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Abstract: Twin screw granulation (TSG) is a continuous wet granulation technique that is used
widely across different solid manufacturing industries. The TSG has been recognized to have nu-
merous advantages due to its modular design and continuous manufacturing capabilities, including
processing a wide range of formulations. However, it is still not widely employed at the commercial
scale because of the lack of holistic understanding of the process. This study addresses that problem
via. the mechanistic development of a regime map that considers the complex interactions between
process, material, and design parameters, which together affect the final granule quality. The ad-
vantage of this regime map is that it describes a more widely applicable quantitative technique that
can predict the granule growth behavior in a TSG. To develop a robust regime map, a database of
various input parameters along with the resultant final granule quality attributes was created using
previously published literature experiments. Missing data for several quality attributes was imputed
using various data completion techniques while maintaining physical significance. Mechanistically
relevant non-dimensional X and Y axis that quantify the physical phenomena occurring during the
granulation were developed to improve the applicability and predictability of the regime map. The
developed regime map was studied based on process outcomes and granule quality attributes to
identify and create regime boundaries for different granule growth regimes. In doing so breakage-
dominant growth was incorporated into the regime map, which is very important for TSG. The
developed regime map was able to accurately explain the granule growth regimes for more than 90%
of the studied experimental points. These experimental were generated at vastly different material,
design, and process parameters across various studies in the literature, this further increases the
confidence in the developed regime map.

Keywords: twin screw granulation; regime map; data imputation; granule growth; granulation
regimes; granulation mechanisms

1. Introduction

Wet granulation is a process of converting fine primary powder particles to larger
agglomerates using a liquid binder and also served to improve the physical properties
of the material, making it easier to handle and process in downstream manufacturing.
Wet granulation is commonly used to manufacture food materials, detergents, minerals,
catalysts and pharmaceuticals [1]. Traditionally, wet granulation is performed in a batch
mode. the United States Food and Drug Administration (US-FDA) has encouraged the
pharmaceutical industry to adopt a more flexible, agile, and efficient mode of manufac-
turing using a continuous mode. The adoption of continuous manufacturing in the solid
oral dosage pharmaceutical industry, involves the systematic integration of several unit
operations, process knowledge and automation tools With the added push of concepts
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such as Quality by Design (QbD) and Process Analytical Technology (PAT) [2], continuous
manufacturing became very popular as it has several benefits over batch production [3,4].

Continuous wet granulation can handle a higher throughput of material [5], has pre-
dictable product quality and has less product development time [1]. Twin screw granulators
(TSGs) are one of the most used continuous granulation equipment. A TSG consists of two
co-rotating screws enclosed in a barrel. These co-rotating screws help convey the material
along the length of the granulator while also imparting shear onto the flowing powders.
This applied mechanical energy aids liquid distribution and mixing in the different zones
in the granulator [6,7]. The screws of the TSG are modular due to the usage of smaller
individual screw elements [1]. Three commonly used screw elements are (i) conveying ele-
ments which help in transport of material [5,8,9], (ii) kneading elements which help in both
liquid mixing and imparting shear on to the powders [8,10], and (iii) comb-mixer elements
which aid in liquid distribution [11–14]. These elements can be arranged in different ways
on the screws and therefore, there are a large number of possible screw configurations.
Similarly, there exists several sizes and geometry of the TSGs currently being produced
by manufacturers. The combination of the process parameters, material properties, screw
configurations and the various TSG sizes leads to a large number of permutations which
can make developing a predicitive process model for a TSG a challenging task [15].

Wet granulation is governed by three important mechanisms namely (i) Wetting and
Nucleation (ii) Consolidation and Growth (iii) Attrition and Breakage [6]. Understanding
these mechanisms is very important as they determine the critical quality attributes of
granules such as particle size distribution (PSD), content uniformity (CU), granule micro-
structure, etc. Thus, it is important to develop apriori techniques that can predict their
effect on granule growth.

To understand the effect of various granulation process and geometry variables on
the granule CQAs, a regime map theory can be applied [16]. A regime map helps correlate
the granule growth characteristics with the input process variables, geometry used and
the materials used for granulation [17]. It also helps in determining the design space of
experiments with fewer initial experiments [18]. The development of a regime map requires
the understanding of the interactions between process parameters, material properties and
geometry. Several researchers have investigated the effects of formulation [5,19], screw
configuration [20–22] and process variables [23] using different granulator sizes and limited
scales of operation. These studies analyzed the individual effects or an interaction of a few
effects on outputs but understanding correlations between a large variety of variables still
remains unexplored.

Unlike in a batch high shear or fluid bed granulation process, in a twin-screw gran-
ulation process, the regimes are physically separated along the length of the screws [6].
Moreover, due to the lack of space available for granules to grow in a TSG, there is an
increase in the stress applied per unit time on the granules. These differences necessitate
the development of a modified regime maps for the twin-screw granulation process. One of
first regime maps for the TSG was developed by Dhenge et al. [5], by drawing similarities
to the regime map development by previously performed by Iveson et al. [17]. However,
it has adapted this to a continuous process by assuming that the different granulation
mechanisms occurred along the length of the barrel and no re-circulation was present.
Furthermore, Dhenge et al. [5] defined regimes differently: under-wetted(dry), nucleation,
crumb, granules and over-wetted/paste. The y-axis chosen consisted of the deformation
value (β) which is an indication of the system deformability. This y-axis replaced the Stokes
deformation number (StDe) used in the study by Iveson and Litster [24]. With a constant
screw configuration, Dhenge et al. [5] studied the effect of binder liquid viscosity and
surface tension on the granule properties by varying the L/S ratios. It was observed that in
all cases the largest granules were obtained for the formulation with the highest viscosity.
All the experiments performed in the study by Dhenge et al. [5] were performed in the
crumb and granule regime. As an extension to the previous study, Dhenge et al. [19]
used a conveying element only screw configuration to study the effects of varying liquid
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viscosity and powder feed rate on granule properties. The shear forces within the TSG
system were low due to the use of only conveying elements. This resulted in granule
formation occurring in the nucleation regime. It was also observed that with increase
in viscosity of the binder the fraction of fines and smaller granules increased. This was
attributed to the lack of sufficient shear forces. Granules formed with water had a higher
deformation value than the granules formed using more viscous binders, leading to the
aforementioned observations. They also concluded that the conveying elements did not
aid in homogeneous distribution of the liquid binder. The two developed regime maps
were screw configuration specific and the boundaries between different granule regimes
were not analyzed mechanistically rather only made a qualitative distinction based on the
experimental result.

Tu et al. [25] developed a regime map for a TSG that studied the effect of L/S ratio,
screw speed and screw configuration. Tu et al. [25] observed that an increase in the screw
speed led to a decrease in the fill level of the TSG which in turn led to a decrease in the
frictional force and torque values for the system. They divided the granule regimes as:
granulation, extrudate and blocked based on the screw configuration. The use of scale-
dependent material also made the developed regime map not general in nature and the
boundaries between the regime were not well-defined. Kumar et al. [15] developed a
process map based on a full factorial design of experiment (DoE). Kumar et al. [15] varied
various process variables such as powder feed rate, liquid to solid ratio, screw configuration
and screw speed. They observed that larger granules were obtained at lower L/S ratio
especially when two kneading zones were used in the screw configuration instead of
one. They also observed that the increase in energy input decreased the median granule
diameter. They recognized that the developed process map had limited applicability and
that more studies with a wide variety of formulations, equipment and process conditions
would be required in order to create a more general map. Pohl et al. [26] in accordance with
observations of Kumar et al. [15] suggested that the barrel filling degree and the residence
time of the material inside the TSG are important factors and their effects on the granules
and granule properties need to be investigated further for the development of the next
regime map. Thus, there still remains a need for the development of a regime map for a
TSG that can take in account different equipment, screw configurations, material properties
and process variables [27].

Objectives

In the presented study, we address the lack of a more general regime for the TSG
process using historical experimental data. Here, we develop a regime map that has a
larger general applicability compared to previously developed regime maps and aimed to
define the boundaries separating the regimes more mechanistically. Previously published
experimental data from several researchers was sourced from the literature to create an
comprehensive database where several formulations, screw configuration, active phar-
maceutical ingredients (APIs), binders, granulator scales, and process parameters were
considered. As not all researchers reported all necessary outputs required for the devel-
opment of the general regime map, the missing data was completed using robust data
completion techniques. Where possible, first-principle based equations were used to com-
plete these outputs. In some cases, where such relations were not present several statistical
techniques were compared and the outputs with variability close to actual experiments were
chosen. Once a complete data set was obtained, mechanistically relevant non-dimensional
x-axis and y-axis were determined in order to obtain the regime map. Based on the extent of
granulation, granule density, granule strength and several other process and intermediate
variables, the final regimes and the boundaries separating them were determined.
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2. Background
2.1. Data Completion Methods

Recently, Mundozah et al. [28] developed a geometrical model that relates the volu-
metric flowrate to the forward volumetric conveying rate. However, estimating the cross-
sectional area for screw elements is difficult to calculate for different elements. To complete
the fill level data for several of sets experiments, a more general fill level correlation was
required which took into account geometrical measurements that could be scaled between
different TSG sizes. Osorio et al. [29] developed a correlation for fill level which was scalable
and could be used across several TSG sizes. The fill level developed by Osorio et al. [29] is
shown in Equation (1). This correlation represents a complex relation between the mass
flow rate and screw geometry.

φ =
1

F1F2F3
PFN (1)

where, PFN is the powder feed number which is the ratio of how quickly the powder is
fed into the TSG barrel to the screw turnover volume. F1, F2 & F3 are geometric ratios that
describe the geometry of individual screws and the screw configuration. PFN is defined as
shown in Equation (2).

PFN =
ṁp

ρbωD3 (2)

where, ṁp is the mass flow rate of the powder, ρb represents the bulk density of the powder,
ω is the angular velocity of the shaft and D is the barrel diameter. The geometric ratios
F1, F2&F3 are defined as follows:

F1 =
Aelem

D2 (3)

F2 =
Lelem

D
(4)

F3 =
2πvp

ωLelem
(5)

In Equation (3), Aelem is the free the cross-sectional area of the element perpendicular
to the barrel length, Lelem is length of the element. F2 in Equation (4) is the length to
diameter ratio. vp in Equation (5) is the net forward velocity of the powder.

2.2. Granulation Regime Maps

A granulation regime map is a technique that is represented as a two-dimensional
plot explaining the effect of various process, equipment, and material properties on the
granulation rate mechanism considered in the regime map [17,24,30]. Typically, a granula-
tion rate regime map is divided into different regions based on the location on the 2-D plot.
These individual regions explain the nature of the granulation rate mechanism occurring at
a particular point, subject to conditions specified by the x and y-axis at that point.

To develop a granulation growth regime map, it is important to understand the
fundamentals of the granule growth mechanism. According to common wet-granulation
theory, the growth of two surface-wet-colliding granules occurs via coalescence. During this
process of coalescence, the granular structure is consolidated (due to the shear applied on
the granules by the system) and the trapped liquid is squeezed to the surface of the newly
coalesced granule to promote further growth [31]. This is especially true for high agitation
intensity processes such as high shear granulation and twin-screw granulation [32]. For a
collision between two surface wet granules to result in a successful coalescence, the collision
kinetic energy should be dissipated in the process. This implies that the individual colliding
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granules have a zero coefficient of restitution value with respect to each other post-collision.
Depending on the availability of the available surface liquid between the colliding granules,
two scenarios satisfy this condition: (i) If the quantity of surface liquid is sufficiently
high such that the collision kinetic energy can be dissipated by the viscous binder layer
between the two granules then coalescence will occur, this is known as Type 1 coalescence.
(ii) If the surface liquid available is not sufficient for type 1 coalescence, then a successful
coalescence occurs if the deformation between the granules on collision is adequately
high to sufficiently increase the contact surface area between the two colliding granules.
The increased surface area between colliding granules ensures a strong bond formation,
this is known as Type 2 coalescence. In this case, the collision kinetic energy is dissipated
as the granule deformation energy [24,33].

Granule deformability, which is an important property for Type 2 coalescence is gener-
ally incorporated into the y-axis of the granulation regime map. Granule deformation is a
complex function of the material properties and process parameters employed. Extensive
studies have been performed to understand and quantify these effects on granule deforma-
tion dynamics [33,34]. For example, Liu et al. [33] quantified the criterion for type 1 and
type 2 coalescence by assuming the granules to be elastic-plastic solid and the liquid to be
an incompressible Newtonian liquid. By neglecting liquid capillary forces they found that
if the condition represented by Equation (6) is satisfied then type 1 coalescence occurs and
if the condition represented by Equation (7) is satisfied then type 2 coalescence occurs.

Stv <

(
h0

ha

)
(6)

(
Yd
E∗

)0.5
St−9/8

de f <
0.172
Stv

(
D̃
h0

)2[
1− 1

Stv
ln
(

h0

ha

)]1.25
(

h2
0

h2
a
− 1

)
(7)

Here Stv, is viscous Stokes number, h0 is the liquid layer thickness, ha is the height of
granule surface asperities, Yd is the granule dynamic yield stress, E∗ is the Youngs modulus
of the combined granule, Stde f is the Stokes deformation number and, D̃ is the harmonic
mean granule diameter of the two unequal-sized granules involved in the collision.

Based on this theory, Stde f was chosen as the y-axis formula for the batch granulation
regime map [17] (Equation (8)). It is defined as the ratio of the externally applied kinetic
energy to the energy required for deformation. As the Stokes deformation number increases
the value on the left-hand side of Equation (3) decreases, thereby, satisfying the condition
for type 2 coalescence.

Stde f =
ρgU2

c

2Yd
(8)

Here, ρg is the granule density, Uc is the representative impact velocity and Yd is the
granule dynamic yield stress.

Typically, Type 1 coalescence is included in the x-axis of the regime map. Iveson et al. [24]
postulated that the granule saturation will vary during the granulation as granules con-
solidate which in turn will affect the Type 1 coalescence. Hence they proposed maximum
granule pore saturation as the x-axis parameter, which is a measure of available surface
liquid content. Maximum granule pore saturation is given by Equation (9).

Smax =
L/S ratio× ρs × (1− εmin)

ρl × εmin
(9)

Here, ρs is the density of the input powder, ρl is the density of binder liquid, and εmin
is defined as the minimum porosity the formulation reaches for that particular set of
operating conditions.
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3. Methods
3.1. Data Acquisition

All previous regime maps developed were based on a narrow set of experimental
observations performed for that particular study [5,19,24]. To develop a widely applicable
regime map it is important to incorporate experimental data that takes into account the
wide range of across the entire spectrum of TSG parameter operability. Since, no experi-
ments were performed for this work, it is vital that the experimental data sets collected
for the development of the general regime map accounts for a large operating range in
terms of process parameters, material properties, different TSG sizes and various screw
configurations. The data were collated using previously published experimental data sets
as shown in Table 1. A total of 132 data points were collected from previously published
6 data sets. It can be observed from Table 1 that the experimental data collected was
representative of the wide parameter ranges that the TSG was operated on.

Table 1. Experimental data collected for the development of the modified TSG regime map.

No. Author Granulator
Size (mm)

Process Parame-
ters Varied

Material
Properties Varied

No. of Screw
Configurations Used

No. of Experiments
Performed

1 Dhenge et al., 2012 [5] 16 L/S Ratio Binder viscosity 1 9

2 Vercruysse et al., 2012 [35]
25 Flow Rate

RPM
Temperature

– 6 18

3 Dhenge et al., 2013 [19] 16 Flow Rate Binder viscosity 1 9

4 Meier et al., 2013 [36] 16 Flow Rate
RPM – 1 14

5 Kumar et al., 2016 [15] 25
Flow Rate

RPM
L/S Ratio

Binder viscosity 2 54

6 Mundozah et al., 2020 [28] 16 RPM Bulk Solid 3 28

Total 132

Inputs and Outputs

Granule growth within a granulation process can be inferred from the process out-
comes and critical quality attributes (CQAs) of the granules obtained. Some of the process
outcomes of the TSG process commonly studied are residence time distribution (RTD),
fill level, mixing index, torque inside the system, while granule size distribution (GSD)
and granule density/porosity are the commonly studied granule quality attributes [1].
The effect of process parameters such as throughput and RPM on the RTD and mean
residence time (MRT) have been studied [21,37]. Lee et al. [37] have also reported that the
staggering angle of the kneading element had an effect on the MRT of the system. Several
authors have observed that the increase in liquid to solid ratio leads to an increase in the
final granule size [20,38]. The fill level (or % fill of barrel) is affected by the specific feed
load (SFL) which is the ratio of powder feed rate and screw speed [39]. This fill level in
turn influences the final average diameters of the obtained granules [15,40]. The viscosity
of the binder used for granulation also seems to affect the growth of the granules and
barrel fill level inside a TSG [5,15,19]. Understanding the individual effect of each of the
inputs as well the several interactions that affect the granule quality and process outcomes
is important in order to obtain the general granule growth regime map. Table 2 lists all
the input parameters and outputs collected from each of the sources in order to develop
the granule growth regime map for a TSG process. In some literature, outputs had been
reported in figures and each figure was processed individually for relevant data. The data
from each plot was extracted using WebPlotDigitizer [41]. It is an application developed in
HTML5 which helps facilitate extraction of data from various plot types and formats. The
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tools requires 4 reference points inputs for determining the axis and pixel scaling, through
which it is able to extract the date presented in the plots.

Table 2. Inputs and outputs for the development of the regime map.

Input Parameters
Outputs Parameters

Geometry Process Material

Number of CE and KE L/S ratio Initial PSD Granule size distribution (GSD)
Staggering angle of KE Screw Speed (RPM) Viscosity of binder Torque

L/D ratio Feed rate % API in powder % fill of barrel
Granulator diameter Temperature Mean residence time

Liquid addition position

3.2. Data Imputation Techniques

On further analysis of the collected data, it was realized that several output parameters
were missing/incomplete. Out of the 132 points,MRT values were present for only 60 points
and torque was only reported for 72 experimental runs. The lowest reported values were
for percent barrel fill, where only 42 out of 132 experiments had reported them. If the
incomplete data points were to be dropped, there would only be 42 usable points which
meant that two thirds of the data points would have to be discarded. Thus, data imputation
techniques were necessary in order to have a complete larger data set for improved analysis.

3.2.1. First-Principle Based Data Completion

The barrel fill level for a twin-screw granulator is the ratio of the volume occupied
by the powder and the granules to the maximum free volume of the barrel channel [42].
Gorringe et al. [43] proposed a geometrical correlation for predicting the fill level which was
related to the mass flow rate and the theoretical maximum capacity of the screws required
to convey the powder. The challenge with using this correlation was its dependence on the
estimation of volumetric efficiency of the screw used to convey the powder.

In order to estimate fill level using Equation (1) several intermediate values were
required. The geometric ratios were calculated using dimensions provided in the literature
while some were scaled linearly. The base geometric values used for scaling were obtained
from Mundozah et al. [28]. To calculate the net forward velocity (vp) the MRT for the
experiment was used. Using MRT instead of powder feed rate is a more accurate for
calculating vp as this calculation also accounts for the effects of hold-up of the powder
within the barrels.However, in several cases the MRT was not reported and had to be
estimated. Muddu et al. [44] have proposed a geometric correlation for the prediction of
MRT but it has several fitting constants which does not enable scaling between different
geometric scales. Thus, a statistical method was needed to be employed to complete the
MRT values for the experimental data sets.

3.2.2. Statistical Data Completion Techniques

The development of a granule regime depends upon both the process inputs as well
as on the process outcomes. Some outcomes such as Torque and MRT do not have any
first-principle based correlations for completion. These outputs need to be estimated using
statistical methods. One of the most commonly used statistical method is linear regres-
sion [45]. In this study, a multivariate linear regression was used since the torque and MRT
values for a TSG are dependent on several inputs instead of only a single input. A general
representation of a multivariate regression is shown in Equation (10). The regression model
was trained using the sklearn [46] package in Python [47]. The regression model used the
existing data for torque and MRT for training.

Y = BX + Ξ (10)
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where, Y is the response matrix of size n× p, X is the matrix containing all predictors with
size of n× (q + 1). B is a (q + 1)× p matrix of fixed parameters, Ξ is the intercept matrix
of size n timesp. Here n represents the number of observations, q represents the number
of inputs or predictors and p represents the number of responses or outputs. This model
is often referred to as deterministic regression imputation. Such an imputation can add a
bias to the predictions. In order to remove such biases, uncertainty can be added back to
these models. Stochastic Regression Imputation [45] adds back normally distributed noise
with a mean (µ) of zero and the variance (σ2) equal to the standard error of predictions
back to the regression estimates. Equation (11) represents a typical Stochastic Regression
Imputation mathematically.

Y = BX + Ξ +N (µ, σ2) (11)

Section 4.1 discusses the results of these techniques in more detail and the method
chosen for each of these outputs.

3.3. Regime Map Formulation

The first step in the development of a granulation regime map is the formulation of the
x and y-axis. These two axis are formulated such that they explain the key physical factors
affecting the granulation rate mechanism studied in the regime map. For example, the batch
granulation growth regime map developed by [17,24,48] was divided such that the y-axis
explains the deformability of the granule and the x-axis explains the pore saturation, which
is reflective of the amount of surface liquid present on the colliding granules. This section
will elaborate on the formulation of each axes for the proposed regime map.

3.3.1. X-axis

The granulation growth regime map being developed in this study is based on the
common wet-granulation theory, that was explained earlier. In such regime maps, gener-
ally, the x-axis is formulated to account for the surface wetness of the colliding granules.
Both the liquid to solid ratio and binder viscosity have a significant effect on the gran-
ule pore saturation and the strength of the liquid bridges formed Dhenge et al., 2012 and
Mundozah et al. 2019. Hence, the product of these two parameters will be used to represent
the surface wetness of the granules on the x-axis. To make this parameter a dimensionless
parameter, relative viscosity (relative with respect to water) will be used instead of viscosity.
The final formulation of the x-axis is x = L/Sratio× relative viscosity.

3.3.2. Y-axis

To incorporate Equation (8) or either of Equations (6) or (7) into regime map formula-
tion, a large number of single granule experiments or testing on pellets is required. One of
the aims of this study is to develop a granulation regime map that is more generalizable
and widely applicable. However, at the same time, it is important to incorporate the
complex deformation physics occurring during the granulation. For that reason, a simple
model to capture the granule deformation will be developed in this study. This model was
developed by leveraging the data from extensive single granule experiments performed by
Fu et al. [34].

Fu et al. [34] experimentally studied the impact behavior of wet granules by projecting
individual granules at a rigid target at predetermined speeds. The coefficient of restitution
and maximum contact radius were measured for each run using high-speed cameras.
Different granules were produced by varying the L/S ratio, binder viscosity, impact velocity,
and primary particle size. Fu et al. [34] observed that a minimum impact velocity the
impacts resulted in a zero coefficient of restitution and attributed it to type 1 coalescence
(binder viscous dissipation). Post minimum impact velocity, the coefficient of restitution
increases with impact velocity to a maximum value before becoming zero again. This
second phase of zero coefficient of restitution is the result of type 2 coalescence and at
high impact velocity, significant plastic deformation was observed which increased contact
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surface area between the particle and wall. Contact ratio, defined as the ratio between the
post impact maximum strain and that of the radius of the granule, was also analyzed as
part of this study. The contact ratio was observed to increase with impact velocity and
liquid to solid ratio.

As the contact ratio represents the radial strain inside the deformed granule, it can
be directly used as a measure of granule deformability. Hence, a multivariate regression
model was developed to estimate the contact ratio as a function of the L/S ratio and impact
velocity, as shown in Equation (12). The coefficient of determination (R2), for this model,
was observed to be about 0.98.

Contactratio = 0.0735× Dp + 0.3486× σbinder × L/S + 0.1352× vs.× L/S (12)

Here, v is the impact velocity, Dp represents the primary particle size, σbinder is the
viscosity of the binder used and L/S is the binder liquid to solid ratio. Further, the y-axis of
the regime map was defined in this study as the fraction of input energy that was dissipated
during granule deformation. Commonly, the input energy to the TSG is defined as the
specific mechanical energy (SME) [7], which is defined as the energy supplied to the TSG
per unit gram, as shown in Equation (13).

SME =
τω

FR
(13)

Here, τ is the torque of the impeller, ω is the impeller speed in rad/s and FR is the
feed rate. For this study, SME was modified as energy supplied to the powders per unit
gram per unit second. Specifically, the denominator in Equation (6) was modified to hold
up to obtain the actual estimate of the energy being applied on the powders inside the
granulator (Equation (15)).

holdup(φ) = FR×MRT ×
Vf ree

Vmax
(14)

Es =
τ ×ω

φ
(15)

Here, MRT is the mean residence time (s), Vf ree is the free volume available for the
powders in the granulator, Vmax is the maximum volume available in the granulator and
Es is the actual energy supplied by the granulator to the powders per unit time and
weight. Finally, the y-axis was formulated as the product of Es and contact ratio, shown in
Equations (12) and (15), respectively.

y-axis = Es × contact ratio (16)

The impact velocity (v) , required for the contact ratio calculation as estimated as the
square root of the energy supplied to the powders per unit time and mass (Es).

4. Results and Discussion
4.1. Missing Data Completion

In the data set collected for analysis, it was observed that three variables that were
studied had missing values for several experiments in the data set. Thus, in order to
complete these values two statistical methods were employed in conjunction with physics-
based correlations. The fill level correlation in Equation (1) requires the MRT for the
process to calculated in order to estimate F3. Thus, MRT was the first variable chosen to be
completed. Since there were no physical correlations for estimating MRT, deterministic as
well as stochastic regression imputation techniques were used. Both these techniques can to
predict multiple dependent variables at once. Thus, the torque applied by the screws on the
the granulating system and the MRT were estimated simultaneously. Figures 1 and 2 contain
the predictions for both the MRT and torque using these two data imputation techniques.
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Figure 1. (a,c) compare the frequency of occurrence of each value of torque and MRT, respectively.
The blue bar in the plot represent the experimental values while the red bars represent the values pre-
dicted by the regression model. A higher overlap indicates a regression model with good prediction
accuracy. (b,d) are box plots comparing the median values as well as the range of experiments to
the median and range obtained from the regression model for the torque and MRT, respectively. The
diamond points represent points that lie beyond the statitical range.

Figure 2. (a,c) compare the frequency of occurrence of each value of torque and MRT, respectively.
The blue bar in the plot represent the experimental values while the red bars represent the values
predicted by the stochastic regression model. (b,d) are box plots comparing the median values as well
as the range of experiments to the median and range obtained from the stochastic regression model
for the torque and MRT, respectively. A good stochastic regression model is one which can mimic the
range of the experiments. The diamond points represent points that lie beyond the statitical range.
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Figure 1a,c compare the already existing experimental data with the predictions from
the deterministic regression imputation technique using a histogram plot. This histogram
in blue represents the frequency of the torque and MRT experimental data, while the red
overlay shows that frequency of the data set after it was completed using the deterministic
regression imputation technique. The frequencies for the completed data set should align
or be close to the distribution in the experimental data set, as most of the missing variables
had process conditions within the range of previously performed experiments and no
extrapolation was required. In the case of completion of torque values, it was observed
that the distribution for both the experimental data and the completed data set was close
to each other. This was also verified by the box plot present in Figure 1b. The blue box
plot depicts the inter-quartile region (IQR) and the black line in the middle represents
the median for the experimental data and the orange box represents the same for the
completed data set. The upper and lower whiskers represent the maximum and minimum
values for the distribution, respectively, while the diamond markers represent the outliers.
Comparing the two box plots, it can be seen that the IQR for both these data sets are similar.
The median for the completed data set is higher which can be attributed to the predictions
of the incomplete variables. Thus, deterministic regression imputation proved to be a good
technique the torque data.

Unlike the torque predictions, the predictions for the MRT of the incomplete exper-
imental points was not representative of the given data. The distribution histogram in
Figure 1c indicated that completed set had a higher frequencies for larger MRT and the
distribution was narrow. This is also seen in the box plot in Figure 1d were the IQR for the
predicted deterministic MRT value is narrow. The number of outliers for the completed
data set were also higher. This meant that the deterministic completion did not account for
variability in the data. Thus, stochastic regression imputation was used. The prediction
of torque using stochastic regression imputation was similar to the one completed by the
deterministic method due to low variance. However, this method was more effective in
predicting the variations inherently present in the MRT data set. The stochastic regres-
sion imputed values for MRT also had lesser outliers and was more inclusive. Thus, this
technique was chosen to complete the MRT data.

Equation (1) was used to complete the missing values for fill level within the twin screw
granulator. Equation (5) used MRT values obtained from stochastic regression imputation.
To check the effectiveness of the fill level correlation, predictions obtained were checked
with two experimental data sets where fill level was available. Figure 3 shows a comparison
between the predicted values obtained by using the first-principle based correlation and the
experimental fill level reported by Meier et al. [36] and Mundozah et al. [28]. The average
RMSE for the prediction was 0.073. Out of the 43 points predicted, 28 points are within a
set confidence interval of 5% of fill level. The error in some cases seems to be high at 25%
but a 7% change in fill level leading to a complete change in granule regime is not expected.
Thus, the correlation used will provide a good understanding on the amount of material
present inside the granulator at steady state.

To verify that the data imputation methods used are effective, the final values of the
torque predictions were also compared with previously published data sets. Mendez-
Torrecillas et al. [42] through their experimental studies observed that torque for a system
at constant L/S ratio increased with an increase in the fill level. A similar analysis was
performed for the data completed for torque using the deterministic stochastic method
and for the fill level using Equation (1). Figure 4 shows the plot of the torque values as a
function of fill level. The data points are colored according to the L/S ratios used in the
experiments and it can be observed that for a constant L/S ratio the torque values increase
with an increase in the fill level inside the granulator. This is similar to the trends observed
in previous literature and these predicted values can be used as good estimates for the
variables when relevant data is not available.
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Figure 3. A parity plot comparing the predicted values of fill level with experimental values. The dot-
ted lines represent confidence intervals of 0.05. The correlation has good prediction capability with
80% points lying between the 2 confidence intervals [28,36].

Figure 4. The variation of torque with fill level within the twin screw granulator. The points are
color-coded at different L/S ratios. A general increase in torque values is observed with increase in fill
level for a constant L/S ratio. [5,15,19,28,35,36]

4.2. Region Identification on the Granule Growth Regime Map

The position of a point on the 2-D map illustrated in Figure 5 of L/Sratio× relative viscosity
vs. Es × contact ratio will determine the granulation mechanisms that the system has gone
through along the length of the twin-screw granulator and the state of the granules obtained.

Figure 5. Proposed boundaries for the proposed regime map to differentiate between different growth
granule regimes.
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• At very low x-axis values of the proposed regime map, the binder content is very
low, and no granules are formed. This region was named the “Under-wetted” region.
Close to the right extreme of this x-axis value range, at high Es × contact ratio there
could be formation of crumb-like material due to Van der Waal and other such dry
surface adhesion phenomena, this region falls under “Crumb”.

• At a slightly greater L/S ratio × relative viscosity (estimated to be around 0.07 based
on Iveson et al.’s work [24]) and at low Es × contact ratio, due to the lack of sufficient
binder to form adequate nuclei the resulting granule size distribution is observed to
have bi-modal distribution with a large percentage of fine particles and a relatively
higher amount of loosely formed large particles. This is typical of nucleation dominant
growth and hence, this region was named “Nucleation”.

• In this range of L/S ratio × relative viscosity and at high Es× contact ratio the loosely
formed large particles undergo breakage and ultimately crumb-like material formation
occurs. This region was also named “Crumb”.

• When the L/S ratio × relative viscosity is further increased, sufficient binder becomes
available to form more nuclei. Under such conditions, one of the following phenomena
occurs depending on the Es × contact ratio value.

– At very low Es × contact ratio, due to a lack of sufficient energy for successful
coalescence the granules will grow via layering mechanism. In previous work,
Kotamarthy et al. [6] showed that the axial mixing and the collisions are af-
fected by the energy supplied to the system, which is directly proportional to the
mixing efficiency. Due to poor mixing and low shear conditions, these process
and equipment settings can lead to the formation of bi-modal size distributions
characterized by the formation of relatively smaller and weaker (higher porosity)
granules. This is named “Type A/Layering dominant granulation”.

– At higher Es × contact ratio, there is sufficient energy to squeeze the binder
liquid to the surface of the granules leading to further coalescence and growth
(Type II coalescence). Due to enhanced mixing and promotion of coalescence,
granulation under these conditions will result in a relatively uni-modal particle
size distribution. Moreover, due to extensive coalescence, the granules formed
under these conditions will be highly dense and relatively large. This region was
named “Type B/coalescence driven granulation”.

• When the L/S ratio × relative viscosity is increased further there is sufficient binder
liquid present around the initial granules formed to promote coalescence type growth
(Type I coalescence) irrespective of the energy provided. Such settings will lead to the
formation of very large granules. This region will still fall under “Type B/coalescence
driven granulation”.

• Very high L/S ratio× relative viscosity will result in the formation of paste-like mate-
rial. This region was named “Slurry”.

4.3. Effect of Twin-Screw Granulation Parameters
4.3.1. Effect of Screw Speed

As the screw speed increases the energy supplied per unit time per unit mass to the
powders increases (Es). An increase in screw speed leads to an increase in axial velocity
of particles which ultimately decreases the mean residence time of particles inside the
system [6,49,50]. In this study, impact velocity is calculated as the square root of the energy
supplied per unit time per unit mass (Es). Moreover, studies have shown that an increase
in hold up or fill level will increase the resistance to the rotation of the impeller, thereby
increasing the torque applied by the machine [35,36,42]. From Equation (14) it can be seen
that a decrease in MRT decreases the holdup and fill level. Since an increase in screw speed
leads to a decrease in MRT, it ultimately leads to a decrease in Torque. Vercruysse et al. [35]
and Mendez et al. [42] have shown that the influence of screw speed on Torque drastically
decreases at higher screw speeds. This was attributed to an insignificant change in fill level
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caused by a change in screw speed at higher screw speeds. Therefore, an increase in screw
speed leads to an increase in the contact ratio and a decrease in MRT and Torque.

In several scenarios, an increase in screw speed will lead to a positive effect in the
y-axis of the proposed regime map, especially because of its direct positive effect on granule
deformability in terms of screw speed and contact ratio, compared to the indirect negative
effect on Torque. Hence, an increase in screw speed leads to an increase in the y-axis
of the proposed regime, which leads to an increase in granule deformation. Therefore,
increasing the impeller speed will shift a systems’ behavior to the top of the proposed
growth regime map, that is, from nucleation to crumb; from induction to steady; from
steady to “breakage-dominated” steady growth.

4.3.2. Effect of Feed Rate

Feed rate has competing effects on holdup and fill level, and as shown in Equation (7)
it has a direct positive effect on hold up. However, it also affects MRT such that an increase
in feed rate leads to a decrease in MRT [21,44,50]. This is attributed to the increase in
powder throughput force with an increase in feed rate, and this decreases the occurrence
of back mixing and eventually leads to an increase in axial velocity and decrease in MRT.
Mundozah et al. [51] and Meier et al. [36] showed that even though there is a decrease in
MRT with an increase in feed rate, the increase in the holdup and fill level prevailed. This
can be attributed to the nature of the effect feed rate has on MRT and holdup,which are
also dependent on other factors such as screw speed and screw configuration [50], which
decreases the influence of feed rate on MRT. Hence an increase in feed rate has a net positive
effect on holdup, and an increase in hold up leads to an increase in the torque of the system.
Studies have shown that a large increase in feed rate only increases the Torque by a few
percentage points [19,52,53], and this has been attributed to an insignificant increase in
resistance to the powder flow due to an increase in powder throughput force and a decrease
in the occurrence of back mixing. Since feed rate has a direct positive effect on hold up and
only has a small indirect positive effect on Torque, the energy per unit gram per unit time
decreases with an increase in feed rate.

An increase in feed rate leads to a decrease in energy supplied to the powder per
unit time per unit mass (Es). This will in turn cause a decrease in the impact velocity and
therefore, a decrease in the contact ratio. All of these factors contribute to a decrease in
granule deformation. Therefore, an increase in the feed rate shifts the system’s behavior to
the bottom of the regime map, that is, from crumb to nucleation; from steady to induction;
from breakage-dominated steady growth to steady growth.

4.3.3. Effect of Liquid to Solid Ratio

The liquid to solid ratio (L/S) has a direct positive effect on the x-axis. An increase in
the liquid to solid ratio increases the pore saturation of the granules and eventually leads to
an increase in available liquid on the surface of the colliding granules [17,24]. This increase
in surface wetness will ultimately lead to an increase in granule growth. The L/S ratio also
affects the y-axis of the proposed regime map. An increase in the L/S ratio increases the
contact ratio between colliding granules, as shown in Equation (12). Apart from this the
L/S ratio also affects MRT and torque supplied to the granules, which in turn affect the
energy supplied per unit mass per unit time. Dhenge et al. [5,21] have reported that an
increase in the L/S ratio leads to an increase in resistance to the flow due to an increase in
viscous forces on the powder particles. This leads to an increase in both MRT and Torque.
Kumar et al. [52] reported that the L/S ratio had a significant interaction effect with feed
rate and screw speed on the torque. They found that at a high fill level an increase in the
L/S ratio resulted in a reduction of Torque and the opposite effect was observed at a low fill
level. This can be attributed to the fact that at a high fill level (torque is already high due to
the presence of a large amount of material in the barrel), an increase in the L/S ratio leads to
the formation of a greater number of granules, thereby increasing the local flowability and
decreasing the resistance. This will eventually lead to a decrease in Torque, whereas at a
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low fill level (resistance to powder flow is low and hence the torque is low) an increase in
the L/S ratio increases the viscous forces on the powder particles increasing the resistance
to flow and torque supplied by the equipment. Kumar et al. [52] also reported that the L/S
ratio did not have a dominant influence on the MRT, and it had a positive impact on the
MRT only at a high fill level.

Since the effect of the L/S ratio on torque and MRT is highly dependent on other
process parameters, its influence on the contact ratio will be more significant compared to
the other parameters. Hence an increase in the L/S ratio leads to an increase in both the
x-axis and y-axis of a regime map. Therefore, an increase in the L/S ratio will move the
system to the top right corner of the regime map, i.e., from the “nucleation” to the “steady
growth”, from the “steady growth” to the “breakage dominated steady growth”, from the
“steady growth” to the “slurry”, from the “breakage dominated steady growth” to the
“slurry”.

4.3.4. Effect of Binder Viscosity

The binder viscosity also has a direct positive effect on the x-axis of the proposed
regime map. In twin-screw granulation, the binder liquid is generally added by a drip-
ping mechanism due to the design of the equipment. In such as system, the nucleation
mechanism is controlled by its kinetic parameters such as drop penetration time and the
spreading of the liquid droplet over the solid powder [51,54,55]. The drop penetration time
decreases with an increase in binder viscosity, the spreading of the drop on the powder
surface also decreases [19,51]. This leads to an increase in the available surface liquid on
the granule, leading to the formation of strong and dense granules [19].

Binder viscosity also affects the y-axis of the proposed regime map, and an increase in
the viscous nature of the binder (thereby the powder-binder mixture) leads to an increase
in the MRT and the holdup in general [5,7], but the significance of this effect on torque
is dependent on the screw configuration and mixing efficiency in the granulator. In the
conveying zone, the decrease in the rate of nucleation kinetics due to an increase in binder
viscosity leads to granule formation via layering mechanism [20]. In the presence of knead-
ing elements (minimum shear) the loosely formed nuclei and granules (formed via layering)
are broken and the liquid is redistributed, enhancing the liquid–solid mixing [39,51,56–58].
This further increases the viscous nature of the entire powder bed, leading to a significant
increase in torque and granule growth. Essentially there is a granule growth mechanism
shift from layering dominated to coalescence dominated and this leads to an increase in the
significance of binder viscosity on torque. The above-mentioned theory combined with
mechanical dispersion offered by the screw configuration affects the torque and granulation
mechanisms occurring along the length of the screws in a twin-screw granulator. Hence
an increase in binder viscosity leads to an increase in the energy supplied by the system
per unit time per unit mass, especially in the presence of the kneading elements. Moreover,
binder viscosity has a direct positive effect on the contact ratio (Equation (12)).

Similar to the L/S ratio case, due to the nature of effects, an increase in binder viscosity
will ultimately increase the y-axis value of the proposed regime map. Therefore, an in-
crease in the binder viscosity will move the system to the top right corner of the regime
map, i.e., from the “nucleation” to the “steady growth”, from the “steady growth” to the
“breakage dominated steady growth”, from the “steady growth” to the slurry”, from the
“breakage dominated steady growth” to the “slurry”.

4.3.5. Effect of Kneading Elements

An increase in the number of kneading of elements decreases the free volume inside
the barrel (Vf ree) [28,51], and this leads to an increase in blockage of powders in the zones
surrounding the kneading block in the barrel. This increase in blockage will eventually
lead to an increase in MRT and holdup [7,28,37,52]. The increase in holdup due to an
increase in kneading elements leads to an increase in barrel fill level which ultimately leads
to an increase in system torque. Kumar et al. [52] reported that kneading elements are
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the principal factor affecting the system torque values, whereas the influence of kneading
elements on MRT is dependent on powder feed rate and screw speed. Taking all these
effects into account the net effect of kneading elements on the energy supplied per unit
mass per unit time (Es)to the powders, is a positive one. As mentioned earlier, Es can
be translated as the stress applied on the powders inside the TSG and many studies
have reported that the kneading elements provide the shear required for granulation in a
TSG [7,15,39,42,59–62]. Since the energy supplied per unit mass per unit time (Es ) increases
with the increase in the number of kneading elements, the impact velocity will also increase.
This will, in turn, lead to an increase in contact ratio and deformability of the granule.
Therefore, with an increase in the number of kneading elements, the y-axis of the proposed
growth regime map will also increase. This will shift the systems’ behavior to the top of the
proposed growth regime map, that is, from nucleation to crumb; from induction to steady;
from steady to “breakage-dominated” steady growth.

4.3.6. Effect of Stagger Angle

Similar to the effect of kneading elements, with the increase in stagger angle the
free volume inside the barrel decreases, ultimately leading to an increase in MRT and
hold up. It has been reported in the literature that the effect of stagger angle on MRT
is insignificant at low stagger angle (30 deg or 60 deg) and high screw speed or high
throughput values [7,22,37,50]. The stagger angle significantly affects the conveying and
mixing capacities of the kneading zone [63–66]. It has been shown that at low forward
stagger angles the conveying capacity is very high compared to large forward and reverse
angles [20]. Essentially the pseudo helix angle created by the staggering of kneading
elements at different angles dictates the extent of back mixing and length of the back
mixing zone [20]. Therefore, at a low stagger angle setting, when the conveying capacity
of the kneading zone is high, the screw speed, throughput, and the number of kneading
elements have a more dominant effect on MRT and thereby on torque, whereas at high
forward angles and reverse angles, the back mixing within the twin-screw granulator barrel
is significantly higher which in turn leads to a significant increase in MRT and holdup. It
was shown in the literature that after a certain critical fill level the torque provided by the
system increases exponentially with an increase in holdup/fill level [42]. It could be said
that those levels of fill level can be achieved with high forward and reverse stagger angles
combined with a medium to a high number of kneading elements.

Though the stagger angle might have an insignificant effect on the energy per unit
mass per unit time (Es) at low forward angles, at high stagger angles it has a net positive
effect on Es. This in turn leads to an increase in impact velocity and contact ratio. Hence
with an increase in the stagger angle, the y-axis of the proposed growth regime map will
also increase. This will shift the systems’ behavior to the top of the proposed growth
regime map, that is, from nucleation to crumb; from induction to steady; from steady to
“breakage-dominated” steady growth.

4.3.7. Effect of Primary Powder Properties

It can be seen from Equation (12) that primary particle has a direct positive effect on
contact ratio, and this was due to the decrease in Young’s modulus of the granule with an
increase in the particle size [34]. Therefore an increase in particle size will move the system
to the top of the proposed regime map. An increase in bulk density of primary powders
leads to an increase in the hold up of the system [67], due to an increase in the packing
fraction of the powders within the barrel. However, the overall effect of the increase in bulk
density depends on its interaction with process and screw parameters.

It is difficult to isolate the effect of primary powder particles characteristics such as
particle shape, roughness, density, etc. on granulation behavior. Therefore these were not
studied here, but it is expected that the effect of these powder properties will implicitly be
accounted for by their effect on properties such as MRT, torque, etc. In order to incorporate
the effects of these primary powders better, further detailed experiments need to be carried
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out. The effects of all the important process and screw parameters are summarized in
Table 3 and their influence on the regime map is plotted in Figure 6.

Figure 6. The influence of the process and the screw parameters on the regime map.

Table 3. Influence of the process and screw parameters on the important x-axis and y-axis parameters.
(’D’ indicates direct effect, ’I’ indicates indirect effect, ’+’ indicates increasing trend and ’-’ indicates
decreasing trend.)

Process Parameters Binder Liquid Paramters Screw Parameters

Screw Speed Feed Rate L/S Ratio Binder Viscosity Kneading Elements Stagger Angle

Parameters D I D I D I D I D I D I

x-axis L/S Ratio +
Binder Viscosity +

y-axis

Screw Speed +
Torque - + + + + +

Feed Rate +
MRT - + + + + +

VFree/Vmax + - -
Contact Ratio + - + + + +

4.4. Validation of Developed Regime Map

The formulated x and y-axis were calculated for all the 132 collected data points from
the 6 experimental studies and were plotted on the regime map as shown in Figure 7.
Figure 7 has markers colored according to the experimental study they were obtained.
A large variation can be observed when all the experimental points are plotted on the
regime map as different studies used different experimental design of experiments (DoE).
Besides, several of these studies had different formulation parameters. It can be observed
that many of the of the experimentl data points within a particular study were clustered
together (Figure 7).This could be expected because each study only analyzed a small
variation of the process parameters in their DoE’s. This clustering would also mean that
all the experiments within each of the experimental study had similar granule growth
kinetics. Only two studies analyzed and reported varying granule growth kinetics in their
study [5,19]. This was achieved by varying the binder viscosity during their experiments
which led to large variation across the x-axis.
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Figure 7. The regime map developed with proposed boundaries and each point colored according to
the experimental study used in development. The regimes described by the boundaries in this map
can explain the experimentally observed regimes with good accuracy [5,15,19,28,35,36].

Extent of granule formation is defined as the ratio of the final median diameter of the
granules (d50) to the initial median diameter of the powder blend. This measure is a direct
reflection on the growth of the granule and can aid in understanding the type of granule
growth that might have occurred during the twin screw granulation process. In Figure 8,
the experimental data points are plotted on the proposed regime map with boundaries
determined in Section 4.2. The experimental points are colored based on the extent of
granulation with ranges varying from 0 to 50. In order to figure out the granule growth
regime occurring in each of these experimental data set, Figures 7 and 8 were analyzed
together. Meier et al. [36] employed an L/S ratio of 0.11 with 12 kneading elements set
at 60 degree stagger angle while varying the screw speed and feed rate between 138 &
562 rpm, and 1.134 & 8.554 kg/h, respectively. They used Hydrochlorothiazide as their
input material which is an insoluble hydrophobic powder [68]. It has been shown in the
literature that a hydrophobic powder requires the usage of a large L/S ratio for robust
granule growth [57]. Moreover, Mundozah et al. [69] showed that a stagger angle of
60 degree was unhelpful to promote liquid solid mixing and granule growth for such
formulations. Hence, under such conditions small extent of growth can be expected,
as seen in the case of Meier et al.’s study [36] (Figure 8).This confirms our finding that the
conditions employed by Meier et al. [36] leads to a nucleation and crumb type of growth in
the TSG (Figure 7).

Vercruysse et al. [35] used a mixture of Theophylline and Lactose as their input
material, which are both hydrophilic. Robust granulation of hydrophilic components can
be achieved in a TSG at very low L/S ratio [70–72], especially in the presence of kneading
elements [69]. Moreover, Vercruysse et al. [35] also used PVP as a binder which increased
the relative density of the liquid binder close to 100, while keeping the L/S ratio constant at
0.09, Vercruysse et al. [35] varied the number of kneading elements, stagger angle, screw
speed and feed rate between 2 & 12, 30 & 90, 600 & 950, and 10 & 25, respectively. Under
these settings they achieved an extent of granulation as high as 25. Hence, it can be safely
assumed that for this study the granule growth in the TSG occurred in the aggregation
dominant region (Figures 8 and 9).
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Figure 8. The regime map developed with proposed boundaries and each point colored according
to the extent of granule formation. Extent of granule formation is defined as the ratio of the final
median diameter of the obtained granules to the initial median diameter of the powder blend.

Figure 9. The regime map developed with proposed boundaries and each point colored according
fill level within the barrel.

Kumar et al.’s [15] study used Lactose as the input material for their study. The number
of kneading elements (6 & 12), L/S ratio (0.08, 0.09, 0.1), screw speed (500, 700, 900), feed
rate (10, 17.5, 25 kg/h) and binder viscosity (6.9, 8.3, 10.3 mPa.s) were varied, while keeping
stagger angle was kept constant at 60 degrees. Lactose being soluble and hydrophilic,
under these conditions produced granules with a large extent of granulation. Forty three
of the experimental runs produced granules with an extent of granulation grater than 25.
of the remaining 11 runs 8 runs produced an extent of granulation between 20 and 25. This
indicates that the majority of the granulation occurred via. aggregation dominated growth.
Kumar et al. [15] observed that for one of the run the resultant barrel torque was very low
(0.3 Nm), consequently this experimental run produced an extent of granulation as low
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as 10. Hence, it can be anticipated that this run could have followed a more layering driven
growth due to lack of shear in the TSG, as shown in Figures 7 and 8.

Dhenge et al. [5,19] carried out two studies to develop a regime map for the TSG.
In the first study [5], L/S ratio and binder viscosity were varied by employing a screw
configuration with two kneading zones arranged at a stagger angle of 60 degree. For this
study, authors kept the screw speed and feed rate constant at 400 rpm and 3.5 kg/h,
respectively. A mixture of Lactose, Avicel and crosscarmellose sodium, with Lactose as the
major component (80% w/w), was used as the input material. The extent of granulation for
the granules obtained in this study was greater than 17.5 for all the runs, with majority of
the runs having an extent of granulation greater than 20 and the maximum reaching close to
35. This study also reported micro-CT scans of the granules, based on these and the extent
of granulation runs it can be concluded that at the lowest L/S and lowest viscosity values
the granules would be in the cusp of crumb, nucleation and aggregation-dominated growth
region and the remaining experimental runs would fall in the aggregation-dominated
growth region. This is due to both the sufficient amount of shear and liquid available in the
system leading to a mixture of Type 1 and Type 2 coalescence. These findings match the
conclusions of Dhenge et al. [5,19], where they marked the regions of interest as “crumb”,
“granules” and “bigger granules”.

The second study carried out by Dhenge et al. [19], employed the same formulation
but used an only conveying element screw configuration. Dhenge et al. [19] varied feed
rate and binder viscosity, while keeping the screw speed and L/S ratio fixed at 400 rpm
and 0.3 and concluded that due to relatively low shear conditions of the only conveying
element configuration, all the experiments followed a “nuclei” formation regime. However,
the analysis of extent of granulation showed that for all the experiments the extent of
granulation lied in the range of 25 to 35. This shows a large growth of granules which is
uncharacteristic of nucleation-dominated growth. Furthermore, by analyzing the micro-CT
scans and granule strength’s, reported by Dhenge et al. [19], it was found that all the
runs, barring the lowest binder viscosity and feed rate condition, had dense cores and
relatively high strengths (0.6–1 MPa). Based on these numbers it can be safely estimated
that all these runs fall under the aggregation-dominated region and the lowest binder
viscosity and lowest feed rate run falls in the cusp of nucleation, crumb and aggregation-
dominated regime.

Mundozah et al. [28] studied the effect of barrel fill level on the extent of granulation.
The barrel fill level was varied by varying the screw configuration, screw speed and powder
feed rate. Mundozah et al. [28] showed that PMMA, a material with larger initial particle
size and higher sphericity, achieved lower extent of granulation but showed a positive
proportionality with the fill level. On the contrary for a material such as Lactose, a brittle
material with smaller initial particle size, an overall greater extent of granulation was
obtained but the extent of granulation started to decrease after a certain fill level. This
was attributed to the dominant breakage mechanism obtained at higher fill level due to
increased compressive stress on the granules. This observation was confirmed in the regime
map analysis, it was observed that with increase in the y-axis value a general decrease in the
extent of granulation was observed (Figure 8). This was a consequence of the regime shift
from an aggregation-dominated growth to that of a breakage-dominated growth, as seen in
Figures 7 and 8. As expected, no experimental studies operated their experiments in the
slurry or under-wetted regime.

4.5. Analysis of The-Breakage-Dominant Growth

It has been reported in the literature that breakage is a dominant mechanism in twin-
screw granulation because of the restrictive volume available and high shear environment
in the TSG barrel [14,73,74]. Breakage of granules promotes liquid–solid redistribution and
subsequently aids in growth of the granule [12,59]. To understand and incorporate breakage
better into the regime map further analysis of breakage-dominant growth was performed
by investigating the contact ratios. The 132 experimental runs investigated in this study
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were first characterized on the basis of contact ratio. These segregated data sets were further
characterized on the basis of extent of granulation. An extent of granulation of 20 was
chosen as the defining number to analyze breakage as majority of these runs had an initial
particle size of 50 micrometers. An extent of granulation of 20 would then result in the
granules having a d50 of 1000 micrometers. It was reported in the literature that the granule
growth caused by a breakage-dominant mechanism in the TSG would result in granules
having a d50 of lower than 1000 micrometer or having an extent of granulation lower than
20 [12,28]. It was found out that out of the 132 experimental data points investigated in
this study, 97 experiments resulted in granules having contact ratio < 1. Of these 97 runs,
34 runs had an extent of granulation > 20. Most of these runs fell under the nucleation
and crumb regime, indicating poor granulation due to lack of sufficient binder liquid.
The granules formed under such conditions are expected to have low deformability values
as indicated by their contact ratios. Of the 35 runs that had a contact ratio of >1, only
12 runs had an extent of granulation greater than 20 (<35%).

Moreover, it was observed from Mundoazah et al.’s study [28] that an extent of
granulation of >20 was observed in few cases even though the granules had undergone
breakage. This analysis shows that contact ratio of greater than 1 could be a good indication
of the breakage-dominant regime map, albeit sufficient L/S ratio and binder viscosity
condition has to be met. From Figure 10 it can be observed that a contact ratio of greater
than 2 was only achieved at high y-axis values and this validates our earlier theory and
demarcation of the breakage-dominated growth regime in the regime-map. Keeping in
mind that an increase in L/S ratio leads to granules with greater deformability, a slight
positive slope is given to demarcation line between aggregation-dominated and breakage
dominated regimes. Since majority of the experimental data points have used soluble,
hydrophilic formulation, the precise boundaries for the transition of the granule growth
regime needs further investigation. Furthermore, the investigation of factors other than
L/S ratio and velocity on the contact ratio and consequently on the regime map requires
further study.

Figure 10. The regime map developed with proposed boundaries and each point colored according
contact ratio of the granules.

5. Conclusions

Twin screw granulation is a versatile wet granulation technique that includes pro-
cess parameters, geometrical parameters, and material properties as control parameters.
Though this increases the applicability of this granulation technique, the interplay between
these effects makes this process very complicated. Hence it is very important to under-
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stand and predict the granule growth apriori. This study addresses the problem via the
development of a modified regime map. The developed regime map can be used to predict
the type of growth a granule undergoes, and the resultant nature of the granules based on
the process, material and design conditions of the TSG. There are two major advantages of
this regime map; firstly, this regime map was accurately validated (90% of the experimental
points were accurately estimated for their granulation growth regimes) against a vast
variety of historical data present in the literature making it a widely applicable technique.
Secondly, the applicability of this technique was simplified due to the development of
mechanistically relevant reduced order parameters as the axes, which can be easily esti-
mated. Furthermore, the incorporation of breakage-dominant growth in the regime map
helped improve the understanding of granule growth behavior in twin-screw granulation.
Data completion techniques were used wherever necessary, to complete important missing
outputs from the chosen data sets. The data obtained from these techniques were validated
according to the trends present in the literature. These techniques showed good prediction
capabilities and can be adapted to a range of data sets. Several previously published ex-
periments utilized Lactose Monohydrate as their input material, therefore, to improve the
boundary and regime identification more data using different materials needs to studied
using the developed regime map.
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