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Abstract: Post-COVID-19 pulmonary fibrosis (PCPF) is a long-term complication that appears in 

some COVID-19 survivors. However, there are currently limited options for treating PCPF patients. 

To address this problem, we investigated COVID-19 patients’ transcriptome at single-cell resolution 

and combined biological network analyses to repurpose the drugs treating PCPF. We revealed a 

novel gene signature of PCPF. The signature is functionally associated with the viral infection and 

lung fibrosis. Further, the signature has good performance in diagnosing and assessing pulmonary 

fibrosis. Next, we applied a network-based drug repurposing method to explore novel treatments 

for PCPF. By quantifying the proximity between the drug targets and the signature in the interac-

tome, we identified several potential candidates and provided a drug list ranked by their proximity. 

Taken together, we revealed a novel gene expression signature as a theragnostic biomarker for 

PCPF by integrating different computational approaches. Moreover, we showed that network-

based proximity could be used as a framework to repurpose drugs for PCPF. 

Keywords: single-cell RNA sequencing; COVID-19; pulmonary fibrosis; biological networks; drug 

repurposing 

 

1. Introduction 

Since 2019, the outbreak of the COVID-19 pandemic has caused millions of infections 

globally. Some patients may suffer from sequelae of the viral infection [1]. Post-COVID-

19 pulmonary fibrosis (PCPF) is one of the long-term complications being emphasized 

recently [1]. Considering the medical treatments for this disease are limited, it is crucial to 

leverage pharmacogenomic data to repurpose drugs treating this disease. In this study, 

we combine single-cell analysis, machine learning, and network biology to identify a 

novel transcriptomic signature. We show that this signature is promising in assessing the 

disease and surveying drugs that can potentially treat pulmonary fibrosis. 

Previously, network-based methods have successfully repurposed drugs treating 

several diseases [2–5]. Based on the property of biological networks, drugs with smaller 

proximity tend to be more effective than those with larger proximity [3]. However, since 

the choice of disease-related genes will largely impact results and inferences [6], whether 

the network-based approach can be applied to PCPF needs further verification. 

Single-cell RNA-sequencing analysis (scRNA-seq) has been used to investigate the 

host response in severe COVID-19 cases [7]. Melms et al. discovered that two cell types, 
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pathological and intermediate-pathological fibroblasts, are associated with the pathogen-

esis of pulmonary fibrosis; these cells strongly express markers of pathological fibroblasts 

(CTHRC1) and pathological extracellular matrix (COL1A1 and COL3A1) [7]. They also re-

vealed a clear relationship between fibrosis score and mortality, highlighting the im-

portance of pulmonary fibrosis in patients’ survival. Although the roles of pathological 

fibroblasts have been elucidated, whether these cells are applicable in clinical diagnosis, 

severity assessment, and treatment still needs further investigation. 

Here, we aim to reveal a novel signature of PCPF by interrogating scRNA-seq data. 

We showed that the signature could be used to diagnose and assess pulmonary fibrosis. 

Further, this signature can also be used to repurpose and prioritize potentially effective 

drugs treating PCPF. 

2. Materials and Methods 

2.1. Construction and Evaluation of the PCPF Signature 

The preprocessed single-cell gene expression profile underwent linearly dimensional 

reduction by principal component analysis (PCA). We used the Louvain algorithm to clus-

ter the cells on the K-nearest neighbors (KNN) graph, which was constructed on the prin-

cipal component (PC) space. We referred to the cell (sub)type information provided by 

Melms et al. [7]. We annotated each cell cluster based on the majority of the cell subtype 

in each cluster. Next, we made a case-control comparison to calculate the proportion dif-

ference in different cell clusters. To identify the characters of the cluster with the greatest 

proportional changes, we conducted differential gene expression analysis to compare the 

gene expression profiles of the cases and controls. We selected the top 200 up-regulated 

differentially expressed genes (DEGs) as the PCPF signature. We defined the signature 

score as the mean of the signature gene expression. We implemented the single-cell anal-

ysis with Scanpy [8]. 

We used DAVID (Available online: https://david.ncifcrf.gov/; (accessed on July 

2021)) [9] to infer the signature-related biological functions. We selected the Benja-

mini−Hochberg procedure for the adjustment of multiple hypothesis testing. 

2.2. Support Vector Machine (SVM) 

Samples from GSE32537 underwent a random selection where 80% of samples were 

used for model training and the remainder for testing. A non-linear decision boundary, 

radial kernel function, was used to maximize the margin M that delineates two different 

classes (i.e., cases and controls). Ten-fold cross-validation was used to select optimal tun-

ing parameters C and γ, where C determines the tolerance of violation to the margin and 

γ defines how far the support vectors should be taken. We compared the SVM values 

between cases and controls in the testing dataset (Wilcoxon rank-sum test). The procedure 

was implemented with the R package e1071. 

2.3. Principal Component Regression 

Observations from GSE32537 underwent random sampling where 2/3 of samples 

were used for model training, and the remaining samples were used for testing. Expres-

sion levels of genes within the signature were dimensionally reduced to PCs. We used 

PCs as features to predict DLCO and FVC. Suppose there are m observations, y represents 

the response vector in ℛ𝑚, and n is the total number of PCs. We composed a design matrix 

𝑷𝑚×(𝑘+1) with a constant column and the first k PCs, and fitted a linear regression model 

as: 

𝒚 = 𝑷𝜷 + 𝝐 (1) 

With the lowest loss (mean square error, MSE), where 𝜷 ∈ ℛ𝑘+1 is the coefficient 

vector, 𝝐 ∈ ℛ𝑚 is the error vector, and 𝑘 ∈ [1, 𝑛]. Ten-fold cross-validation was used to 
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assess the models for different k. Since the cut-offs of abnormal DLCO and FVC (% pre-

dicted) are typically set at 75% and 80% [10], respectively, we filtered out samples beyond 

those thresholds. The testing dataset was used to predict clinical traits (DLCO and FVC). 

Correlation analysis (Pearson’s r) was conducted to assess the association between pre-

dicted and observed values. We implemented the procedure with the R package pls [11]. 

2.4. Calculation of Network-Based Proximity 

Proximity is the shortest path length between two sets of nodes (drug targets and 

disease-related proteins) in the interactome. Suppose that T is the set of protein target(s) 

of a drug, D is the set of proteins relating to the disease, and 𝑙(𝑡, 𝑑) is the shortest path 

length between node t and d. Therefore, the shortest proximity (ds) is defined as follows: 

ds =  
1

||𝑇||
∑

1

||𝐷||
∑ 𝑙 (𝑡, 𝑑) ∀ 𝑡 ∈ 𝑇, 𝑑 ∈ 𝐷 

𝑑 ∈ 𝐷𝑡 ∈𝑇

 (2) 

To reduce the degree effect in proximity, we calculated the relative proximity Zds by 

stratifying the nodes according to their degrees. Specifically, nodes in the interactome 

were firstly arranged according to node degree and assigned to bins sequentially, where 

each bin can at most contain 100 nodes. Here, nodes in each bin will have similar, if not 

identical, degrees. Second, we randomly selected nodes from the same bin as nodes in the 

set T and D, then computed their shortest proximity. The procedure was iterated 100 times 

to obtain the mean (μds) and standard deviation (σds) of ds. The relative proximity (Zds) 

is defined as: 

Zds =  
ds − μds

σds
 (3) 

3. Results 

3.1. An Overview of the Analytical Pipeline 

The aims of this study are to discover a novel PCPF signature and leverage the net-

work-based drug repurposing method to explore medications treating PCPF. The analyt-

ical pipeline is shown in Figure 1. We first identify the cell (sub)types and annotate cell 

clusters. We next construct the PCPF signature and evaluate its roles in diagnosing and 

assessing pulmonary fibrosis. Finally, we use a network-based method to explore effective 

treatment for PCPF. 
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Figure 1. An overall analytical pipeline of this study. Schematic representation of the scRNA-seq 

analysis, signature construction, and application of the signature by integrating various computa-

tional methods. DEA: differential expression analysis; PCR: principal component regression; SVM: 

support vector machine. 

3.2. Identifying PCPF-Related Cell Clusters at the Single-Cell Level 

To explore cell clusters contributing to PCPF, we first investigated lung tissues on the 

dimensionally-reduced 2D plane (Figure 2A). To discover which cell cluster is mainly as-

sociated with PCPF, we conducted a case-control comparison on each cell cluster to com-

pare their proportional differences (Figure 2B). We then noticed that cluster 12, patholog-

ical fibroblasts (PFBs), has the most considerable difference (Figure 2C). Therefore, we 

posited that PFBs play crucial roles in PCPF pathogenesis and further explored their clin-

ical impact. 
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Figure 2. Single-cell transcriptome analysis of the lung tissues in COVID-19 cases. (A) Single-cell 

analysis of 116,314 cells from lung tissues. Nineteen cell clusters were identified and annotated 

based on the cell (sub)types provided by the literature [7]. (B) Visualization of the proportional 

difference of cells between COVID-19 patients and healthy controls. (C) Comparison of cluster 12 

(PFBs) proportion between COVID-19 patients and healthy controls. (D) Differentially expressed 

gene analysis of cluster 12. Up-regulated and down-regulated genes are highlighted in red and 

blue, respectively. (E) Functional enrichment analysis of the differentially expressed genes. En-

riched biological processes are shown in a bar plot. pFB: pathological fibroblast. PCPF: post-

COVID-19 pulmonary fibrosis. 

3.3. Comparison of Pathological Fibroblasts (PFBs) to other Cell Types 

A

B C

D E
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To deduce the roles of PFBs in PCPF, we compared the gene expression profile be-

tween PFBs and other cells (Figure 2D and Supplementary Figure S1). To infer the biolog-

ical functions in which DEGs are involved, we performed a functional enrichment analy-

sis to identify the enriched biological processes (BP) in PFBs (Figure 2E). We found that 

viral transcription is the most enriched term, followed by fibrosis formation (e.g., extra-

cellular matrix organization and collagen fibril organization). The DEGs derived from 

PFBs show meaningful and related biological functions, suggesting that PFBs may con-

tribute to PCPF pathogenesis. Therefore, we constructed a transcriptome signature (Sup-

plementary Table S1) to represent the distinct expression profile of these PFBs and further 

explored the roles of the signature on pulmonary fibrosis patients’ outcomes. 

3.4. Difference in PFB Signature between the Patients and Healthy Controls 

To further discover the signature derived from the scRNA-seq of COVID-19 samples, 

we externally validated the PFB signature in another cohort, comprising 119 idiopathic 

pulmonary fibrosis (IPF) patients and 50 healthy controls [12]. IPF patients and healthy 

people have a distinct signature pattern (Figure 3A,B). Next, we examined whether pa-

tients’ symptoms (SGRQ) and lung function (FVC and DLCO) could be clearly visualized 

within the two main PCs as well. DLCO and FVC show an increasing trend from the top 

left to the bottom in the first two principal component dimensions (Figure 3C,D), suggest-

ing that patients with different IPF severity are dissimilar in terms of their signature. Alt-

hough not as clear as that in lung function, the SGRQ trend is also similar, where more 

severe patients appeared in the top left, and less impaired patients appeared in the bottom 

right (Figure 3E). 

 

Figure 3. Discovery of distinct expression of the signature in pulmonary fibrosis patients. (A) Hier-

archical clustering of samples based on the signature expression. Heatmap values are the scaled 

gene expression. (B) Visualization of patients and controls in the two main principal components. 

(C–E) Visualization of DLCO (C), FVC (D), and SGRQ (E) in the two main principal components. 

A B

C D E



Pharmaceutics 2022, 14, 971 7 of 15 
 

 

DLCO: diffusing capacity for carbon monoxide; FVC: forced vital capacity; SGRQ: St. George’s 

Respiratory Questionnaire. 

3.5. The Signature Can Be Used in the Diagnosis and Severity Assessment of  

Pulmonary Fibrosis 

Current genetic tools for the diagnosis and assessment of pulmonary fibrosis are lim-

ited. Therefore, we explored whether the signature can be applied to these clinical chal-

lenges. We first revealed that FVC, DLCO, and SGRQ are significantly correlated with the 

signature score (Figure 4A–C). Moreover, as a potential confounder of clinical traits, age 

has a very weak correlation with SGRQ, FVC, and DLCO (Supplementary Figure S2). 

Next, we compared signature scores between IPF patients and healthy people and found 

IPF patients have significantly higher scores compared to the controls (Figure 4D). 

 

Figure 4. Investigating the association between signature expression and lung functions. (A–C) Cor-

relation analysis of signature score and DLCO (A), FVC (B), and SGRQ (C). The dashed line repre-

sents the linear regression line. (D) Comparison of signature expression between IPF patients and 

healthy controls. DLCO: diffusing capacity for carbon monoxide; FVC: forced vital capacity; IPF: 

idiopathic pulmonary fibrosis; SGRQ: St. George’s Respiratory Questionnaire. 

Considering the correlation between gene signature and traits, we next used the sig-

nature to train machine learning models to predict clinical outcomes of pulmonary fibrosis 

patients. We found that an SVM could perfectly differentiate pulmonary fibrosis patients 

from healthy controls (Figure 5A,B) without adding extra clinical features. We next ex-

plored whether the signature could predict patients’ lung function test results (% of pre-

dicted DLCO and FVC). PC regression was used to fit the training data. The correlation 

coefficients between the predicted and observed DLCO and FVC are 0.61 (p = 2.91 × 10-4) 

and 0.77 (p = 2.52 × 10-6 respectively (Figure 5C,D). 

A B

C

R = 0.24 
p = 0.0085

R = -0.25 
p = 0.012 R = -0.35 

p = 1.1e-4

D
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Figure 5. Signature as a diagnosis and assessment tool for pulmonary fibrosis using machine 

learning models. (A) The SVM scores for IPF patients and healthy controls. (B) Comparison of 

SVM decision value between IPF patients and healthy controls. (C,D) Correlation analysis be-

tween observed and predicted DLCO (C) and FVC (D). The dashed line represents the linear re-

gression line. DLCO: diffusing capacity for carbon monoxide; FVC: forced vital capacity; IPF: idio-

pathic pulmonary fibrosis; SVM: support vector machine. 

Altogether, the signature has high confidence in classifying pulmonary fibrosis pa-

tients and predicting lung function test results; this implies its potential applicability in 

clinical diagnosis and severity assessment. 

3.6. The Network-Based Proximity between Anti-Pulmonary Fibrosis Drugs and the Signature 

Considering the roles of the signature in the diagnosis and assessment of pulmonary 

fibrosis, we defined the top-20 genes in the signature as the disease-related genes. Since 

the network proximity has been used to evaluate drugs for various diseases [3,4], we pos-

tulated that this method could also prioritize and repurpose the anti-PCPF drugs. In this 

case, anti-pulmonary fibrosis drugs should have closer proximity than the drugs with un-

known anti-pulmonary fibrosis effects. 

We calculated the shortest proximity (ds) between drug targets and PCPF-related 

proteins on the interactome (Figure 6A). Since our hypothesis is that shorter proximity is 

associated with therapeutic effects, it is necessary to examine other factors that simultane-

ously affect proximity. In particular, node degree has been known to be anti-correlated 

with proximity [3], defined here as degree effect. Degree effect can lead to a biased inter-

pretation of proximity in drug repurposing analyses. For instance, the cytotoxic agents 

typically have lower proximity than other drug categories because anti-cancer drugs’ tar-

gets tend to have higher node degrees [2]. In this study, we also observed this phenome-

non (Supplementary Figure S3A,B). We then calculated the relative proximity (Zds) by 

randomly selecting the degree-stratifying nodes on the interactome (Figure 6B). It is clear 

that the degree effect is less prominent in Zds (Supplementary Figure S3C,D). Next, to 

prove that the known-effect (anti-pulmonary fibrosis) drugs have smaller proximity than 

the unknown-effect drugs, we compared Zds between these two categories. We found 

that the known-effect drugs have significantly lower proximity (Figure 6C), with predic-

tive performance AUC equal to 0.672 (Figure 6D). To further validate the results, we used 

A

C D

B
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another set of anti-fibrosis drugs (not restricted to pulmonary fibrosis) [13] and found 

identical trends (Supplementary Figure S4A,B). Based on the above results, Zds can be 

used as a predictor to assess anti-pulmonary fibrosis effects. Therefore, we summarized 

the drugs with high repurposing potential in Table 1. The full drug list and their proximity 

information can be found in Supplementary Table S2. 

Table 1. Selected top-ranked drugs with highly anti-pulmonary fibrosis potential. 

Name 

Z-Shortest 

Proximity 

(Zds) 

Shortest  

Proximity 

(ds) 

Structure Reference 

Benzoic Acid −17.91 0.726 

  

[14,15] 

Artenimol −14.18 2.019 

  

[16] 

Quercetin −12.48 2.060 

  

[17] 

Tauroursode-

oxycholic 

acid 

−11.73 0.783 

 

[18] 

Atorvastatin −10.51 2.323 

  

[19,20] 

Dinoprostone −10.45 2.376 

  

[21] 

Emodin −10.25 1.238 

  

[22] 

Valproic 

Acid 
−10.11 2.373 

  

[23] 
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Fluvastatin −10.03 2.379 

 

[20] 

Cerulenin −10.03 0.688 

  

[24] 

Naringenin −9.40 2.204 

  

[25] 

Fisetin −9.18 1.325 

  

[26] 

Vitamin D −9.18 1.690 

  

[27] 

 

Figure 6. Characterizing the roles of proximity on drug repurposing for anti-pulmonary fibrosis 

drugs. (A) Schematic representation of the method. (B) Distribution of different proximity measures. 
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(C) Comparison of proximity, Zds, between drugs with known and unknown anti-pulmonary fi-

brosis effects. (D) Analysis of the predictive performance of Zds on anti-pulmonary fibrosis effects 

using the ROC curve. 

4. Discussion 

This study integrates various computational approaches to reveal a crucial therag-

nostic signature in PCPF. We show that the signature is associated with viral infections, 

pulmonary fibrosis, and clinical outcomes. Moreover, we demonstrate that the machine 

learning models trained with the signature show decent performance in diagnosing pul-

monary fibrosis and predicting patients’ lung function. Lastly, we prove that drugs with 

known anti-pulmonary fibrosis effects have closer proximity than those with unknown 

effects, suggesting that a network-based framework can also be applied to prioritize and 

repurpose drugs in PCPF. 

Considering the design of this study was for PCPF, we notice that the viral infection-

related GO term is the most enriched (Figure 2E). This phenomenon also appears in the 

network-based analysis, where drugs with strong anti-COVID-19 effects have signifi-

cantly closer (smaller) proximity than drugs with weak or no-effect (Supplementary Fig-

ure S3D). This observation suggests that the signature may be associated with two events: 

COVID-19 viral infection and pulmonary fibrosis. Although pulmonary fibroblasts are 

less well known as target cells of the virus, recent studies revealed that alveolar fibroblasts 

could also be infected by the virus due to their expression of ACE2 receptors [28]. Aloufi 

et al. found that IPF fibroblasts have an even higher expression of ACE2 receptor, high-

lighting the roles of pathological fibroblasts in COVID-19 infection [29]. 

We also observe some medical procedure-related terms (e.g., response to mechanical 

stimulus). Although these terms are not significantly enriched (Figure 2E), they still imply 

that patients may undergo specific medication therapies or receive mechanical ventilation 

during hospital treatment. 

One of the advantages of performing scRNA-seq on clinical samples is the high-res-

olution mapping of each cell. However, a deeper inspection may imply a smaller patient 

sample size because the number of patients enrolled can rarely be as large as that in bulk 

RNA analysis. There are 26 cases in the scRNA-seq dataset; it is reasonable to challenge 

any inference made from only 26 persons. Therefore, externally validating the results de-

rived from scRNA-seq in a broader population can generate more confidence in the re-

sults. Nonetheless, it is undeniable that some facts exist such that the results from scRNA-

seq may not be fully in concordance with bulk RNA analysis. Zero inflation, for instance, 

can lead to the underestimation of the low-expressed genes [30]. Another challenge is that 

the result in one patient cohort may not be reproducible in another simply due to numer-

ous uncontrollable factors between the two cohorts. However, in our study, the signature 

derived from scRNA-seq also play a vital role in another bulk-sample patient cohort, sug-

gesting that the signature is reproducible and can be externally validated. 

There are limitations to this study. First, we applied the signature derived from PCPF 

to IPF patients. It is undeniable that the etiologies of PCPF and IPF are less likely to be 

identical. The causes of PCPF may include the viral infection and the host immune re-

sponse; on the other hand, the causes of IPF remain unclear, even though there are several 

studies revealed the genetic predispositions or causal variants of IPF using genome-wide 

association studies with fine-mapping [31] or polygenic risk score [32]. However, regard-

less of the causes, PCPF and IPF are fibrogenesis and fibrosis in the lung tissue. Consider-

ing the limited clinical information on PCPF, we used IPF as a surrogate to investigate the 

potential impacts and clinical insights of this PCPF signature, in particular the application 

in drug repurposing. We understand that population structure and other bassline demo-

graphic characteristics could influence the performance of the gene signature score, and 

thus the signature score should be carefully interpreted when applying to other ethnic 

groups, such as Asians. Another limitation is the lack of lung function test results in the 
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single-cell cohort. This makes it harder to compare the baseline characteristics of the IPF 

and PCPF patients. 

The rationale for the network-based drug repurposing approach is that a drug may 

still be effective when its target proteins are ‘close’ to the disease-related protein(s) in the 

interactome [3,33,34]. If this argument is true, drugs with known effects on disease should 

have closer proximity compared to the unknown-effect drugs. Accordingly, this requires 

identifying a significant difference in proximity between known-effect and unknown-ef-

fect drugs. However, in some diseases, medical treatment options are very limited, such 

as IPF [35,36]. There are, in fact, only two FDA-approved drugs, nintedanib, and 

pirfenidone, that seem to be associated with a slower progression of IPF [36]. Therefore, if 

we simply assign drugs to either known or unknown effects based on current clinical 

knowledge, hypothesis testing between the two drug categories (known vs. unknown ef-

fect) can hardly be conducted due to highly unbalanced sample sizes. To address this 

problem, we searched the published literature which conducted drug repurposing for 

pulmonary fibrosis [37] and pan-fibrosis [13] and used the repurposed drugs as the 

known-effect drugs. 

Previous studies have applied the network-based drug repurposing framework to 

various diseases [3,38]. Nonetheless, due to the complexity of disease mechanisms, vali-

dating this method is necessary when dealing with different conditions. For instance, pre-

viously, we found that, in lung adenocarcinoma, the closest proximity on the weighted 

interactome shows the best performance in identifying promising drugs [2]. In this study, 

however, we noticed that z-transformed shortest proximity, Zds, has better performance. 

This observation implies that the performance of proximity metrics may be context-de-

pendent. 

Although proximity may be associated with drug effectiveness, we urge caution 

when interpreting the ranked drug list, as proximity is not the only factor contributing to 

drug effectiveness. For instance, we found that nintedanib, one of the two currently ap-

proved drugs for IPF, has small proximity (Zds = –3.22; rank = 798/5643). However, the 

other approved anti-IPF agent, pirfenidone, has large proximity (Zds = 1.45; rank = 

5115/5643). Therefore, this observation suggests that drugs with distant proximity could 

still be effective, as proximity may be only one of the many factors affecting drug effec-

tiveness. Other crucial factors, such as binding affinity, also matter. 

Within the top-ranked repurposed drugs (top 3% of the drugs in Supplementary Ta-

ble S2), we found some drugs belonging to antibiotic or antiviral agent categories, which 

may be related to pneumonia treatment [39], acute exacerbation of pulmonary fibrosis 

[40], or other morbidities, such as pneumonitis, opportunistic infection, or tissue inflam-

mation [41]. They may not truly show strong anti-fibrosis effects. On the other hand, we 

noticed that many top-ranked candidates on this list show promising anti-pulmonary fi-

brosis effects. Artenimol (Zds = –14.18; rank = 28/5643) (also known as dihydroartemis-

inin), for instance, can reduce lung fibrosis by suppressing the Notch signaling pathway 

[42] and pro-fibrotic pathways [43]. Another example is dinoprostone (also known as 

prostaglandin E2). It was reported that inhaling liposomal prostaglandin E2 can treat pul-

monary fibrosis by restricting inflammation and fibrotic injury in the lungs [21]. 

Another interesting drug category is statins, a well-known class of lipid-lowering 

agents. A retrospective study surveying 323 IPF patients found that statin-users have a 

slower annual decline in DLCO and FVC than non-users [20]. We then searched our drug 

list for the types of the statin used in this study [20] and found that all of them have very 

small Zds: atorvastatin (Zds = –10.5), fluvastatin (Zds = –10.03), rosuvastatin (Zds = –8.37), 

pravastatin (Zds = –6.73), and simvastatin (Zds = –4.43). 

5. Conclusions 

We reveal a novel theragnostic signature for PCPF and provide a prioritized drug list 

based on network-based proximity, Zds. Our study shows the applicability of integrating 
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various computational methods when analyzing biomedical data and, importantly, pro-

vides useful information for diagnosing, assessing, and treating PCPF. 

Supplementary Materials: The following are available online at https://www.mdpi.com/arti-

cle/10.3390/pharmaceutics14050971/s1, Figure S1: The expression of DEGs in PCPF patients and the 

controls, Figure S2: The correlation analysis between age and other clinical features, Figure S3: The 

degree effect on proximity, Figure S4: Characterizing the roles of proximity on the repurposing of 

anti-fibrosis drugs, Table S1: The transcriptome signature of pathological fibroblasts in PCPF, Table 

S2: The full list with 5644 drugs and their proximity (Zds). 
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