches for many years, as it allows the study of complex
metabolic processes and pharmacokinetic aspects. Where relevant, different genotypes as
well as interactions involving multiple drugs can be considered [37,38]. Additionally, it is
well recognized for model-informed drug development and discovery (MID3). In recent
years, an increasing number of applications have been submitted to regulatory authorities
containing PBPK models addressing different research questions, about two-thirds of which
were related to DDIs [39].

The objectives of the present work were (a) the development of a whole-body PBPK
model of clopidogrel including all relevant metabolites (Clo-COOH, Clo-AG, 2-Oxo-Clo,
Clo-AM) as well as the application of the model to predict (b) the DGI involving CYP2C19,
along with (c) DDIs involving CYP2B6, CYP2C19, CYP3A4, and specifically CYP2C8. Once
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published, the model will be made publicly accessible in the Open Systems Pharmacol-
ogy (OSP) repository. The Supplementary Materials provide a detailed documentation
regarding the development and evaluation of the model.

2. Materials and Methods
2.1. Software

PBPK model development, parameter optimization (Levenberg–Marquardt algorithm),
and local sensitivity analysis were accomplished using PK-Sim® and MoBi® (Open Systems
Pharmacology Suite 9.1, www.open-systems-pharmacology.org, 2020). Digitization of pub-
lished clinical study data was carried out via Engauge Digitizer 12.1 (M. Mitchell [40], 2019)
according to Wojtyniak et al. [41]. Calculation of pharmacokinetic parameters, creation of
plots along with model performance measurements were performed with the R programming
language version 4.1.1 (The R Foundation for Statistical Computing, Vienna, Austria, 2021)
and Rstudio 1.4.1717 (RStudio Inc., Boston, MA, USA, 2021).

2.2. Clinical Study Data

Plasma concentration-time profiles of clopidogrel and its four metabolites (Clo-COOH,
Clo-AG, 2-Oxo-Clo, Clo-AM) were digitized from published literature. All studies were
conducted in healthy participants covering a wide dosing range, SD and MD, intravenous
and peroral administration. Considering the digitized studies, training [23,42–52] and test
datasets [42,44,53–72] were defined for development and evaluation of the clopidogrel
model, respectively. The training dataset preferably included profiles reporting many mea-
surement points over a long period of time and studies quantifying multiple metabolites
of interest. A comprehensive list of all profiles utilized can be found in Table S2 of the
Supplementary Materials.

2.3. PBPK Model Building

Development of the clopidogrel parent-metabolite model was initiated with an ex-
tensive literature search for physicochemical properties as well as information regarding
absorption, distribution, metabolism, and excretion (ADME) processes of clopidogrel and
its metabolites Clo-COOH, Clo-AG, 2-Oxo-Clo, and Clo-AM.

A virtual individual was created for each included study. If available, mean and
mode data on age, sex, weight, height, body mass index, and ethnicity from the respective
study were incorporated. If demographic data were missing, a default individual was
generated based on data for different ethnicities provided in PK-Sim®. Relative expression
for enzymes and transporters of interest in the different organs were specified according to
the PK-Sim® expression database [73]. Further information on the respective expression is
available in Table S1 of the Supplementary Materials.

During model development, model input parameters missing from the literature or
involved in calculation methods of PK-Sim® were fitted using the training dataset. Due
to the complexity of the model, a stepwise approach was applied. First, only clopidogrel
parameters were optimized to establish the accurate ratio between the two major pathways.
Next, separate optimizations were performed for parameters related to the pathways
leading to the formation of Clo-AG (Clo-COOH, Clo-AG) and Clo-AM (2-Oxo-Clo, Clo-
AM), respectively. Since many enzymes inhibited by clopidogrel are responsible for its own
biotransformation, relevant inhibition parameters of clopidogrel and its metabolites were
incorporated during model development. Studies quantifying clopidogrel and Clo-AM in
CYP2C19 PMs were used to define CYP2C19 independent metabolism [48,51]. An overview
of clopidogrel’s metabolism, specifically the processes implemented in PK-Sim®, can be
found in Section 3.1.

2.4. PBPK Model Evaluation

The clopidogrel parent-metabolite model was evaluated both graphically and quan-
titatively. Predicted concentration-time profiles were plotted alongside their respective

www.open-systems-pharmacology.org
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observed data points for visual comparison. Furthermore, goodness-of-fit (GOF) plots were
used to display the agreement between predicted and observed concentration values. GOF
plots were additionally generated to compare the calculated area under the concentration-
time curve between first and last concentration measurements (AUClast) and maximum
plasma concentration (Cmax) values for all predicted versus observed profiles. Predictions
within the 2-fold deviation of observed values were considered successful. Quantitative
evaluations were performed by calculating mean relative deviations (MRDs) for all plasma
concentration predictions along with geometric mean fold errors (GMFEs) for all predicted
AUClast and Cmax values according to Equations (1) and (2), respectively.

MRD = 10x; x =

√√√√ ∑k
i=1 (log 10ĉi − log10ci

)2

k
(1)

where ci = i-th observed plasma concentration, ĉi = predicted plasma concentration corre-
sponding to the i-th observed plasma concentration, and k = number of observed values.

GMFE = 10x; x =
∑m

i=1

∣∣∣log10

(
p̂i
pi

)∣∣∣
m

(2)

where pi = observed AUClast or Cmax value of study i, p̂i = corresponding predicted AUClast
or Cmax value of study i, and m = number of studies.

Finally, a local sensitivity analysis was conducted, described fully in Section S2.7.1 of
the Supplementary Materials.

2.5. DGI Modeling

Metabolism via CYP2C19 was implemented according to Michaelis–Menten kinetics.
Different levels of CYP2C19 activity between phenotypes were modeled by maintaining the
Michaelis–Menten constant (KM) unchanged while varying the catalytic rate constant (kcat)
depending on the phenotype. For CYP2C19 NMs, activity was assumed to be 100%, for
IMs 50%, and for PMs 0%, based on reported activity scores [18,74] (see Table 1). CYP2C19
NM phenotype was assumed when no genotyping had been conducted during studies.

Table 1. Relation between CYP2C19 phenotypes, activity scores, and genotypes according to [74],
including assumed relative activity.

Phenotype Activity Score Common CYP2C19 Genotypes Assumed Activity (%)

Poor metabolizer (PM) 0 *2/*2, *2/*3, *3/*3 0
Intermediate metabolizer (IM) 1 *1/*2, *1/*3 50

Normal metabolizer (NM) 2 *1/*1 100

CYP: cytochrome P450.

DGI model evaluation was performed by plotting and comparing predicted to ob-
served plasma concentration-time profiles of each phenotype. Predicted DGI AUClast and
Cmax ratios were calculated for IMs and PMs, both in relation to NMs (Equation (3)), with
subsequent comparison to corresponding observed ratios computed analogously.

DGI PK parameter ratio =
PK parameterDGI

PK parameterReference
(3)

where PK parameter = AUClast or Cmax, PK parameterDGI = AUClast or Cmax of IM or PM
phenotype, and PK parameterReference = AUClast or Cmax of NM phenotype.

The limits proposed by Guest et al. [75] were applied to evaluate prediction accuracy
(including 20% variability to account for uncertainties in observed ratios). Quantitative
assessment was performed by calculating GMFE values for all predicted DGI AUClast and
Cmax ratios according to Equation (2).
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2.6. DDI Network Modeling

DDI performance of the clopidogrel model was assessed by building a CYP2B6/CYP2C8/
CYP2C19/CYP3A4 DDI network centered around clopidogrel, coupling the clopido-
grel model with publicly accessible models of bupropion, montelukast, omeprazole, pi-
oglitazone, repaglinide, and rifampicin [76–80] by incorporating relevant interaction
parameters. DDI partners were selected if listed by the FDA as clinical (index) sub-
strates/inhibitors/inducers of CYP enzymes relevant for clopidogrel and recommended
for use in clinical DDI studies [28]. The different types of interaction implemented, i.e.,
induction, competitive inhibition, and mechanism-based inactivation, are described in
Section S4.1 of the Supplementary Materials. The clopidogrel–repaglinide DDI was in-
cluded in the training dataset to inform the intrahepatic Clo-AG concentration required for
sufficient CYP2C8 inhibition [33].

Evaluating the DDI network, corresponding predicted as well as observed plasma
concentration-time profiles of the victim drug administered with and without the respective
perpetrator drug were plotted and compared graphically. Moreover, DDI AUClast and Cmax
ratios were calculated for every predicted and observed profile according to Equation (4),
with subsequent comparison, applying the limits proposed by Guest et al. [75] to determine
prediction accuracy (including 20% variability).

DDI PK parameter ratio =
PK parameterDDI

PK parameterControl
(4)

where PK parameter = AUClast or Cmax, PK parameterDDI = AUClast or Cmax of victim drug
during perpetrator co-administration, and PK parameterControl = AUClast or Cmax of victim
drug control.

Quantitative assessment was performed by calculating GMFE values for all predicted
DDI AUClast and Cmax ratios according to Equation (2).

3. Results
3.1. PBPK Model Building and Evaluation

Building and evaluation of the clopidogrel parent-metabolite model was performed
using one clinical study involving intravenous application of 0.1–300 mg clopidogrel (SD)
as well as 31 studies administering clopidogrel perorally at common doses of 75 to 600 mg
(SD and MD), providing a total of 23 clopidogrel, 21 Clo-COOH, 3 Clo-AG, 1 2-Oxo-Clo,
and 18 Clo-AM plasma concentration-time profiles. Information on all profiles utilized is
listed in Table S2 of the Supplementary Materials.

Figure 1 depicts a schematic overview of the implemented metabolic pathways and
excretion processes. Within the pathway leading to Clo-AG, metabolism from clopidogrel
to Clo-COOH was incorporated via CES1 and CES2, with CES2 expression limited to the
intestine. UGT2B7 was integrated for glucuronidation of Clo-COOH with subsequent elim-
ination of the resulting Clo-AG via a nonspecific renal clearance. Within the second main
pathway leading to the formation of Clo-AM, CYP2C19 and CYP3A4 were incorporated for
the oxidation of clopidogrel to 2-Oxo-Clo and further metabolism to Clo-AM. Additional
transformation of 2-Oxo-Clo into various inactive thiol metabolites and the elimination of
Clo-AM were implemented via nonspecific hepatic clearance processes.

For each biotransformation process, KM values were adopted from the literature,
while kcat and nonspecific clearance parameters were fitted. Moreover, all (auto)inhibition
parameters of clopidogrel and its metabolites were implemented as literature values. A full
list of model parameters of clopidogrel and its metabolites is provided in Section S1.3 of
the Supplementary Materials.

The final clopidogrel parent-metabolite model allows good description (training
dataset) and prediction (test dataset) of clopidogrel, Clo-COOH, Clo-AG, 2-Oxo-Clo, and
Clo-AM plasma concentration-time profiles following intravenous and peroral clopidogrel
administration. Figure 2 shows a representative sample of plasma concentration-time pro-
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files from the training and test dataset. All predicted and observed plasma concentration-
time profiles are depicted in Sections S2.1 and S2.2 of the Supplementary Materials as
semilogarithmic and linear plots.

Figure 3 displays GOF plots for all concentration measurements as well as for all
AUClast and Cmax values, divided into training and test datasets. Considering both datasets
for all five compounds, 76% of the predicted concentration measurements, 63/66 predicted
AUClast, and 55/58 predicted Cmax values lie within the 2-fold range of their respective
observed counterparts. In total, the model shows a mean MRD of 1.91 as well as mean
GMFEAUClast and GMFECmax values of 1.38 and 1.35, respectively, thus, confirming its
adequate descriptive and predictive performance. Individual MRD and GMFE values for
all profiles are listed in Tables S5 and S6 of the Supplementary Materials.

Clopidogrel

Clopidogrel carboxylic acid

Clopidogrel acyl glucuronide

2-Oxo-clopidogrel

Clopidogrel thiol H4

CES1
CES2

CYP3A4
CYP2C19

UGT2B7
CYP3A4
CYP2C19

CLhep
Sink

CLren
Sink Sink

85%–90% 10%–15%

Glucuronide

CLhep

Figure 1. Clopidogrel’s main metabolic pathways and excretion processes implemented in PK-Sim®.
In total, 85–90% of the absorbed dose is converted via CES1 and CES2 into clopidogrel carboxylic
acid, which undergoes further metabolism to clopidogrel acyl glucuronide via UGT2B7, with the
latter being excreted via a nonspecific renal clearance. The remainder of clopidogrel absorbed is
transformed via CYP3A4 and CYP2C19 into 2-oxo-clopidogrel with subsequent metabolization to
the active metabolite clopidogrel thiol H4, both metabolites being excreted via nonspecific hepatic
clearances. CES: carboxylesterase, CLhep: hepatic clearance, CLren: renal clearance, CYP: cytochrome
P450, UGT: uridine 5′-diphospho-glucuronosyltransferase. Metabolism and excretion steps are
represented by arrows.
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Figure 2. Representative plots of predicted plasma concentration-time profiles of clopidogrel and
its metabolites. Split up according to (a–f) training and (g–l) test datasets, solid lines represent the
model predictions, while corresponding observed data are shown as symbols (±standard deviation, if
available) [23,42,44,46,47,54,59,62,72]. Detailed information on all profiles and clinical studies, can be
found in Table S2 of the Supplementary Materials. 2-Oxo-Clo: 2-oxo-clopidogrel, Clo: clopidogrel, Clo-
AM: clopidogrel thiol H4, Clo-AG: clopidogrel acyl glucuronide, Clo-COOH: clopidogrel carboxylic
acid, iv: intravenous, n: number of participants, po: peroral.
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Figure 3. Goodness-of-fit plots of the final clopidogrel parent-metabolite model. Split into training
and test datasets, (a,b) each predicted plasma concentration as well as predicted (c,d) AUClast and
(e,f) Cmax values are plotted against their corresponding observed values. The solid line represents
the line of identity, while dotted lines indicate 1.25-fold and dashed lines 2-fold deviation from the
respective observed value. Detailed information on all profiles and clinical studies can be found in
Table S2 of the Supplementary Materials. 2-Oxo-Clo: 2-oxo-clopidogrel, AUClast: area under the
plasma concentration-time curve determined between first and last concentration measurements, Clo-
AM: clopidogrel thiol H4, Clo-AG: clopidogrel acyl glucuronide, Clo-COOH: clopidogrel carboxylic
acid, Cmax: maximum plasma concentration.
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Sensitivity analyses of an MD simulation over ten days with the administration of
75 mg clopidogrel daily revealed the AUClast of clopidogrel, 2-Oxo-Clo, and Clo-AM
to be most sensitive to perturbation of the respective optimized lipophilicity, while the
AUClast of Clo-COOH and Clo-AG showed the highest sensitivity to perturbation of the
optimized kcat of UGT2B7 and fraction unbound adopted from the literature, respectively.
The complete quantitative assessment of the sensitivity analyses, along with a list of all
parameters evaluated for their influence on AUClast are provided in Section S2.7.2 of the
Supplementary Materials.

3.2. DGI Modeling

The DGI model was developed using five DGI studies, with one study quantifying
clopidogrel, three studies measuring Clo-AM, and one study investigating both compounds
in relation to different phenotypes [48,51,71,81,82]. All studies utilized are listed in Table S8
of the Supplementary Materials. During the studies, CYP2C19 genotyping was conducted
for alleles *1, *2, and *3 with subsequent assignment of genotypes to phenotypes NM, IM,
and PM according to Table 1.

Figure 4 presents examples of predicted versus observed plasma concentration-time
profiles for (a–b) clopidogrel and (c–d) Clo-AM divided by phenotype, along with (e–f)
predicted versus observed DGI AUClast and Cmax ratios for each profile. In total, 15/19 pre-
dicted DGI AUClast and 16/19 predicted DGI Cmax ratios fall within the limits proposed by
Guest et al. [75], with low mean GMFE values of 1.36 and 1.27, respectively, thus, indicating
a good performance of the model regarding CYP2C19 DGI predictions. Individual GMFE
values for all DGI profiles are provided in Table S9 of the Supplementary Materials along
with all predicted versus observed plasma concentration-time profiles as semilogarithmic
and linear plots in Sections S3.2 and S3.3 of the Supplementary Materials.

// //

Figure 4. Cont.
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Figure 4. Drug–gene interaction model evaluation. Presented are examples of predicted plasma
concentration-time profiles of (a,b) clopidogrel and (c,d) Clo-AM for IM and PM phenotypes compared
separately to NM phenotypes, alongside corresponding observed data [48,51]. Dashed (IM or PM)
and solid (NM) lines represent the model predictions, while corresponding observed data are shown
as symbols (±standard deviation, if available). Predicted versus observed (e) DGI AUClast and
(f) DGI Cmax ratios are shown with the solid line representing the line of identity, dotted lines
indicating 1.25-fold, and dashed lines 2-fold deviation from the respective observed value, along
with the curved lines marking the prediction success limits proposed by Guest et al. [75] (including
20% variability to account for uncertainties in observed ratios). Detailed information on all DGI
studies as well as individual DGI AUClast and DGI Cmax ratios are provided in Tables S8 and S9 of
the Supplementary Materials. AUClast: area under the plasma concentration-time curve determined
between first and last concentration measurements, Clo: clopidogrel, Clo-AM: clopidogrel thiol
H4, Cmax: maximum plasma concentration, DGI: drug–gene interaction, IM: cytochrome P450 2C19
intermediate metabolizer, n: number of participants, NM: cytochrome P450 2C19 normal metabolizer,
PM: cytochrome P450 2C19 poor metabolizer.

3.3. DDI Network Modeling

The DDI network centered around clopidogrel was built and evaluated using nine
DDI studies. Regarding clopidogrel as the victim, two studies examined the impact of
the CYP2C19 mechanism-based inactivator omeprazole on the PK of Clo-AM when co-
administered with clopidogrel for several days [25,26], while one study addressed the effect
of pretreatment with the CYP2C19 inducer/CYP3A4 competitive inhibitor and inducer
rifampicin on Clo-AM [27]. With respect to clopidogrel as the perpetrator, two studies
investigated clopidogrel’s pretreatment influence as the mechanism-based inactivator of
CYP2B6 and CYP2C19. One study evaluated the effect on the PK of (hydroxy)bupropion
and one on omeprazole [36,83]. Moreover, the impact on montelukast, pioglitazone, and
repaglinide due to the mechanism-based inactivation of CYP2C8 by Clo-AG was assessed
in three separate studies over several days of clopidogrel intake [31–33]. Figure 5 pro-
vides a schematic overview of the modeled DDI network, focusing on the respective
main interaction processes. Table S11 of the Supplementary Materials contains a list of
all implemented interaction processes per DDI. Extended information on DDI studies,
including dosing regimens and subject data, as well as FDA classification by clinical (index)
substrate/inhibitor/inducer and model parameters of the DDI partners can be found in
Sections S4.2–S4.4 of the Supplementary Materials.
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Mechanism-based inactivation

Metabolism of victim drugs

Metabolism of clopidogrel

Figure 5. Schematic overview of the modeled drug–drug interaction network. For brevity, only the
respective main interaction processes are shown. While clopidogrel acts as victim in the context
of drug–drug interactions with omeprazole and rifampicin, it represents the perpetrator when
administered concomitantly with bupropion and omeprazole. As stated by the United States Food
and Drug Administration, in particular, clopidogrel acyl glucuronide acts as a perpetrator regarding
CYP2C8 [28]. Montelukast, pioglitazone, and repaglinide were included in the drug–drug interaction
network as CYP2C8 substrates. Table S11 of the Supplementary Materials contains a list of all
implemented interaction processes per drug–drug interaction. CYP: cytochrome P450.

Classified according to whether clopidogrel represents the victim or perpetrator,
Figures 6a–c and 7a–f illustrate predicted versus observed victim plasma concentration-time
profiles with and without intake of the respective perpetrator, while Figure 6d,e and 7g,h
display predicted versus observed DDI AUClast and Cmax ratios for each profile. Overall,
11/13 predicted DDI AUClast and 13/13 predicted DDI Cmax ratios lie within the limits
proposed by Guest et al. [75], while all ratios fall within the 2-fold deviation from their
respective observed values. Furthermore, low mean GMFE values for predicted DDI
AUClast ratios (1.39) and for predicted DDI Cmax ratios (1.15) demonstrate a good DDI
prediction performance. Individual GMFE values for all DDI profiles are available in
Table S19 of the Supplementary Materials along with all predicted versus observed plasma
concentration-time profiles as semilogarithmic and linear plots in Section S4.5 and S4.6 of
the Supplementary Materials.
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// // //

Figure 6. Drug–drug interaction network evaluation with clopidogrel as victim. Presented are
predicted plasma concentration-time profiles of Clo-AM with (DDI) and without (Control) intake of
the respective perpetrator drug ((a,b) omeprazole, (c) rifampicin), alongside corresponding observed
data [25–27]. Dashed (DDI) and solid (Control) lines represent the model predictions, while corre-
sponding observed data are shown as symbols (±standard deviation, if available). Predicted versus
observed (d) DDI AUClast and (e) DDI Cmax ratios are shown with the solid line representing the line of
identity, dotted lines indicating 1.25-fold, and dashed lines 2-fold deviation from the respective observed
value, along with the curved lines marking the prediction success limits proposed by Guest et al. [75]
(including 20% variability to account for uncertainties in observed ratios). Detailed information on
all DDI studies as well as individual DDI AUClast and DDI Cmax ratios are provided in Tables S10
and S19 of the Supplementary Materials. AUClast: area under the plasma concentration-time curve
determined between first and last concentration measurements, Clo-AM: clopidogrel thiol H4, Cmax:
maximum plasma concentration, DDI: drug–drug interaction, n: number of participants.
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Figure 7. Drug–drug interaction network evaluation with clopidogrel as perpetrator. Presented
are predicted plasma concentration-time profiles of the respective victim with (DDI) and without
(Control) intake of clopidogrel ((a) bupropion, (b) hydroxybupropion, (c) omeprazole, (d) repaglinide,
(e) pioglitazone, (f) montelukast), alongside corresponding observed data [31–33,36,83]. Dashed
(DDI) and solid (Control) lines represent the model predictions, while corresponding observed data
are shown as symbols (±standard deviation, if available). Predicted versus observed (g) DDI AUClast

and (h) DDI Cmax ratios are shown with the solid line representing the line of identity, dotted lines
indicating 1.25-fold, and dashed lines 2-fold deviation from the respective observed value, along with
the curved lines marking the prediction success limits proposed by Guest et al. [75] (including 20%
variability to account for uncertainties in observed ratios). Detailed information on all DDI studies
as well as individual DDI AUClast and DDI Cmax ratios are provided in Tables S10 and S19 of the
Supplementary Materials. AUClast: area under the plasma concentration-time curve determined
between first and last concentration measurements, bupro: bupropion, Cmax: maximum plasma
concentration, DDI: drug–drug interaction, Monte: montelukast, n: number of participants, OH-
Bupro: hydroxybupropion, Omep: omeprazole, Pio: pioglitazone, Repa: repaglinide.
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4. Discussion

In this work, a clopidogrel parent-metabolite whole-body PBPK model was success-
fully built and evaluated, capable of adequately describing and predicting plasma concen-
trations of clopidogrel and its metabolites Clo-COOH, Clo-AG, 2-Oxo-Clo, and Clo-AM
over a wide dosing range of intravenously (0.1–300 mg, SD) and perorally (75–600 mg,
SD and MD) administered clopidogrel. Moreover, the application of the model allowed the
successful prediction of the DGI involving CYP2C19, along with DDIs involving CYP2B6,
CYP2C8, CYP2C19, and CYP3A4.

Predicted intestinal absorption ranges from 97–100% across the dosing range investi-
gated, which is in line with the literature data on clopidogrel excretion, showing that more
than 50% of administered clopidogrel is absorbed [8]. While clopidogrel has been identified
as a P-gp substrate in vitro, the literature suggests an absence of significant effects on the
rate and extent of intestinal absorption in vivo [9,84]. Hence, P-gp was not included in
the model. Moreover, in line with published data, absorbed clopidogrel is almost entirely
metabolized, resulting in only minimal levels being detectable in urine and feces [43]. For
the two main concurrent metabolic pathways, fractions metabolized of 85–90% and 10–15%
can be found in the literature with respect to the amount of clopidogrel absorbed [1,10].
Hence, during parameter optimization, the target corridor for absorbed clopidogrel con-
verted to 2-Oxo-Clo was set at approximately 10–15%, which was closely met by the results
of parameter fitting (8.0–14.5% for the dosing range of 75–600 mg clopidogrel).

Comparison of the pharmacokinetic profiles of dose-matched intravenously and per-
orally administered clopidogrel revealed a 170-fold higher AUClast following intravenous
application [7], supporting the hypothesis of an extensive clopidogrel first-pass metabolism.
To replicate this effect in the model, the predominantly intestinally expressed CES2 was
implemented for the conversion of clopidogrel to Clo-COOH in addition to the primarily
hepatically expressed CES1 within the pathway leading to Clo-AG. Moreover, during model
development, it became apparent that the intestinal first-pass metabolism must even exceed
the hepatic first-pass metabolism for intravenous and peroral administrations to be ade-
quately described. Hence, CES2 expression was limited to the intestine, enabling appropriate
modeling of the first-pass effect. Representative of the various UGTs involved, UGT2B7
was integrated for the glucuronidation of Clo-COOH to Clo-AG since it demonstrated the
highest impact regarding the glucuronidation in vitro [14,85]. A nonspecific renal clearance
was incorporated for the excretion of Clo-AG due to its pronounced hydrophilicity [86].

According to the literature, various CYP enzymes are responsible for the forma-
tion of Clo-AM from clopidogrel via 2-Oxo-Clo as part of the second main metabolic
pathway, e.g., CYP1A2, CYP2B6, CYP2C9, CYP2C19, and CYP3A4 [13,15,87,88]. The in-
fluence of paraoxonase 1 has been discussed with the conclusion that when involved in
the metabolism of 2-Oxo-Clo, an inactive thiol is formed rather than Clo-AM [13,87,89–91].
CYP2C19 was implemented for both the conversion of clopidogrel to 2-Oxo-Clo and 2-Oxo-
Clo to Clo-AM. As highlighted by Kazui et al. [15], CYP2C19 shows the greatest impact
on the formation of Clo-AM in vitro (referring to both metabolization steps), with various
DGI studies confirming its importance in vivo [51,71,81,82]. Additionally, implementation
of another CYP enzyme was required for each of the two metabolization steps to allow
subsequent DDI and DGI predictions. Hence, CYP3A4 was included to convert 2-Oxo-Clo
to Clo-AM due to its reported high in vitro activity [15]. CYP3A4 was incorporated for
the oxidation of clopidogrel to 2-Oxo-Clo as well, given that most in vitro studies have
demonstrated its involvement in this step [13,15,24,87,88], and during model development,
the observed data were most adequately described upon CYP3A4 integration. Additional
transformation of 2-Oxo-Clo into various inactive thiol metabolites was represented by a non-
specific hepatic clearance [92]. Due to the irreversibility of the mechanism of action and the
absence of more precise information on the excretion of Clo-AM, an elimination of Clo-AM
through covalent binding to platelets was assumed, represented by a nonspecific hepatic
clearance in the model since hepatocytes seem to primarily remove platelets from blood [4,93].
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The final clopidogrel model was applied for successful prediction of the DGI involving
CYP2C19, which is especially noteworthy considering that CYP2C19 is incorporated at
two metabolic steps and no phenotype data were available for the intermediate metabolite
2-Oxo-Clo. However, incomplete published data caused limitations of the modeled DGI.
For example, due to the exclusive availability of data obtained from Asian individuals, the
predictive performance might vary for other ethnicities. Moreover, activity scores were
used for DGI modeling, with the classification of genotypes according to phenotypes and
assignment of the phenotypes to activity scores adopted from the literature [74]. Conse-
quently, for instance, *2/*2 and *3/*3 genotypes were both classified as PM, and therefore,
assigned the same activity score, thus, not allowing differentiation of genotypes by the
model. Here, sufficient data on individual genotypes might be required to enable differ-
entiated modeling. Additionally, Clo-AM in particular is subject to a high interindividual
variability, e.g., Cmax values of Clo-AM after peroral administration of 75 mg clopidogrel
vary between 9.6 and 27.9 ng/mL in different individuals [44,71]. Here, a rationale for
the observed pronounced heterogeneity might be the potentially incorrect assignment of
wildtype to studies with no CYP2C19 genotype information.

Furthermore, a CYP2B6/CYP2C8/CYP2C19/CYP3A4 DDI network was successfully
built by coupling the final clopidogrel parent-metabolite model with models of bupropion,
montelukast, omeprazole, pioglitazone, repaglinide, and rifampicin [76–80]. The good
predictive performance of all DDIs is particularly remarkable considering that only the
repaglinide DDI was part of the training dataset informing the intrahepatic concentration
of Clo-AG (main CYP2C8 inhibitor), while all other DDIs were fully predicted without
any optimized parametrization. Moreover, each interaction parameter was adopted from
the literature and both Clo-AM (quantified for perpetrator–clopidogrel–DDI studies) and
Clo-AG are secondary metabolites of clopidogrel, thus, requiring more parameters to be
included in their modeling. Additionally, only plasma profiles of Clo-AG following the
administration of 75 mg clopidogrel were available for model development, whereas some
of the CYP2C8 DDI studies involved application of up to 300 mg clopidogrel. Lastly,
mechanism-based inactivation of CYP2B6 and CYP2C8 by clopidogrel and Clo-AG was
particularly challenging due to the combination of reversible and irreversible inhibition
with multiple descriptive parameters required.

Previously published PBPK models of clopidogrel can be found in the
literature [31,33,94–97], each focusing on only one of the two major metabolic pathways,
with no model incorporating all four relevant metabolites. The presented clopidogrel model
predicts the complex metabolism of clopidogrel including simulations in CYP2C19 variant
allele carriers as well as the comprehensive DDI network involving several perpetrator and
victim drugs.

5. Conclusions

The developed clopidogrel parent-metabolite whole-body PBPK model shows a good
descriptive and predictive performance for all modeled compounds, especially considering
model complexity and the partly sparse data availability, e.g., regarding 2-Oxo-Clo. In
addition, the model has been successfully applied not only for the prediction and study of
the DGI involving CYP2C19 but also of DDIs centered around clopidogrel as CYP2C19 and
CYP3A4 substrate as well as CYP2B6, CYP2C8, and CYP2C19 inhibitor. Potential applica-
tions of the model include the support of MID3 or the provision of dose recommendations.
Further expansion of the model to other DDI partners may be considered in the future
once appropriate DDI studies and corresponding perpetrator/victim PBPK models become
available. For instance, simulation of DDIs involving potent CYP3A4 inhibitors such as
ketoconazole would be beneficial to further examine the role of CYP3A4 in the metabolism
of clopidogrel [24]. Although DDGIs involving clopidogrel are of great interest, only data
related to pharmacodynamics (PD) are currently available from the literature [98–100].
Once PK studies become available, the existing model can be further refined to cover
predictions of PK DDGI scenarios as well. Lastly, extending the model in future studies
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to include clopidogrel PD might further increase its applicability to investigate complex
DD(G)I dose–effect relationships.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/pharmaceutics14050915/s1: a comprehensive reference manual
containing detailed documentation on development and evaluation of the model. Section S1: PBPK
Model Building; Section S2: PBPK Model Evaluation; Section S3: DGI Modeling; Section S4: DDI
Network Modeling. References [101–148] are cited in the Supplementary Materials.
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