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Abstract: Physiologically based pharmacokinetic and absorption modeling are being used by industry
and regulatory bodies to address various scientifically challenging questions. While there is high
confidence in the prediction of exposure for the BCS class I drugs administered as immediate-release
formulations, in the case of prolonged-release formulations, special attention should be given to
the input dissolution data. Our goal was to develop and verify a PBPK model for a BCS class I
compound, ropinirole, and check the biopredictiveness of the dissolution data for the prolonged-
release formulation administered by Parkinson’s patients. The model was built based on quality
control dissolution data reported in the certificates of analysis and verified with the use of data
derived from five clinical trial reports. The simulated pharmacokinetic parameters being within a
two-fold range of the observed values confirmed acceptable model performance, in vivo relevance of
the in vitro dissolution profiles, and indirectly indicated ropinirole stable release from the formulation
in the patients’ gastro-intestinal tract. Ropinirole PBPK model will be used for exploring potential
clinical scenarios while developing a new formulation.

Keywords: ropinirole; Parkinson’s disease; biopredictive dissolution; physiologically based pharma-
cokinetic modeling

1. Introduction

Parkinson’s disease is a progressive neurodegenerative disorder leading to motor and
nonmotor disability [1,2]. There are a number of effective therapeutic options intended
for the management of symptoms; however, none of them can stop the disease’s progres-
sion [2,3]. Therefore, antiparkinsonian therapy is chronic and aims at achieving stable
drug plasma concentrations without rapid fluctuations, in what further results in a stable
therapeutic response [4,5]. To increase the level of patients’ compliance and keep the plasma
concentration in the blood stable, the prolonged-release formulations of antiparkinsonian
drugs are often developed. One example is ropinirole, a dopaminergic drug that is used in
the treatment of Parkinson’s disease (PARKD) and restless leg syndrome (RLS) [6,7]. As the
drug stimulates dopamine receptors, its continuous and smooth release from a formulation
has crucial importance in terms of both efficacy and safety [8]. After the immediate-release
tablets were first approved by the FDA in 1998, the 24-h prolonged-release formulation
was developed by GSK and approved in 2008 [9]. Considering the fact that ropinirole
is a valuable therapeutic agent in Parkinson’s disease, the development of new generic
formulations should be expected. The new formulations are usually selected based on
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the biopharmaceutical or clinical behavior anticipated in healthy adults and are subse-
quently used in patients without consideration of the physiological differences between
populations [10]. In the case of Parkinson’s disease, patient physiological parameters that
could affect drug exposure can be divided into two categories: age-related and disease-
related. Regarding the latter, Parkinson’s disease is considered to be a systemic disease that
changes gastro-intestinal (GI) conditions, which are crucial for drug absorption. However,
these changes are often described as symptoms rather than as parameters, which makes it
challenging to characterize them quantitatively [10]. Such an attempt was undertaken by
Wollmer and Klein, who reviewed patient-specific GI parameters with the aim to create
a platform for in vitro models for predicting in vivo performance of oral formulations
administered to Parkinson’s patients [11]. The authors concluded that while there is a
considerable amount of information regarding salivary secretion, gastric emptying, and
oropharyngeal and esophageal passage, more knowledge is required in the area of motility
patterns and pressures in the GI tract, as well as GI fluid composition of Parkinson’s pa-
tients. Such a knowledge gap makes it difficult to design a biorelevant dissolution method
for antiparkinsonian drugs.

Taking into account the potential for new formulation development and the fact that
ropinirole’s PK might be affected by both age- and disease-related physiological parameters,
it is a good practice to have a PBPK model which can help explore a number of different
clinical scenarios and understand whether the quality control dissolution data can be
biopredictive for an in vivo dissolution. The purpose of this study was to develop a
PBPK model for ropinirole prolonged-release formulation in order to test the hypothesis of
biopredictiveness of dissolution data obtained via the USP method without consideration
of changes in GI tract of Parkinson’s patients.

2. Materials and Methods
2.1. PBPK Model Development

All the modeling and simulation activities were conducted using Simcyp® Simulator
(V20, Certara, Sheffield, UK). Data for model development and verification was extracted
from publicly available sources. Ropinirole mean concentration-time profiles were digitized
using GetData Graph Digitizer [12], where necessary.

The PBPK model parameters are provided in Table 1 below.

Table 1. Ropinirole PBPK model parameters used for the prolonged-release formulation [13].

Parameter Description Value Reference

Ropinirole physicochemical properties and blood binding

MW (g/mol) Molecular weight 260.38 Chemicalize.com

LogPo:w
Neutral species octanol: buffer

partition coefficient 2.7 [14]

Type of the compound Monoprotic base

pKa Dissociation constant 9.79 [15]

B/P Blood-to-plasma partition ratio 1.09 [16]

fu Fraction unbound in plasma 0.68 [16]

Absorption model Advanced Dissolution, Absorption, and Metabolism (ADAM) model

fa Fraction available from a dosage form 0.99 Simcyp® predicted

ka (h−1) First-order absorption rate constant 2.19 Simcyp® predicted

Papp (PAMPA, 10−6 cm/s) Apparent permeability in PAMPA 26.8 [17]

Peff, man (10−4 cm/s) Effective human jejunum permeability 5.01 Simcyp® predicted
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Table 1. Cont.

Parameter Description Value Reference

Weibull fit parameters

alpha 33.70
Study 112771, Aranda site [18]

beta 1.33

alpha 28.95
Study 112771, Crawley site [18]

beta 1.23

alpha 33.66
Study 101468/219, 1 mg [19]

beta 1.34

alpha 30.86
Study 101468/219, 2 mg [19]

beta 1.29

alpha 29.57 Study 101468/219, 3 mg [19]
beta 1.20

alpha 33.71
Study 101468/165, 2 mg [20]

beta 1.35

alpha 24.12
Study 101468/165, 4 mg [20]

beta 1.22

alpha 34.02
Study 101468/165, 8 mg [20]

beta 1.37

alpha 17.14
Study101468/164 [21]

beta 1.08

alpha 38.44
Study ROP109087, 4 mg [22]

beta 1.35

alpha 26.55
Study ROP109087, 8 mg [22]

beta 1.22

alpha 22.24
Study ROP109087, 12 mg [22]

beta 1.19

Distribution Model Full PBPK

Vss (L/kg) Volume of distribution at steady state 3.37 Simcyp® predicted
Method 2

Elimination

Enzyme kinetic parameters for IVIVE

N-despropylation Enzyme Value

Vmax (nmol/h/mg) CYP1A2 7.83

[23]

Km (µmol) CYP1A2 34.63

Vmax (nmol/h/mg) CYP3A4 523.33

Km (µmol) CYP3A4 2700.00

Hydroxylation

Vmax (nmol/h/mg) CYP1A2 6.93

Km (µmol) CYP1A2 45.87

Vmax (nmol/h/mg) CYP3A4 255.33

Km (µmol) CYP3A4 3933.33

fumic
Fraction unbound in an in vitro

microsomal preparation 0.39 Estimated based on dataset
from Study No. 101468/197 [24]
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2.2. Description of Distribution and Elimination

To reduce the potential interference of the absorption-related confounding factors and
gain confidence in the ropinirole volume of distribution and systemic clearance, a PBPK
model was initially developed for the immediate-release oral formulation [13]. The above-
mentioned parameters, namely clearance and volume of distribution, were estimated using
a bottom-up approach due to the fact that intravenous clinical data for this compound is
scarce [25]. To describe ropinirole distribution, a full PBPK model was chosen based on
the compound’s lipophilicity (logP = 2.7 [14]), the volume of distribution/bioavailability
reported in the literature being around 7 L/kg, and the fact that the target for the drug action
is located in a peripheral organ, namely CNS [26]. To incorporate clearance into the model,
two approaches were considered: interspecies scaling and in vitro–in vivo extrapolation
(IVIVE) [13]. The IVIVE approach has been chosen for the final model because systemic
clearance predicted by the interspecies scaling did not properly describe multiple dosing
scenarios. For illustration of the differences between two approaches, we simulated study
No. 112771. It is worth noting that a fraction of the drug unbound in the incubation
media (fuinc) was not specified in the in vitro study report and was fitted in Simcyp using
Nelder–Mead minimization method, 0.3 (0.00; 1.00) as initial value (lower bound; upper
bound, respectively), maximum number of iterations 100, and weighted least-squares
objective function.

2.3. Description of the Absorption

After defining the volume of distribution and systemic clearance, the next step was to
model ropinirole absorption from a 24-h prolonged-release formulation. For this purpose,
the advanced dissolution, absorption, and metabolism (ADAM) model implemented in
Simcyp Simulator was chosen. ADAM model consists of nine anatomically relevant
compartments: stomach, seven compartments reflecting the small intestine, and the colon.
The drug’s movement from one compartment to another is described as the first-order
process. Additionally, the model allows accounting for intestinal efflux and metabolism.
All the processes occurring in the GIT are described by the set of ordinary differential
equations. The general form of the equations applicable for the small intestine is provided
below [27]:

Amount of solid mass available for dissolution (AS):

dAS,n

dt
= −

dAdiss,n

dt
− kt,n AS,n + kt,n−1 AS,n−1 +

dAF,n

dt
(1)

The amount of drug dissolved (AD):

dAD,n

dt
=

dAdiss,n

dt
−

(
kdeg,n + kan + kt,n

)
AD,n + kt,n−1 AD,n−1 + γnCLuint−T,n f ugutCent,n (2)

The drug concentration in the enterocytes (Cent):

dCent,n

dt
=

1
Vent,n

(
Adiss,nkan − Cent,nQent,n − f ugutCent,n[CLuint−G,n + CLuint−T,n]

)
(3)

where: n is the small intestine compartment, n = 1, 2, . . . , 7
dAdiss,n

dt : Dissolution rate
kt,n: Transit time in the n-th segment of the small intestine
AF,n: Amount of solid mass trapped in the formulation and not available for dissolution
immediately
kdeg,n: Drug degradation rate constant (in lumen)
kan: Absorption rate constant
γn: The unit adjustment factor for the drug transported out of the enterocyte
CLuint−T,n: Efflux clearance from the enterocyte
CLuint−G,n: Metabolic clearance within the enterocyte
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f ugut: Fraction of the drug unbound in the enterocyte
Cent,n: Drug concentration in the enterocyte
Vent,n: The volume of enterocytes in the segment
Qent,n: Blood flow to the intestinal segment

In addition, ADAM model included Segregated Transit Time sub-model, which was
used to define mean residence time for the fluid and dissolved drug in the stomach, small
intestine, and colon.

2.4. Prolonged-Release Formulation

The prolonged-release formulation modeled in this study was Requip XL [9]. The
tablet is based on Geomatrix technology [28] and consists of a slow-releasing active core
sandwiched between two semi-permeable inactive layers. The list of typical excipients can
be found in Requip XL Approval Package [9]. The complete release of the active substance
from the formulation is achieved in 24 h.

2.5. Dissolution Data

All the dissolution-related processes were implemented into the model directly using
quality control dissolution profiles extracted from GSK clinical study reports available
at [29]. The details of the dissolution method were not disclosed in the published doc-
uments; however, it was stated that the dissolution profiles complied with USP <724>
monograph requirements, allowing for the assumption of compendial conditions.

In addition, in a clinical pharmacology and biopharmaceutics review for Requip XL
conducted by Center for Drug Evaluation and Research (hereinafter, CDER review) [9], the
following dissolution method proposed by a Sponsor is described: USP Apparatus 2 with
paddles, medium: citrate buffer at pH 4.0, paddle speed: 100 rpm. It is also stated that
Requip XL dissolution was independent of the strength or the dissolution media (media
with physiologically relevant pHs were tested), except for 0.1 M hydrochloric acid, where
the drug release was slightly faster because of slightly impaired gelling of hypromellose in
the acidic media.

It is important to highlight that the dissolution profiles, trial design, and concentration-
time profiles for the model verification were coming from the same source. The dissolution
profiles reported in the certificates of analysis included three timepoints which were used
to fit Weibull function parameters α and β:

Fdiss = Fmax(1 − e−
(t−lag)β

α ) (4)

assuming Fmax = 100% and lag time = 0. Alpha and beta parameters of the Weibull fit for
each formulation are presented in Table 1.

The representative dissolution profiles together with the Weibull fits are provided in
Figure 1 below.
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Table 2. Summary of the clinical trial design used in the simulations.

Study ID * and
Reference Simulation ID Clinical Study

Population
Virtual

Population Subject Age n of Subjects PK Assessment
Dose, mg Dosing Regimen Prandial State

112771 [18] a (Aranda site)
b (Crawley site) HV Sim-Healthy

Volunteers 18–50 50 2 QD Fasted

101468/219 [19]

c

HV Sim-Healthy
Volunteers

18–44 31–33
1
2
3

QD
QD
QD

Fed

d

e

101468/165 [20]

f

PARKD
Sim-

NEurCaucasian 47–87 25

2 QD × 7 days **

g 4 2 mg QD × 7 days,
4 mg QD × 7 days **

h 8

2 mg QD × 7 days
4 mg QD × 7 days
6 mg QD × 7 days

8 mg QD × 7 days **

101468/164 [21]

i

PARKD
Sim-

NEurCaucasian 34–80 21 8

2 mg QD × 7 days
4 mg QD × 7 days
6 mg QD × 7 days

8 mg QD × 7 days **

Fasted

j Fed

ROP109087 [22]

k

PARKD
Sim-

NEurCaucasian
47–81 27

4 2 mg QD × 7 days
4 mg QD × 7 days **

Fasted

l 8

2 mg QD × 7 days
4 mg QD × 7 days
6 mg QD × 7 days

8 mg QD × 7 days **

m

12

2 mg QD × 7 days,
4 mg QD × 7 days
6 mg QD × 7 days
8 mg QD × 7 days

12 mg QD × 7 days **

Fasted

n
Fed

* According to the GSK Clinical Trials Register; ** PK assessment on the last day of the dosing period or at steady state for the highest dose.
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Additionally, Study No. ROP109087 for 8 mg was simulated with the use of dissolution
data extracted from CDER review: the profiles in citrate buffer of pH 4.0 and in phosphate
buffer of pH 6.8, which included eight timepoints each. The results were compared with
those obtained with the three-timepoint dissolution profile from the certificate of analysis.

2.6. Intestinal Permeability

It was assumed that the drug intestinal transport is passive, therefore the result of PAMPA
study was used as the model input (apparent permeability (Papp) = 26.8 × 10−6 cm/s) [17]. The
assumption is supported by a lack of reports providing information on ropinirole affinity
to transporters [30]. Papp was scaled to the permeability in Caco-2 cell line based on the
established correlation described in [30] and subsequently to human effective permeability
(Peff) according to [31].

2.7. Fraction of Drug Unbound in the Enterocytes (fugut)

Fraction of drug unbound, fugut, was predicted by the Simcyp built-in model using
the Rodgers and Rowland method (Method 2 on-screen in Simcyp Simulator) [32].

2.8. Intestinal Metabolism

Ropinirole is a soluble and permeable drug; therefore, intestinal metabolism is not of
clinical relevance for this compound. Moreover, the main ropinirole metabolizing enzyme
CYP1A2 is not expressed in the intestinal wall [23].

To summarize the model-building step, the assumptions of the ADAM model are
provided below:

• The release from the formulation is the only rate-limiting factor in the ropinirole’s absorption.
• In vitro dissolution data, obtained by the quality control method, is biopredictive as

for ropinirole’s behavior in the human GIT.
• There is no drug degradation in the intestinal lumen.
• The intestinal absorption is based on passive diffusion, and there are no efflux pro-

cesses taking place at the intestinal wall.
• Ropinirole intestinal metabolism is negligible.
• The formulation provides stable active substance release in the Parkinson’s patients

GIT environment.

2.9. Model Verification and Application

Clinical study results from the reports mentioned previously were used for model
verification. During the simulation exercises, the trial design was followed exactly as in
the clinical trials. Namely, number of patients, age ranges, and male-to-female ratios in
virtual trials were consistent with those in clinical trials. Demographic, anatomical, and
physiological parameters of virtual patients were generated by the software using Monte
Carlo approach based on the population libraries available in the Simcyp. For simulation
of trials in healthy volunteers, Sim-Healthy Volunteers library was used. This virtual
population is based on real life data from subjects who participated in Phase I studies [33].
For the simulation of trials in Parkinson’s patients, Sim-NEurCaucasian population was
used, considering the unavailability of the disease population. North European Caucasian
population in Simcyp represents “general” rather than healthy population because it is
difficult to define the latter, taking into account age-related changes in physiology together
with minor and major health issues. The parameters of this population have been described
previously [34]. The Geriatric population available in the simulator could not be used for
simulation of the specified trials because the lower age limit of patients in the clinical trials
was 34 years. The summary for trial design is provided in Table 2 below, including the
indication of actual clinical trial populations versus virtual populations used in Simcyp.

It should be noted that healthy volunteers and patients in some cases administered
ropinirole with domperidone. This combination does not bring any modification to the
pharmacokinetics of either of them [35].
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For the assessment of model performance, the simulated versus observed fold differ-
ences were calculated for Cmax, Tmax, and AUC (0–∞ or 0–24 depending on the study),
along with the visual check of the concentration–time profiles. After the model verification
step, we simulated the study ROP109087 in order to compare the drug exposure between
the currently used group of patients (Sim-NEurCaucasian, aged 47–81) and three groups of
geriatric population aged 65–75, 75–85, and 85–98 years old. For these simulation runs, we
used Sim-Geriatric NEC population, which is based on Sim-NEurCaucasian population
and takes into account age-dependent changes in physiological parameters [36].

3. Results

The model was verified by simulating five clinical trials and covered all the strengths
available on the market (from 2 to 12 mg), as well as fasted and fed states. The simulated
versus observed fold values for Tmax, Cmax, and AUC are provided graphically in Figure 2.
All the values were within a two-fold range, which was the criteria for PBPK model
performance assessment used in this study. The only exception was Tmax fold in study No.
101468-219 (1 mg), which was 2.37. For calculation of fold differences, mean, geometric
mean, or median values were extracted from the studies (depending on availability in the
report), and the respective values were generated by the simulator, both from the statistical
perspective (for example, mean observed vs. mean simulated) and from the PK perspective
(for example, AUC0-inf observed vs. AUC0-inf simulated).
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The visual checks are provided in Figure 3. Figure 3a–e represents single-dose studies
whereas Figure 3f–n represents multiple-dose studies. The multiple-dose simulations are
additionally zoomed in the timeframe where the observed data were available. Figure 4
illustrates the model performance when IV clearance was predicted based on interspecies
scaling and used in the model as a whole value. The simulation results with the use
of different dissolution profiles are provided in Figure 5. Results of trial simulations in
geriatric population are presented in Figure 6.
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profiles of ropinirole (5%th and 95%th percentiles are presented as grey dashed lines). Simulation
of study No. ROP109087 (4 mg) using Sim-NEurCaucasian population, 47–81 years old (black line);
Sim-Geriatric population 65–75 years old (green line); Sim-Geriatric population 75–85 years old (blue
line); and Sim-Geriatric population 85–98 years old (red line). Dotted lines represent 5th and 95th
percentiles, circles represent observed data. Data presented as mean and SD.
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4. Discussion

Physiologically based pharmacokinetic and absorption modeling are being used by
industry and regulatory bodies to address various scientifically challenging questions. The
PBPK models describing mechanistic absorption process of orally taken drugs have been
less commonly reported as part of regulatory approvals in comparison to other application
areas. According to Zhang et al., the distribution of PBPK submissions by application areas
in 2018–2019 included predominantly the DDI-related PBPK analyses (56%) of the total
number of applications, while absorption accounted for 7% [37]. For the current project,
detailed, case-by case-analysis was applied, yet there is high confidence in the predictions
for the BCS class I drugs [38,39]. The purpose of this study was to develop and verify a
PBPK model for the BCS class 1 compound ropinirole, where the model is supposed to be
able to predict ropinirole exposure of prolonged-release formulation for oral administration
in various doses to the patient population.

The key PK parameters of the model were already verified in the number of simu-
lations for the immediate-release formulation described recently in [13]. As ropinirole
is mostly eliminated by enzymatic metabolism in the liver, special attention was given
to the IVIVE method of the clearance prediction after the interspecies scaling approach
occurred to not be sufficient for the prediction of most of the multiple-dose studies. Please
refer to the predictions obtained with the use of in vivo clearance from interspecies scaling
after IV administration in Figure 4. For the comparison with IVIVE approach, please see
Figure 3a,k.

The simulations of the same studies with the use of the IVIVE approach are presented
in Figure 3a (single-dose study) and Figure 3k (multiple-dose study). We hypothesized
that the main reason that the IVIVE approach was more efficient lies in accounting for
the inter-individual variability in the clearance-related physiological parameters. For this
reason, for clearance prediction in the final PBPK model, an IVIVE approach was used.

The absorption of ropinirole from modified release formulation was modeled using
a less mechanistic approach: the dissolution was inputted into the model directly using
quality control data and effective human permeability was predicted using an empirical
correlation equation. Dissolution data are the key input parameter for the PBPK model,
and in cases where the dissolution data are used in the model “as is” rather than modeled
mechanistically, the assumption about their relevance to the in vivo dissolution has to
be made. For reaching the point where this assumption is confirmed/rejected, a strong
confidence in distribution and elimination parameters is needed. Due to the lack of
intravenous data for ropinirole, this aim was achieved by conducting the modeling and
simulation (M&S) activities for the immediate-release formulation, where absorption was
not a rate-limiting step. Only after successful simulation of number of single-dose and
multiple-dose clinical studies in healthy volunteers and patient populations could we fix
the distribution and elimination parameters and move to the following step: M&S for the
prolonged-release formulation, where the release from the formulation was a rate-limiting
step. The model was initially developed for healthy volunteers and was subsequently
extrapolated to the Parkinson’s patients. In all cases, quality control dissolution profiles
were used as an input to the absorption model. While looking at simulation results for
healthy volunteers and Parkinson’s patients, it can be observed that the performance
of the model is similar both in Parkinson’s patients and healthy volunteers. Please see
Figure 3a–e for the simulation of studies with healthy volunteers and Figure 3f–n for
the simulation of studies in Parkinson’s patients. The fact that the model, which was
developed for healthy volunteers, could be extrapolated to the patient population without
any modification of physiological parameters besides those that are age-related allows
for the following conclusions: (1) the quality control dissolution data are biopredictive
for the in vivo situation; (2) even if there are changes in the gastro-intestinal parameters
of Parkinson’s patients, these changes do not influence the release of the drug from the
prolonged-release formulation, which is based on Geomatrix technology. We assumed
no impact of fluid dynamics, pressures, or motility patterns in patients’ GIT on release
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patterns of the formulation. This still allowed the model predictions to align with the PK
profiles observed in patients, thus indirectly confirming that these parameters would not
have a clinically significant effect on formulation behavior in vivo. In other words, it can
be concluded that the formulation is stable in the Parkinson’s patient GI environment.

Because the dissolution profiles used in the simulations composed of three timepoints
only (2, 12, and 24 h), it was decided to conduct extra simulations using the dissolution
data from CDER review. We compared three simulation scenarios: (1) with the use of
a three-timepoint profile from the certificate of analysis (it was assumed that the profile
was obtained at pH 4.0); (2) with the use of eight-timepoint profile from CDER review
obtained at pH 4.0; (3) with the use of eight-timepoint profile from CDER review obtained
at pH 6.8. The results of these simulations, which are provided in Figure 5, suggest that the
three-timepoint profile is reflective of the profile with eight-timepoints. In addition, despite
it being claimed that dissolution of the formulation is pH-independent, our simulation
run on dissolution data obtained at different pH shows that the model is sensitive to these
changes and that the profile obtained at pH 4.0 gives a more realistic prediction than the
profile obtained at pH 6.8.

Parkinson’s disease is rarely diagnosed at age under 40 and its incidence increases
with age [1]. Older patients are generally underrepresented in the clinical trials; therefore,
PBPK can be a useful alternative approach for predicting drug pharmacokinetics [37]. The
simulation of trials in the three groups of geriatric population have indicated that drug
exposure increases with age, which is expected based on the fact that ropinirole is mainly
metabolized in the liver and metabolic rates are slower in older patients [26]. The increased
drug exposure in older patients has to be taken into account during pharmacokinetic
optimization of ropinirole’s therapy [4].

5. Conclusions

In this study, ropinirole PBPK model for the prolonged-release formulation intended
for exploring the potential clinical scenarios while developing a new formulation was built
and verified. In vitro data obtained by the quality control method implemented into the
ADAM model adequately described the in vivo behavior of the formulation both in healthy
volunteers and in Parkinson’s patients. The assumption about the stable release from the
formulation in the GIT of the patient population was indirectly confirmed. It is worth
noting that this PBPK model is formulation specific; however, we believe that it can be used
for our research purposes after the mechanical stability (e.g., resistance to pressure) of the
new formulation is established.

The performed simulations allowed us to additionally verify in vitro kinetic param-
eters for ropinirole metabolism, as well as its metabolic pathways. In this study, most of
the datasets were multiple-dose studies, and new strengths, which are not available in the
immediate-release case, were used.
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