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Abstract: Drug interactions with other drugs are a well-known phenomenon. Similarly, however,
pre-existing drug therapy can alter the course of diseases for which it has not been prescribed. We
performed network analysis on drugs and their respective targets to investigate whether there are
drugs or targets with protective effects in COVID-19, making them candidates for repurposing. These
networks of drug-disease interactions (DDSIs) and target-disease interactions (TDSIs) revealed a
greater share of patients with diabetes and cardiac co-morbidities in the non-severe cohort treated
with dipeptidyl peptidase-4 (DPP4) inhibitors. A possible protective effect of DPP4 inhibitors
is also plausible on pathophysiological grounds, and our results support repositioning efforts of
DPP4 inhibitors against SARS-CoV-2. At target level, we observed that the target location might
have an influence on disease progression. This could potentially be attributed to disruption of
functional membrane micro-domains (lipid rafts), which in turn could decrease viral entry and thus
disease severity.

Keywords: COVID-19; network analysis; drug-disease interaction; target-disease interaction; DPP4
inhibitors; lipid rafts; drug repurposing

1. Introduction

In Switzerland, patients seen by general practitioners have a median of two chronic
conditions, and receive a median of two prescribed drugs [1]. The most common condi-
tions are cardiovascular diseases, including arterial hypertension and lipid disorders, and
diabetes [2]. Not only do drug-drug interactions increase with pill burden, but also the risk
for drug-disease interactions (DDSIs), where drugs that are beneficial in one disease may
be harmful in another [3]. A drug’s action is brought about by its interaction with molecu-
lar targets. The relationship is asymmetric, meaning that a given drug can interact with
multiple targets, and one target with multiple drugs [4]. By consequence, the interaction
of drugs with specific molecular targets can also influence the progression or severity of a
disease, which could lead to a target-disease interaction (TDSI).

The current pandemic of coronavirus disease 2019 (COVID-19) is caused by the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2). By now, several risk factors
for severe COVID-19 progression are known, such as age [5,6], male sex [7,8], or obe-
sity [9–12]. Additionally, common co-morbidities such as diabetes [13–15], cardiac [16,17]
and pulmonary diseases [18,19], or dementia [20] can influence prognosis of COVID-19.
Furthermore, both the number and the combination of certain co-morbidities have been
found to be predictors of severity [21]. Several studies have already been conducted to
analyze the influence of specific co-medications on COVID-19 incidence and progression.
For example, hypertension is a common chronic condition and a risk factor for severe
COVID-19 progression [22]. Some researchers analyzed the influence of anti-hypertensive
drugs acting on the renin-angiotensin-aldosterone-system (RAAS)-system [23,24]. The
majority of these studies provided evidence that angiotensin converting enzyme (ACE)
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inhibitors and angiotensin-receptor blockers (ARBs) do not adversely affect the COVID-19
progression or may even be beneficial [22–28]. In general, studies showed that polyphar-
macy increases the risk for severe COVID-19 [29,30].

Network analysis is used to investigate a group of objects (e.g., friends, internet
servers, patients, enzymes, or proteins) and their connection with each other. The objects
are the nodes of the network, whereas the relationships are the edges connecting the nodes.
One famous example is Zachary’s “karate club” network, which displays the pattern of
friendships amongst the members of a university karate club [31]. In recent years, network
analysis has increasingly been applied in the context of pharmacology, e.g., to investigate
the relationships between drugs and their respective targets [4] or the relationship between
proteins and metabolites [32]. In addition, several network studies on the repurposing of
drugs against SARS-CoV-2 have been conducted, mainly as drug-target, target-human,
viral-human, or protein-protein-interactions, or combinations thereof [32–34]. In addition,
transcriptomes of COVID-19 patients, patients with related conditions and healthy controls
were compared to identify possible drugs candidates for repurposing [35].

However, none of these studies used clinical data to investigate the influence of
pre-existing drug treatment on patient outcomes as measure of disease severity.

The aim of this study was to analyze the impact of DDSIs and TDSIs on COVID-19
severity using network analysis as a tool to inform drug repurposing efforts and increase
drug safety. We compared drugs on admission (i.e., drugs patients were taking before
or on the day of admission) and their molecular targets in patients who tested positive
for SARS-CoV-2, and used severe (required critical care or died) or non-severe outcome
(outpatient or never requiring critical care) as endpoint.

2. Materials and Methods
2.1. Study Population

We carried out this retrospective study at the Insel Hospital Group (IHG), a tertiary
hospital network with six locations and about 860,000 patients treated per year, making it
the biggest health care provider in Switzerland. The Cantonal Ethics Committee of Bern
approved the protocol (2020-00973). We considered all patients who tested positive for
SARS-CoV-2 by reverse-transcriptase polymerase chain reaction (RT-PCR) assay on na-
sopharyngeal swabs at the IHG between 1 February through 16 November 2020—covering
the ‘first wave’ and most of the ‘second wave’ of COVID-19 in the region (Figure 1).
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For patients with no registered general research consent status, a waiver of consent
was granted by the ethics committee. Objection to the general research consent of the IHG
was an exclusion criterion for this study, whereas participation in other trials (including
COVID-19 related treatment studies) was not. Disease progression was classified as severe
if, for any reason, an intensive care unit (ICU) admission was required at any stage, or the
patient died during the stay. All other patients were classified as non-severe. We selected
only patients for whom drugs on admission had been recorded. Therefore, this study
included 115 severe and 390 non-severe COVID-19 patients. We identified pre-existing
conditions using Natural Language Processing from a previous study [36]. For a total of
28 patients (14 non-severe and 14 severe cases), we could not perform disease detection.
Characteristics of the study population are provided in Table 1.

Table 1. Characteristics of study population.

General Characteristics Non-Severe (n = 390) Severe (n = 115) p Value

Age (years)
Median (Q1, Q3) 67.00 (52.00, 77.00) 70.00 (60.50, 81.00) <0.001

Sex
Female (%) 155 (39.74%) 31 (26.96%) 0.017

BMI
Median (Q1, Q3) 26.05 (23.51, 29.43) 27.73 (24.74, 31.70) <0.006

Drugs on admission
Median (Q1, Q3) 7.00 (4.00, 12.00) 8.00 (4.00, 13.00) 0.403

Diseases

Arterial hypertension (%) 182 (48.40%) 64 (63.37%) 0.011
Chronic heart failure (%) 92 (24.47%) 37 (36.63%) 0.021

Atrial fibrillation (%) 57 (15.16%) 23 (22.77%) 0.095
Coronary heart disease (%) 52 (13.83%) 32 (31.68%) <0.002

Coronary sclerosis (%) 9 (2.39%) 6 (5.94%) 0.136
Diabetes (%) 105 (27.93%) 34 (33.66%) 0.316
Dementia (%) 39 (10.37%) 15 (14.85%) 0.278

To study the effects of co-morbidities, we created four sub-groups:

1. Cardiac conditions (chronic heart failure, atrial fibrillation, coronary heart disease,
and/or coronary sclerosis) (n = 184)

2. Arterial hypertension (n = 246)
3. Diabetes (including pre-diabetes, type 1 and 2 diabetes) (n = 139)
4. Dementia (n = 54)

Note: patients can be members of more than one group, e.g., 70 patients suffered from
diabetes as well as from cardiac conditions.

2.2. Network Analysis

Drugs on admission (drugs taken before admission to the IHG) were obtained from the
electronic health records (EHR). As this part of the EHR was not always complete, we also
considered drugs administered in-house on the day of admission. This also mitigates the
effect of patients transferred from other hospitals compared to patients who were initially
admitted to the IHG.

We evaluated different levels of detail in drug classification. First, we compared the
fourteen main groups of the Anatomical Therapeutic Chemical (ATC) classification sys-
tem [37]. Then we selected 90 pharmacological, chemical subgroups or substances, which
we categorized in 30 therapeutic groups. We identified drugs in the EHR by ATC codes.
By and large, the drug groups and subgroups are based on the categorization of the ATC
classification, but some minor deviations are present, e.g., acetylsalicylic acid was included
as antithrombotic agents, whereas in the ATC code, it is grouped with the analgesics, an
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uncommon indication in Switzerland. Considering the hyper-thrombotic state of COVID-19
patients [38], we considered its rheological effect to be more important than its analgesic
effect. Further information on our grouping is available in the Supplements, Table S1.

Lastly, we analyzed the molecular targets of the drugs on admission. We used Drug-
Bank [39] to map drugs to targets and their target locations.

As the two severity cohorts are imbalanced, we normalized the number of patients
for network analysis in each drug (sub-)group by dividing them through the total num-
ber of patients in the respective cohort. The obtained value was used as weight in the
network analysis.

A network consists of nodes connected by edges. A node’s weight is determined by
the number of patients receiving the drug, and an edge’s weight by the number of patients
receiving two drugs simultaneously. In our analysis, drugs, drug classes, and targets were
represented as nodes and concurrent use or interaction was represented by connecting
undirected edges. Therefore, the weights of nodes or edges are both positively correlated
with drug use or target engagement.

2.3. Software and Statistical Tests

Data wrangling, analysis, and visualization were performed in GNU R (version 4.0.2,
R Foundation for Statistical Computing, http://www.R-project). Statistical significance
levels were defined at a p value of <0.05, and determined with the Student’s t-test for
continuous parameters and Chi-square test for categorical parameters using the stats
package (version 4.0.2). Network analysis was performed using the igraph package (Version
1.2.6) [40]. For network visualization, we used Gephi (Version 0.9.2) [41].

3. Results
3.1. Network Metrics

The main network metrics are presented in the Supplements, Table S2. Main nodes
(hubs) and main edges are defined as those with the highest weight, i.e., largest share of
patients taking this drug or drug combination. All main nodes and edges are identical
between the severity cohorts, except for one edge in the drug subgroups (non-severe:
other analgesics and antipyretics—heparin; severe: other analgesics and antipyretics—antibiotics).
The diameter of the network (maximum distance between any two nodes; or the longest
shortest path), was in general larger in the severe cohort. Node betweenness centrality
(betweenness, indicating how often a node lies on the shortest path between two other
nodes) in the non-severe cohort was higher than in the severe cohort (43 and 24 drug
subgroups, respectively). More molecular targets had a higher betweenness in the non-
severe than in the severe cohort (418 and 124 molecular targets, respectively). In addition,
betweenness values in the non-severe cohort were higher (median: 150 vs. 48 and mean:
225 vs. 104, respectively). In Table S2, we show nodes with the greatest differences in the
betweenness between the cohorts.

3.2. DDSI Network

There are significant differences (p < 0.05) in all three networks (anatomical/pharmaco-
logical group, drug group, and drug subgroup) with regards to the drugs (nodes, Table 2)
and drug combinations (edges, Table 3) taken on admission. In all nodes and edges
with significant differences, the percentage of occurrence was higher in the cohort with
severe disease progression unless stated otherwise. As an example, visualization of the
anatomical/pharmacological group network is shown in Figure 2.

http://www.R-project
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No differences can be observed in the anatomical/pharmacological group Alimentary
tract and metabolism or any of the corresponding (sub-)groups between the severity cohorts
considering all diseases. However, anti-hyperglycemics, specifically dipeptidyl peptidase-4
(DPP4) inhibitors and sodium glucose co-transporter 2 (SGLT2) inhibitors (only borderline
significant, p = 0.06), were taken more often by non-severe COVID-19 patients with cardio-
vascular conditions or cardiovascular conditions and diabetes (see Supplements, Table S3).

In the anatomical/pharmacological group Blood and blood forming organs, anti-hemorrh-
agics and anti-platelet agents (even though only borderline significant with p = 0.095), and
within these groups, especially Vitamin K and other hemostatics and acetylsalicylic acid (only
borderline significant, p = 0.085), respectively, were significantly different between the
severity cohorts.

In the anatomical/pharmacological group Cardiovascular system, which showed no
cohort difference, the drug group diuretics and cardiovascular drugs had a higher percentage
in severe COVID-19. In the former group, loop diuretics and in the latter, beta blockers are
significant differences over all patients regardless of co-morbidity.

Table 2. Significant nodes of the DDSI network.

Anatomical/Pharmacological Group Non-Severe COVID-19 [%] Severe COVID-19 [%] p Value

Blood and blood forming organs 85.64 94.78 0.014
Various 4.1 10.43 0.018

Musculo-skeletal system 21.79 13.91 0.085

Drug Groups

Anti-hemorrhagics 0.51 3.48 0.037
Diuretics 23.08 32.17 0.064

Cardiovascular drugs 36.67 46.09 0.087
Antiplatelet agents 23.08 31.3 0.095

Drug Subgroups

NSAID 12.56 4.35 0.020
Loop diuretics 1 14.87 24.35 0.025
Beta blockers 1 26.41 37.39 0.030

Vitamin K and other hemostatics 0.51 3.48 0.037
Opioids 1 10.51 17.39 0.068

Acetylsalicylic acid 21.28 29.57 0.085
1 Drug subgroups that were associated with death or severe COVID-19 by Iloanusi et al. and McKeigue et al. [29,30].
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Table 3. Significant edges of the DDSI network.

Anatomical/Pharmacological Group Combinations Non-Severe
COVID-19 [%] Severe COVID-19 [%] p Value

Various Alimentary tract and metabolism 3.85 10.43 0.012

Nervous system 3.33 9.57 0.012

Blood and blood forming organs 3.85 9.57 0.028

Drug Group Combinations Non-Severe
COVID-19 [%] Severe COVID-19 [%] p Value

Psycholeptics Anti-hemorrhagics 0.26 3.48 0.011

Antiplatelet agents Anti-infectives 7.44 15.65 0.013

Cardiovascular drugs Diuretics 16.92 26.09 0.004

Obstructive airway drugs 5.9 12.17 0.039

Drug Subgroup Combinations Non-Severe
COVID-19 [%] Severe COVID-19 [%] p Value

Antipsychotics 1 Loop diuretics 1 1.28 7.83 <0.001

Opioids 1 1.03 6.09 0.004

Adrenergic inhalants 0.51 4.35 0.008

Beta blockers 1 2.82 8.7 0.012

Proton pump inhibitors 1 3.59 8.7 0.044

Other analgesics 5.38 11.30 0.044

Heparin 1 Direct Xa inhibitors 1 0.51 4.35 0.008

Loop diuretics 1 4.62 10.43 0.036

Platelet inhibitors 1 Antibiotics 7.44 14.78 0.026

Loop diuretics 1 5.13 11.3 0.032

Beta blockers 1 11.03 19.13 0.034

Proton pump inhibitors 1 10.00 17.39 0.045

Potassium spare diuretics 1 1.03 4.35 0.049

Potassium spare
diuretics 1 Acetylsalicylic acid 0.77 4.35 0.023

Adrenergic inhalatives 0.51 3.48 0.037

Loop diuretics 1 Opioids 1 2.82 7.83 0.032

Vitamin K antagonists 1 Thyroid 0.51 3.48 0.037

NSAID Other analgesics 10.26 3.48 0.038

Beta blockers 1 Acetylsalicylic acid 10.77 18.26 0.048
1 Drug subgroups that were associated with death or severe COVID-19 by Iloanusi et al. and McKeigue et al. [29,30].

Additionally, non-steroidal anti-inflammatory drugs (NSAIDs) were more often taken
by patients with non-severe COVID-19, whereas the opposite was true for opioids (but
only borderline significant).

Considering all patients, there are differences in combinations of drugs from anatomi-
cal/pharmacological group, drug group combinations, and drug subgroup combinations,
but the weight of these edges (percentage of patients) is relatively low in most cases
(<15%) (Table 3).

However, the disease-specific analysis revealed that the combination of anti-hypergly-
cemics and anti-coagulants was more common in non-severe COVID-19 in patients with
cardiac conditions or cardiac conditions and diabetes. In the latter cohort, the combination
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of anti-hyperglycemics and statins had a higher percentage in non-severe COVID-19 (see
Supplements, Table S4).

3.3. TDSI Network

The main molecular targets and their relative frequency per cohort are shown in the
Supplements, Figure S1. Molecular targets with highly significant (p < 0.001) differences
are given in the Supplements, Figure S2.

Differences in molecular targets can be divided into two groups. The first group
comprises targets which interact with only one specific group of drugs, e.g., antithrombotic
agents mostly interact with coagulation factor X, P-selection, and antithrombin-III, whereas
diuretics may target members of the solute carrier family 12. The second group includes
targets that cannot be assigned to just one indication or drug group. Beta adrenergic receptors
are targets for anti-depressants, anti-hypertensives, and anti-arrhythmics. There are over
2690 significantly different edges in the molecular target network. In the Supplements, we
included the 30 most common edges in the network (Figure S3) and the highly significant
edges (p < 0.001) (Figure S2).

In Figure 3, we present a filtered version of molecular target networks of both severity
cohorts, where only nodes with three or more edges are shown.
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Beta-1/2 adrenergic receptor; AGTR1: Type-1 angiotensin II receptor; AKR1C1: Aldo-keto re-
ductase family 1 member C1; ATP4A: Potassium-transporting ATPase alpha chain 1; CASP1/3:
Caspase-1/3; CCND1: G1/S-specific cyclin-D1; CHRM1/M2/M3: Muscarinic acetylcholine receptor
M1/M2/M3; CYCLA: Cyclin A; DDAH1: N(G),N(G)-dimethylarginine dimethylaminohydrolase 1;
DRD2: Dopamine D2 receptor; EDNRA: Endothelin-1 receptor; F10: Coagulation factor X; HDAC2: Hi-
stone deacetylase 2; HMGCR: 3-hydroxy-3-methylglutaryl-coenzyme A reductase; HRH1: Histamine
H1 receptor; HSPA5: 78 kDa glucose-regulated protein; HTR1A/2A/2C: 5-hydroxytryptamine receptor
1A/2A/2C; IKBKB: Inhibitor of nuclear factor kappa-B kinase subunit beta; MAPK1: Mitogen-
activated protein kinase 1; MYC: Myc proto-oncogene protein; NFKBIA: NF-kappa-B inhibitor alpha;
NR3C1: Glucocorticoid receptor; OPRD1: Delta-type opioid receptor; OPRK1: Kappa-type opioid
receptor; OPRM1: Mu-type opioid receptor; PCNA: Proliferating cell nuclear antigen; PRKAA1:
5′-AMP-activated protein kinase; PTGES3: Prostaglandin E synthase 3; PTGS1/2: Prostaglandin G/H
synthase 1/2; RSK: Ribosomal protein S6 kinase alpha-3; SERPINC1: Antithrombin-III; SLC12A1/2:
Solute carrier family 12 member 1/2; SLC6A4: Sodium-dependent serotonin transporter; TP53: Cellu-
lar tumor antigen p53; TRPV1: Transient receptor potential cation channel subfamily V member 1;
TSG-6: Tumor necrosis factor-inducible gene 6 protein.
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The color of the nodes indicates the location of the molecular target within the cell.
In the non-severe cohort, more molecular targets are located within the cell membrane,
whereas in the severe cohort more targets are located within the cytoplasm.

4. Discussion

The network analysis of drugs and their molecular targets revealed differences be-
tween the severity cohorts of COVID-19. Except for one edge, the main nodes (hubs) and
edges are identical, however the weights were often slightly higher in the severe cohort.
This suggests that the most important drugs and drug combinations are the same between
the cohorts, but still, slightly more drugs and drug combinations are taken by the severe
cohort. This may be indicative of a subpopulation with more co-morbidities. The larger
diameter of the severe network indicates that the drugs and drug combinations are more
heterogeneous in this cohort. This is supported by the generally lower betweenness of most
nodes in this cohort in absolute values, but also in comparison to the non-severe cohort.

However, co-morbidities and co-medications did not always result in a more severe
course. Noteworthy here is the higher percentage of patients with cardiac conditions, or
cardiac conditions and diabetes, using anti-hyperglycemics, especially DPP4 inhibitors, and
to a lower degree SGLT2 inhibitors in the non-severe COVID-19 cohort. These patients had
at least two co-morbidities, which are considered risk factors for a severe course [15,42,43],
but had a more favorable outcome under these treatment regimens. DPP4 inhibitors
have been shown to be reno- and cardio-protective through the suppression of oxidative
stress, inflammation, and improvement of endothelial function [44]. Furthermore, there
is evidence that SARS-CoV-2, like MERS-CoV (Middle East respiratory syndrome-related
coronavirus), also uses the membrane-bound DPP4 enzyme for viral entry. An inhibition
of this enzyme is speculated to reduce viral entry and replication [45,46]. In SARS-CoV-2, a
functional network analysis revealed that DPP4 is required in viral processes for viral entry
and infection. Furthermore, protein-chemical interaction networks revealed important
interactions between DPP4 and the DPP4 inhibitor sitagliptin [47]. Additionally, in animal
experiments, DPP4 inhibition resulted in a rise of soluble DPP4 [48,49] which could bind to
plasma SARS-CoV-2, reducing the amount of virus able to infect cells [50]. Mutations in
DPP4 genes, leading to reduced levels for soluble DPP4, were identified as risk factors for
increased susceptibility for MERS-CoV [51]. Within an infected cell, sitagliptin inhibited
the SARS-CoV-2 papain-like proteases (PLpro) in an in-cell protease assay [52]. Clinical
literature on DPP4 inhibitors in COVID-19 is ambiguous; several studies and meta-analyses
have showed favorable effects [53–56], while some have not [57–59]. A review of clinical
trials with the DPP4 inhibitor sitagliptin found that most studies showed a favorable effect
on COVID-19 progression [50]. Several potential modes of action are discussed apart from
the above-mentioned decrease in viral entry, increase in soluble DPP4, or inhibition of
viral proteases. It is hypothesized that DPP4 inhibitors might attenuate COVID-19-related
cardiovascular injury including arrhythmia, acute coronary syndrome and heart failure [60].
In addition, DPP4 inhibition has anti-inflammatory and immunomodulatory properties
by decreasing activation of nuclear factor kappa beta (NF-κB) activation and expression of
inflammatory cytokines [61,62]. These factors could also influence the progression.

A benefit of SGLT2 inhibitors is supported on pathophysiological grounds. SGLT2
inhibitors have been shown to downregulate systemic and adipose tissue inflammation
by decreasing the expression of pro-inflammatory cytokines, lessen oxidative stress, and
reduce sympathetic activity [63]. Furthermore, treatment with a SGLT2 inhibitors alleviated
myocardial and renal fibrosis in mice [64]. In a large randomized trial with COVID-19
patients, treatment with dapagliflozin, a SGLT2 inhibitors, did not result in a statistically
significant risk reduction in organ dysfunction and death, or speedier recovery [65].

Considering all patients, regardless of the diagnosed co-morbidities, there are some
noteworthy differences in the drugs (nodes of the network, Table 2) used within the
cohorts. Despite doubts early in the pandemic regarding the use of NSAIDs during
COVID-19 [66], a systematic review and meta-analysis was not able to confirm this the-
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oretical risk [67]. In human cell cultures and mice, NSAIDs reduced pro-inflammatory
cytokines, and dampened the humoral immune response to SARS-CoV-2 [68]. This pro-
tective effect might be explained by reversing the progressive inflammation in different
organs [69]. Even though this study included only few patients on NSAIDs, they were still
more common in non-severe patients and thus corroborated earlier studies. Comparisons
to other antipyretics with no anti-inflammatory action (e.g., acetaminophen) are necessary.

Some drugs with significant differences between cohorts might be more indicative
of the severity of the underlying condition and not interact with COVID-19 prognosis
directly. Loop diuretics, for instance are used in more advanced stages of renal failure [70].
As poor renal function is indicative of severe COVID-19 [71,72], this correlation might
be due to the severity of the pre-existing condition, not the drug itself. Beta blockers
were more often used in the severe cohort, but this might be explained by the higher
prevalence of cardiovascular co-morbidities in this cohort. However, loop diuretics, beta
blockers, and opioids are also associated with death or severe COVID-19 in a polypharmacy
setting [29,30].

Overall, a relatively small percentage of patients received antipsychotic drugs, and the
difference between cohorts was not significant (8% and 13% in the non-severe and severe
cohorts, respectively). However, combinations with other drugs such as loop diuretics,
opioids, beta-blockers, or proton pump inhibitors were more often seen in patients in
the severe cohort. The influence of antipsychotic drugs on COVID-19 infection risk and
prognosis is currently under discussion. A retrospective study in 698 patients using
antipsychotic drugs revealed a lower infection risk and a better prognosis compared to
non-users [73]. Comparable results were also reported from a study in patients with a
pre-existing diagnosis of schizophrenia, schizoaffective disorder, or bipolar disorder [74].
On the other hand, a systematic review and meta-analysis showed a correlation between
antipsychotics and COVID-19 mortality [75]. However, the reviewed studies included
patients on antipsychotics independently of diagnoses, considered antipsychotics as a
single homogenous pharmacological group, and did not test for adherence [76]. Our
results suggest that not the use of a specific drugs per se, but the combination with other
drugs influences the risk for severe COVID-19. Therefore, a detailed analysis of the most
significantly different drug combinations (edges of the network, Table 3) was performed.
Most drug combinations were taken by less than 15% of the patients, which makes a
detailed analysis of cause and effect difficult, but trends are visible. In all cases but one
(NSAIDs/other analgesics) a greater proportion was seen in the severe cohort. However,
this difference is not due to general polypharmacy, which is known to influence disease
severity in COVID-19 [29,30], as the number of drugs on admission was not significantly
different in both cohorts. Not only polypharmacy, but also specific drug classes influence
severity in COVID-19 [29,30]. Drug classes with an increased risk for severe COVID-19
are highlighted in red in Table 3. In seven and in eleven drug combinations, one or both
drugs, respectively, were considered high risk. All these combinations were more prevalent
in the severe cohort. Only in one combination (NSAIDs/other analgesics), neither drug
was considered high risk. Interestingly, a higher proportion of non-severe patients took
that combination.

In proton pump inhibitors (PPIs), the effect of combination with other drugs can
be seen. PPIs are taken to the same extent by the non-severe and severe cohort (32.6%
and 33.9%, respectively, p = 0.88, data not shown). However, combinations of PPIs with
antipsychotics or platelet inhibitors were more prevalent in severe patients. Several review
articles evaluating the effects of PPIs on COVID-19 progression and mortality revealed
high heterogeneity in the outcomes [77–80]. However, those studies did not control for
co-medication, except for one which looked at NSAIDs [80]. In summary, studies on drug
effects should also consider including and ideally control for co-medication.

In the molecular target network of the non-severe cohort, there are more targets located
in the cell membrane. Several hypotheses could help explain this finding. One hypothesis
is that interaction of drugs with cell membrane receptors might interfere with viral entry
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into the cell. The host protein angiotensin-converting enzyme 2 (ACE2) is considered the
main entry receptor for SARS-CoV-2 and the transmembrane serine protease 2 (TMPRSS2)
an important priming enzyme required during this process [81,82]. In addition, other
cell membrane receptors may be involved in cellular entry of SARS-CoV-2 [81,83,84], like
neurophilin-I [85,86], or DPP4 [45,46]. Interference may be direct if a drug targets a protein,
which is also important for viral entry. Studies on SARS-CoV-2–human protein-protein
interaction revealed hundreds of further possible targets [87–90], however there is only
minimal overlap with the target we identified. However, interference may also be indirect
due to changes in membrane organization that negatively impact any part of the viral
replication cycle. Functionally organized micro-domains (lipid rafts), characterized by
highly ordered and tightly packed lipid molecules, within the cell membrane may play a
pivotal role in different processes during the viral life-cycle, including coronaviruses [91].
Lipid raft involvement in viral entry was already shown for the murine hepatitis virus,
a betacoronavirus such as SARS-CoV-2 [92]. A further study used SARS-CoV-2 pseudo
viruses to demonstrate the importance of cholesterol-rich membrane lipid raft for infec-
tion [93]. Micro-domains may increase the efficiency of infection by clustering enzymes and
receptors in certain membrane area, thus allowing multivalent binding of virus particles,
but are not an absolute requirement for the entry process [94]. Several drugs acting on
specific the cell membrane targets were shown to disrupt lipid rafts [95]. These included
targets we identified in the non-severe cohort, such as alpha- and beta-adrenergic receptors,
and opioid receptors. As the network visualizations only include nodes with three or more
edges, one might conclude that the combination of several drugs, which interfere with the
integrity of the lipid rafts, have an influence on COVID-19 progression.

Our study has some limitations. The severity cohorts had some significant differences
in demographics and co-morbidities. The severe cohort was significantly older, had a
higher BMI, and a higher share of male patients, all factors which are known risk factors
for severe COVID-19 [5–12]. Even though the differences are significant, they are still
rather small (median age difference three years, median BMI difference 1.68 points), so that
a detailed analysis of these factors would require a larger sample size to obtain enough
power with an unknown effect size. Additionally, more patients in the severe cohort
suffered from arterial hypertension, chronic heart failure and/or coronary heart disease,
again established risk factors in COVID-19 [16,17,22]. However, the presence and even
the severity of co-morbidities were indirectly accounted for by the analysis of prescribed
drugs. The number of drugs on admission was not significantly different between the
cohorts. Even though we were able to include a total of 505 patients in our analysis, the
number of patients receiving one specific drug was still relatively low, especially in the
disease cohorts. Therefore, significant differences were in some cases only seen in the
high-level pooled groups. For this reason, we also reported borderline significant results
(0.05 < p < 0.1), which could be interpreted as a weak signal and should be investigated
in further research. Furthermore, we were mainly able to consider hospitalized patients
because of data availability issues. As the IHG is an important regional medical center, some
patients were transferred from smaller hospitals. Drugs given in these smaller hospitals are
recorded on the drugs on admission list.

The analysis only focused on dual combinations. While we did perform cluster
analyses to find more complex combinations, the data available did not support this.
Furthermore, even though there were significant differences between the severity cohort
with regards to age and sex, we did not control for that.

5. Conclusions

In summary, the use of a network approach allowed for studying the impact of drugs
from a novel vantage point. Most importantly, autonomic targets appear to be influential
on the course of disease in COVID-19, mostly in the form of off-target effects, possibly
by disrupting lipid rafts and impeding viral entry. This also holds for DPP4 inhibitors,
which are known to interact with adrenergic receptors [96]. The impact of interference with
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autonomic receptors merits further study into potential future treatments for infection with
SARS-CoV-2 and other viruses. Overall, our network analysis indicates that DPP4 inhibitors
are related to a better prognosis for COVID-19 and thus represent potential repositioning
drugs against SARS-CoV-2. Additionally, our study revealed (i) that drug-induced changes
in cell membrane architecture might influence disease progression and (ii) that the influence
of specific drugs on disease progression might be dependent on concurrent co-medication.
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DDSI network, disease specific; Figure S1: Main target nodes; Figure S2: Target nodes with significant
differences; Figure S3: Main target edges; Figure S4: Target edges with highly significant differences
(p < 0.001).
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