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Abstract: Membrane vesicles, a group of nano- or microsized vesicles, can be internalized or interact
with the recipient cells, depending on their parental cells, size, structure and content. Membrane
vesicles fuse with the target cell membrane, or they bind to the receptors on the cell surface, to
transfer special effects. Based on versatile features, they can modulate the functions of immune
cells and therefore influence immune responses. In the field of tumor therapeutic applications,
phospholipid-membrane-based nanovesicles attract increased interest. Academic institutions and
industrial companies are putting in effort to design, modify and apply membrane vesicles as potential
tumor vaccines contributing to tumor immunotherapy. This review focuses on the currently most-
used types of membrane vesicles (including liposomes, bacterial membrane vesicles, tumor- and
dendritic-cell-derived extracellular vesicles) acting as tumor vaccines, and describes the classification,
mechanism and application of these nanovesicles.

Keywords: liposomes; bacterial membrane vesicles; tumor-derived extracellular vesicles;
dendritic-cell-derived extracellular vesicles; vaccine; tumor immunotherapy

1. Introduction

Nanovesicles composed of lipid bilayers have aroused considerable interest and atten-
tion for fundamental study and practical applications. There are two types of phospholipid-
membrane-based nanovesicles: pure lipid and/or protein vesicles and comparatively
complex cell-membrane-derived vesicles (also called extracellular vesicles (EVs)) [1]. Natu-
ral or synthetic lipid and/or protein ingredients make nanovesicles, involving liposomes or
proteoliposomes, an ideal model of the membrane system with the advantages of an easy
and low-cost production [2]. Furthermore, cell-derived membrane vesicles are regarded
as nano- to micrometer-sized containers comprising components such as cellular proteins,
nucleic acids and lipids, for the reason that cell plasma or cytosol membranes can enclose
these contents while membrane vesicles are secreted [3].

Increasing studies have noticed that EVs are versatile communication tools to estab-
lish a link between tumor and host, contributing to tumor development, progression and
metastasis. Both tumor and nontumor cells secrete lots of EVs, having a local impact
on tumor cells, or traveling through blood vessels to bring about distant influence [4].
Furthermore, bacterial membrane vesicles (BMVs), a type of cell-membrane-based EVs,
which are derived from bacteria membrane architecture, own nanoscale vesicle structures
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containing biomembrane elements of phospholipids. Additionally, BMVs consist of consid-
erable proteins, for example, original bacterial antigens and pathogen-associated molecular
pattern components [5]. Therefore, antigen-presenting cells (APCs) are able to recognize
and absorb BMVs, and subsequently signaling pathways in immune cells are activated
followed by specific immune responses. The molecular components and biological activity
of BMVs or further-modified ones render them possible to be a potent vaccine to treat
infectious or noninfectious diseases, including cancer [6].

As membrane vesicles have a general characteristic, they contain a lipid bilayer struc-
ture that can package hydrophobic and hydrophilic compounds. Despite the practical
condition that they are loaded with compounds from the parental cells, a further modifi-
cation, transformation and fabrication could be conducted as needed to achieve expected
goals, such as an enhanced output level, toxicity reduction, targeting improvement, etc. [7].
So far, how membrane vesicles take a part in tumor vaccines is a hot topic. For instance,
membrane vesicles conjugated with antitumor immunomodulators have been studied to
prevent and treat tumors. The potential of these membrane vesicles as tumor vaccines will
be described and discussed in the following section.

Herein, we review the categorization in existence, mechanisms to date and preclin-
ical and clinical applications so far regarding the use of phospholipid-membrane-based
nanovesicles as tumor vaccines in the field of tumor immunotherapy.

2. Different Origins of Membrane-Based Nanovesicles Are Likely to Act as
Tumor Vaccines

There are two primary types of phospholipid-membrane-based nanoparticles, in-
cluding liposomes and extracellular vesicles (EVs). As EVs are a complex group of
biomembrane-based nanostructures, based on their size, biogenesis and function, di-
verse classification methods have been used. According to the diameter of EVs, they
could be roughly classified into small EVs (~100 nm) or large EVs (~100–1000 nm and/or
>1000 nm) [8]. Moreover, in terms of biogenesis, EVs can be precisely categorized into
exosomes (30–100 nm) produced from the perinuclear luminal membrane and released
through multivesicular fusion with the cell membrane, microvesicles (namely micropar-
ticles, 100–1000 nm) generated from the cell membrane budding and apoptotic bodies
(500–2000 nm) produced through the protrusion of apoptotic cell membrane by dying
cells [3,9–11]. On the basis of modification or not, natural EVs and engineered ones are in-
cluded in the family of EVs. Furthermore, EVs have various origins, for example, generated
from prokaryotic or eukaryotic cells, or from cell or plasma membranes, since a number of
cells are able to secret EVs and subsequently EVs are filled with original components [1].

We then focus on the use of biomembrane-based nanoparticles as a kind of tumor
vaccine in the field of tumor immunotherapy or precaution. The classification, structure
and composition of four major types of these nanoparticles are going to be exemplified
in the following sections, involving liposomes, BMVs, tumor-derived EVs (TEVs) and
dendritic-cell-derived EVs (DEVs) (Figure 1).
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vesicles (BMVs), outer membrane vesicles (OMVs) and cytoplasmic membrane vesicles (CyMVs) 
are, respectively, representatives of Gram-negative and Gram-positive bacteria-generated mem-
brane vesicles, whose structures separately rely on the origins of bacteria. (C) Extracellular vesicles 
(EVs) derived from tumor cells (TEVs) and (D) Evs secreted by dendritic cells (DCs); namely, DEVs 
are typical cell-membrane-based vesicles widely used for tumor immunotherapy, and their compo-
sition depending on parental cells presents different forms, for example, types of membrane recep-
tors. 

3. Membrane Vesicles Work to Bring a Stone to the Building of Tumor Immunother-
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sponses has been extensively documented and exploited. In most cases, the membrane 
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(TAAs)), delivery of adjuvants, immunomodulatory molecules or cytosolic DNA, gene-
expression manipulation by miRNA or plasmids and induction of favorable signaling 
pathways by ligands expressed on the surface of the vesicles [11]. Generally speaking, in 
terms of mechanisms based on immunity, membrane vesicle vaccines induce the activa-
tion and maturation of DCs, provoke T cells and arouse immune memory, to play a role 
in tumor-suppressive efficacy and prolonged survival of multiple tumor biological mod-
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Figure 1. Structure of nanoscale vesicles standing for tumor vaccines in the range of biomembrane-
based nanovesicles. (A) Liposomes are genetically engineered with genes (including RNAs and
plasmids) and proteins or modified with drugs or other small molecules. (B) For bacteria membrane
vesicles (BMVs), outer membrane vesicles (OMVs) and cytoplasmic membrane vesicles (CyMVs)
are, respectively, representatives of Gram-negative and Gram-positive bacteria-generated membrane
vesicles, whose structures separately rely on the origins of bacteria. (C) Extracellular vesicles (EVs)
derived from tumor cells (TEVs) and (D) Evs secreted by dendritic cells (DCs); namely, DEVs are
typical cell-membrane-based vesicles widely used for tumor immunotherapy, and their composition
depending on parental cells presents different forms, for example, types of membrane receptors.

2.1. Liposomes

From a biological point of view, since a cornucopia of lipids and proteins are combined
together to naturally form cell membranes, in vitro natural lipids (for example phospho-
lipids) or synthetic components are able to self-assemble into spherical bilayer nanoparticles,
namely liposomes. Depending on the preparation methods, the size of the liposomes varies
from each other ranging from small (3–5 nm) to giant vesicles (>1 µm) [12].

In terms of the biomedical application of liposomes as a tumor vaccine, it is not
surprising that simplified membrane vesicle liposomes alone could not perform effec-
tive vaccination in various diseases, since the structure and composition are limited and
blood circulation times and stability lack satisfaction when they are applied. Thanks to
its versatility, scientists take advantage of the properties of phospholipid membranes in-
cluding chemical (amphiphilicity) and mechanical (stability, permeability and bending
and stretching elasticity) peculiarity [13,14]. Therefore, the modification and functionaliza-
tion of liposomes are necessary and available. Based on seminal reconstitution protocols,
liposomes can achieve characteristics and be smart. For instance, liposomes could be
stabilized by covering them with densely packed coats such as biocompatible PEG chains
(poly (ethylene glycol)) and a crystalline bacterial cell surface layer [15,16]. In addition,
according to the charge and specific membrane structure, reconstructed and engineered
liposomes are present to mitigate drug delivery problems (safety, efficiency, internalization
and targeting ability) [2,17]. Then, the liposome capacity of the efficiently delivering and
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suitably releasing cargoes (drugs, antigens, siRNA, etc.) can be improved. Taking some
construction means as an example, Lian, Shu et al. designed cationic liposomes containing
si-CD47 and si-PD-L1 and modified them with EpCAM (epithelial cell adhesion molecule),
so they not only enhanced the immune therapeutic efficacy of liposomes, but also improved
the targeting ability owing to the overexpression of EpCAM proteins in tumor cells [18].

2.2. Bacterial Membrane Vesicles

BMVs are capable of transporting a variety of molecules (proteins, nucleic acids and
toxins), and to some extent, the structure of the vesicles and composition of the cargoes
differ between Gram-positive and -negative bacteria [19,20]. Both of them exhibit significant
effects on innate and adaptive responses. For example, BMVs have been demonstrated to
have protective characters against exogenous pathogens or endogenous mutants and have
been applied for vaccine exploration [21,22].

For Gram-negative bacteria-derived BMVs, it is widely regarded that the vesicle struc-
ture is formed from three stratified layers of the fluid phospholipid bilayer, peptidoglycan
cell wall and phospholipid membrane characteristically carrying lipopolysaccharide (LPS)
in turn from inside to outside [23]. As a critical participant in bacterial communication and
homeostasis, outer membrane vesicles (OMVs) are naturally generated from Gram-negative
bacteria, and thus contain pathogen-associated molecular patterns (PAMPs). Therefore,
these vesicles, such as pathogen mimetic adjuvants, possess intrinsic immunostimulatory
properties acting as a vaccine. Moreover, since membrane vesicles are capable of drug
delivery, their natural composition could be enriched by modifying these vesicles with
other immunomodulatory agents [24–26].

In the aspect of the structure of Gram-positive bacteria-derived BMVs, depending on
their own construction, these BMVs lack the package of the outer membrane, while they
are coated with rigid peptidoglycan cell walls from the cytoplasmic membrane layer [27].
Hence, these cytoplasmic membrane-generated BMVs are named CyMVs. Although the
biological processes of Gram-positive BMVs are less understood than Gram-negative BMVs,
they are still being taken into consideration for vaccine applications. The vaccination effi-
cacy of BMVs from certain bacterial strains has been estimated as a strategy to fight against
Gram-positive bacteria, and vaccine safety has been detected as well through monitoring
toxin-specific antibodies. For the purpose of controlling and decreasing toxicity, approaches
to producing genetically engineered BMVs emerge one after another. For instance, Wang,
Xiaogang et al. purified BMVs from Staphylococcus aureus to establish an S. aureus vaccine
platform which could package cytosolic and secreted proteins, such as cytolysins and
phenol-soluble modulins, contributing to BMVs biogenesis and detoxification [28].

2.3. Tumor-Cell-Derived EVs

As EVs play a crucial role in cell–cell communication, tumor-cell-derived EVs (TEVs)
take part in tumorous progression, tumor microenvironment modulation and distant
metastasis, and even accelerate these processes [29,30].

Compared with liposomes, the contents and structure of EVs are relatively complicated.
Meanwhile, the innate composition of TEVs inherited from parental tumor cells has gained
a lot of attention. Considerable evidence from recent studies has demonstrated that there
are lots of oncoproteins (such as phosphorylated epidermal growth factor receptor (EGFR),
vascular endothelial growth factor (VEGF), stromal-cell-derived factor 1 (SDF1), etc.) and
oncogenic RNA (in particular miRNAs) in TEVs, making a contribution to tumor growth,
invasion, migration and angiogenesis [31–34]. For these TEVs carrying parent-cell-specific
signatures, they permit an interaction between the targeting cells and are potentially used
to be explored or confirmed as biomarkers in liquid biopsies for distinctive diseases [35].
Due to the existing biological qualities of TEVs, development for them acting as potential
therapeutic strategies becomes suitable and overwhelming. For example, approaches
inhibiting the preparation and secretion of native EVs or loading TEVs with antitumor
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drugs or RNAs which encode information of disrupting tumor progression are emerging
rapidly [36].

Since TEVs are assembled and packaged in a tumor-cell-specific manner, the compo-
nents (in particular, the tumor antigens) are distinct from the EVs from mesenchymal stem
cells or blood cells. Peptides in antigen-rich TEVs could be presented by major histocom-
patibility class (MHC) receptors and then cause the following interaction with immune
cells (CD8+, CD4+ T cells or natural killer cells (NKs)) to help enhance cancer immunother-
apy [22,37]. Additionally, to maintain biocompatibility and elevate the immunogenicity of
TEVs, the formulation should be well designed, in order not only to guarantee biosecurity,
but also to positively regulate antitumor immune responses and deliver therapeutics to
tumor sites. In numerous basic or clinical studies, engineered or nonengineered, autolo-
gous or nonautologous TEVs have been fabricated and administrated to biomedical model
species or human subjects [38].

2.4. Dendritic-Cell-Derived EVs

Cell-membrane-based EVs are also secreted by immune cells in tumor tissues to
contact the rest of the immune cells and tumor cells [39]. Immune-cell-derived EVs play
a crucial role in cell–cell communication for tumor cells to escape from immunological
surveillance and for further studies to design potential tumor vaccines [40]. Among these
EVs, a relatively large focus has been put on dendritic cells (DCs)-derived EVs (DEVs or
dexosomes) as a tumor vaccine, and thus DEVs have become an attractive candidate for
tumor immunotherapies.

In a typical immune loop, antigen-presenting cells (APCs), among which DCs are the
most potent APCs, prime the immune responses when the immune system defends against
tumorous, viral or bacterial diseases [41]. It is commonly believed that DCs expressing
MHC class I or II molecules on the cell surface interact with other immune cells such as
CD8+ or CD4+ T lymphocytes and natural killer cells to initiate an immune reaction [42,43].
During EVs secretion from DCs, it has been found that EVs also encapsulate peptide-MHC
complexes (p-MHC) together with costimulatory molecules such as CD40 and CD86 [44–46].
Additionally, it could carry abundant immunoregulatory cargos, including cytokines,
complement factors and immunosuppressive or active molecular mediators [47]. It has
been verified that in the absence of APCs, DEVs own the ability to activate T cells since they
can directly interact with T-cell receptor (TCR) complexes [48]. Flourishing evidence proves
that the capability of modified or engineered DEVs to elicit antigen-specific antitumor
immune responses could be enhanced when costimulatory factors are upregulated and
immunoregulatory/immunosuppressive signals are reduced [49]. It is no wonder that
DEVs continue to be a promising nanomaterial for further research on vaccination in
tumor immunotherapy.

3. Membrane Vesicles Work to Bring a Stone to the Building of Tumor Immunotherapy
from the Perspective of Basic Mechanisms

The potential role of membrane vesicles as tumor vaccines in tumorous immune
responses has been extensively documented and exploited. In most cases, the membrane
vesicles listed above have been well designed, engineered and modified, before they are
used to treat cancer or other diseases. The function of membrane vesicles acting in immune
regulation is likely due to diverse reasons, including their presentation or transfer of
antigenic peptides (tumor-specific antigens (TSAs) or tumor-associated antigens (TAAs)),
delivery of adjuvants, immunomodulatory molecules or cytosolic DNA, gene-expression
manipulation by miRNA or plasmids and induction of favorable signaling pathways by
ligands expressed on the surface of the vesicles [11]. Generally speaking, in terms of
mechanisms based on immunity, membrane vesicle vaccines induce the activation and
maturation of DCs, provoke T cells and arouse immune memory, to play a role in tumor-
suppressive efficacy and prolonged survival of multiple tumor biological models. In the
following review portion, we discuss the key mechanisms primarily focusing on the change
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in immune responses under the administration of these four types of potential membrane
vesicle vaccines at the level of basic medicine (Figure 2).
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Figure 2. Role of membrane vesicles as tumor vaccines in immune modulation. Membrane vesicles
carrying stimulators (such as tumor antigens/peptides, adjuvants, RNAs, etc.) have potentials to
arouse antitumor innate and acquired immune responses. (A) The modified vesicles interact with
macrophages and induce polarization of M2 (a protumor type) to M1 (an antitumor type) phenotype.
(B) The vesicles containing specific antigens or peptides can be presented by DCs to further stimulate
CD8+ T cells, causing cytotoxic T-lymphocyte (CTL) antitumor response. (C) In addition, during
the process of antigen presentation, CD4+ T cells could be activated as well, leading to long-term
memory immunity and downregulation of Tregs, a predominant type of immunosuppressive T cells
in tumor microenvironment. ↑ means upregulation, while ↓ stands for downregulation.

3.1. The Mechanisms of Liposomes as a Tumor Vaccine

As typical synthetic phospholipid-based vectors, liposomes have outstanding proper-
ties, such as flexible characteristics (including excellent elasticity and changeable degrees
of liquidity), ideal biocompatibility and low toxicity [50,51]. Although it is tough for sim-
ple and hollow lipid-membrane-based nanovesicles to be directly used as a vaccine, the
versatile features make it possible for them to achieve functions of tumor vaccines via
adventurous artificial liposome modification.

Currently, increasing studies have exploited or are developing liposomes encapsulated
with antigens, antibodies, adjuvants or chemical drugs depending on their hydrophilic
and hydrophobic moieties. To conduct feasible applications of liposomes in tumor im-
munotherapy, cationic liposomes containing synthetic tumor long peptides have been
designed and prepared, and such nanoparticle vaccines have been demonstrated to stim-
ulate both CD4+ and CD8+ T cells and enhance the efficacy of a checkpoint inhibitor for
lung cancer [52]. Apart from the combination of liposomes and checkpoint inhibitors,
liposomes can carry some inhibitors to improve the therapeutic effects of a checkpoint
blockade. For example, Tu, Kun et al. verified that liposomes codelivering BMS-202 (one
of the PD-L1 inhibitors) and chidamide (CHI, an epigenetic modulator inducing immuno-
genic cell death) boosted antitumor immune responses through CHI-related increased
immunogenicity and a BMS-202-mediated PD-L1 intercept [53]. In addition to carrying
tumor antigens, liposomes could be firstly modified with cholesterol cationic peptide DP7,
which makes liposomes successfully transfer mRNA into DCs, and then the production
of the DCs antigen presentation activity and secretion of proinflammatory cytokines were
found to elevate, further contributing to antigen-specific lymphocyte reactions and tumor
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inhibition [54]. Additionally, many more complex modifications to improve the antitumor
effects of liposomes has also drawn lots of attention. For example, Liang, Ruijing et al.
fabricated a gold nanoplatform coated with liposomes and meanwhile tethered aCD11c
(a ligand to target DCs), monophosphoryl lipid A (a strong adjuvant to induce immune
responses) and peptides from tyrosinase-related protein 2 (a melanoma antigen to stimulate
specific immune activity) [55]. The researchers have taken the superiorities of liposomes
and endowed them with immunogenic functions, so as to activate a complete antitumor im-
mune response involving DCs maturation, cytotoxic CD8+ T lymphocytes (CTLs) activation
and other routes of the immune system.

3.2. The Immunologic Mechanisms Triggered by Bacterial Membrane Vesicles

Owing to the microbe-associated molecular patterns (MAMPs) and nanoscale struc-
ture, BMVs have a high immunogenicity. They are developed into vaccines against in-
fectious or noninfectious diseases through chemical, physical and genetic modifications.
Thanks to the evolution of these modifications, BMVs can be endowed with more appropri-
ate and ideal functions or properties to fight against certain diseases, for instance, increased
safety and efficacious therapeutic ability.

Speaking of activating the influence of BMVs on immunity, it is essential to mention
that vesicle contents, including lipoproteins, nucleic acids and other immunostimulatory
MAMPs, may be recognized by the relevant receptors such as pattern recognition receptors
(PRR), which are detected to express on the surface of epithelial cells and immune cells
(in particular DCs) [56]. The ligand–receptor combination triggers the immune responses,
whereas the form and intensity of these responses vary from each other, relying on the
composition and structure of the BMVs to some extent [25]. As extensively reported, Toll-
like receptor 4 (TLR4), one of the PRR, has been verified to interact with BMVs containing
MAMPs such as LPS via the induction of PRR signaling, for example TLR4-dependent
CXCL8 (CXC-chemokine ligand 8, also known as IL-8) production, MAPK (mitogen-
activated protein kinase) -AP1 (activator protein 1) signaling, etc. [57,58]. Moreover, when
peptidoglycan (PG) existing on the membrane wall of BMVs dominates the ligand–receptor
communication, the NOD1 (nucleotide binding oligomerization domain 1), known for an
intracellular sensor, could be activated via recognizing PG, and the ascent of the cytokines
CXCL2 expression level has been found [59].

In addition to the innate immune system of which MAMPs in BMVs can drive the
generation, BMVs can effectively incite cellular and mucosal immunity. For instance,
engineered BMVs with the expression of IL-10 on the surface and the encapsulation of
HPV16 E17 protein into them have been demonstrated to prevent the exhaustion of T
cells, presentation of p-MHC I complexes and activation of CD8+ T cells transforming into
CTLs, causing the inhibition of tumor growth and metastasis and implying a novel tumor
immunotherapeutic strategy [60].

Among components of bacterial nanosized vaccine platforms, outer membrane vesi-
cles (OMVs) produced by Gram-negative bacteria are the most overlooked [21]. Numerous
studies have employed OMVs as therapeutic agents to treat cancer by means of the induc-
tion of antitumor immune responses. In an interesting study, bacterial OMVs were loaded
with polymeric micelles (a kind of liposome) which are responsible for chemotherapeutic
function and even help achieve the stimulation of T cells, and such modified OMVs elicited
stronger immune responses, resulting in an increased survival rate and decreased tumor
growth and metastasis in rodents [49]. OMVs can carry abundant quantities of LPS or
other immunomodulatory factors, whose capacity for immune activation and modulation
has been used to reduce tumor growth [61]. However, LPS is a double-edged sword,
because it is a kind of strong inducer of inflammation and thus is the main reason that
OMVs have biotoxicity [62]. Therefore, the biosecurity of OMVs should be taken into
much consideration. Hopefully, incomplete LPS structures in genetically engineered OMVs
cause toxicity to decline and keep the immunogenicity at the same time [63]. In the study
conducted by Kim, Oh Youn et al., OMVs, extracted from genetically modified Escherichia
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coli (E. coli) whose genes encoding the lipid component of LPS were dampened ahead of
time, exhibited biosafety, a targeting ability and ideal tumor attenuation after systematical
administration, and induced the production of CXCL10 and IFN-γ (interferon-γ) in colon
cancer cell-bearing mice [64]. Although the immune-associated mechanisms involved are
not completely understood, the potential of OMVs as a classical tool for tumor vaccine
design is worth being highlighted.

3.3. The Mechanisms of Tumor-Cell-Derived EVs Designed to Be Tumor Vaccines

TEVs have emerged as a booming drug- or compound-delivery system for the devel-
opment of tumor treatment, including chemotherapy and immunotherapy.

Generally speaking, TEVs suppress innate and/or adaptive antitumor immune re-
sponses. In the aspect of innate immunity, natural TEVs have been found to influence
macrophage polarization and inhibit the activation and proliferation of NK cells. Bardi,
Gina T et al. demonstrated that melanoma exosomes could upregulate the cytokine secre-
tion of the M2 phenotype and thus induce a protumor macrophage activation phenotype
mixture [65]. In addition, as Liu, Cunren et al. have studied the impact of carcinoma
exosomes on NK cell function, TEVs could suppress NK cell cytotoxic activity by inhibiting
the release of perforin and the expression of cyclin D3 [66]. Referring to adaptive immunity,
TEVs are loaded with a composition similar to the parental cells and it is well known
that tumor cells express the surface-protein-programmed death-ligand 1 (PD-L1) to evade
immune detection. TEVs have the same topology of PD-L1 as that on the cell membrane,
and TEVs could dumb the function of CD8+ T cells to facilitate tumor development [67].
Chen, Zhenzhen et al. demonstrated that TEVs from diffuse large B cell lymphoma were
detected to elevate the expression of PD-1 on the surface of T cells, hence acting as an
immunosuppressive mediator [68].

Conversely, in certain situations, TEVs could exert a tumor-inhibiting role through the
activation of the antitumor immune system. Interestingly, the formation of TEVs may influ-
ence their behavior in promoting or suppressing tumor cells. It has been revealed that TEVs
derived from radiation-irritated lung cancer cells have antitumor therapeutic effects via
tumor microenvironment (TME) remodeling [69]. Furthermore, tumor antigen profiles in
TEVs endow them with the potential to be tumor vaccines. TEVs carry damage-associated
molecular patterns (DAMPs) such as heat shock proteins (HSP) and subsequently activate
the immune cells, specifically DCs [70]. As Ma, Jingwei et al. have reported, TEVs can
increase lysosomal pH and drive lysosomal centripetal migration, promoting the formation
of p-MHC I complexes by DCs, which present antigen peptides to CD8+ T cells [71]. In
addition, HSP70-overexpressing tumor cells could release EVs rich in HSP70 proteins, and
these EVs become a reservoir of extracellular HSP70 to activate and augment the cytotoxic
activity of NK cells, or to play an immunostimulatory role in antigen presentation and
T cell priming [72,73]. Not surprisingly, TEVs, especially batch-to-batch engineered or
modified vesicles, exhibit a splendid character for tumor antigen delivery. The goals to
engineer or modify TEVs are various, including the enhancement of pharmacokinetic
and/or pharmacodynamic characteristics, maintenance of biocompatibility, decrease in
biotoxicity or improvement of immunogenicity [22]. These tumorous antigens or peptides
that TEVs possess can be presented by APCs forming p-MHC compounds to incite interac-
tions with other immune cells. In addition to antigens associated with the activation of DCs,
the DNA components in TEVs can also activate DCs in some signaling pathways. In the
recent few years, increasing amounts of researchers have revealed the connection between
epigenetic mechanisms and immunoregulation within a tumorous niche, aiming to boost
antitumor immune responses under the impact of epigenetic therapy [74]. Some strategies
have been conducted to genetically modify TEVs or other membrane nanovesicles with
epigenetic agents performing gene silencing through various signaling pathways, for ex-
ample, altered micro RNAs, histones and abnormal DNA methylation [75,76]. In addition,
the stimulator of interferon genes (STING) is an important signaling pathway because it
plays a vital part in the differentiation and manipulation of myeloid-derived suppressor



Pharmaceutics 2022, 14, 2446 9 of 25

cells (MDSCs) and EVs generate specific T-cell responses via the aforementioned pathway
to perform anticancer effects [77,78]. Y. Kitai et al. treated breast cancer cells with an
inhibitor of topoisomerase I before they collected and extracted cancer-derived EVs which
could contain a larger volume of DNA, and then DCs were activated to elicit antitumor
immunity by the TEVs via the cGAS-STING pathway [79]. Moreover, our previous study
concluded that TEVs packaging the metabolism-relevant inhibitor Fluvastatin can suppress
cancer cells via reversing immunosuppressive TME by increasing the infiltration of CTLs,
M1-macrophages and activated NK cells and downregulating immunosuppressive cells
including M2-macrophages, Tregs and MDSCs [80]. Therefore, not spontaneous TEVs, but
these processed ones have the potential to become an ideal tumor vaccine.

3.4. The Potential Mechanisms of Dendritic-Cell-Derived EVs Acting as a Tumor Vaccine

As described ahead, cell-free vectors DEVs also show therapeutic promise, since they
directly present the specific antigen to T cells and the activation of these effector cells is
stimulated. DEVs bear peptide-MHC complexes and inherit the properties that parental
DCs have. A number of fundamental and clinical studies load tumor antigen peptides
to DEVs, in a bid to suppress tumor growth by evoking helpful antitumor immunity.
Zuo, Bingfeng et al. painted DEVs with hepatocellular carcinoma peptides, α-fetoprotein
epitope and an immunoadjuvant (which was nucleosome-binding protein 1) to promote
the recruitment and activation of DCs in tumor sites, achieving the cross-presentation of
tumor neoantigens and causing tumor eradication [81]. Except containing peptides of a
signal tumor, DEVs could be engineered to carry tumor antigens from multiple tumors.
From the perspective of Tian, Xin and his colleagues, DEVs bearing dual antigens from
melanoma and lung adenocarcinoma were generated to induce specific tumor-rejected
immune responses owing to the upregulation and stimulation of CTLs [82]. Alternatively,
antigens in DEVs could be ingested by other APCs, and then APCs deliver such antigenic
EVs to the specific sites to elicit the priming of T cell and/or B cell crosstalk [83]. In some
in vitro studies, it has been shown that DEVs have to be recaptured by DCs and then
transfer antigen information so as to accomplish the interaction with T cells [84].

Despite the fact that the type of antigens carried by DEVs is crucial for them to specif-
ically initiate an immune response, the size of EVs should also be considered. Wahlund,
Casper J E et al. unraveled the divergence of DC-derived exosomes and microvesicles.
They found that exosomes carried much more ovalbumin (OVA), whereas the OVA in
microvesicles was hardly detectable [85]. Hence DC-derived exosomes show a stronger
capacity to induce antigen-specific T cell responses or antibody production, indicating
that exosomes own much more obvious immunogenicity, and more importantly implying
that subpopulations of EVs need be carefully concerned before design, manipulation and
application. In addition to antigen peptides and the size of DEVs, the origin of DEVs
is also important, for the reason that there are diverse developmental stages during the
maturation of DCs. Admyre, Charlotte et al. evaluated the T cell stimulatory capacity with
exosomes from lipopolysaccharide-matured DCs in advance and found an enhanced level
of the activated function of T cells compared with exosomes from immature DCs [86].

4. The Current Advances of Representative Membrane Vesicles as Tumor Vaccines in
Preclinical Studies

Owing to the unceasing and evolving processes of understanding how immune cells in-
teract with each other and communicate with tumor cells or other cells, continuously devel-
oping membrane vesicles are emerging as tumor vaccines and are utilized for immunother-
apy. Phospholipid-membrane-based nanovesicles can be loaded with antigenic payloads,
immunomodulatory factors or therapeutic drugs, or receive epigenetically/genetically engi-
neered reprogramming to overexpress or downregulate the expression of certain molecules
for the antitumor purpose. These nanomaterials have curative and tumor-killing effects in
different types of tumors through stimulating antitumor immune responses and reversing
the immunosuppressive microenvironment. Additionally, to generate an effective, qualified
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or even excellent tumor vaccine, it is critical to evoke the specific, robust and long-term
immunity and induce the attenuating of immunosuppressive factors. Here, an overview of
the multiple vaccines from modified and/or engineered membrane vesicles against tumors
in the recent decade is provided.

4.1. Synthetic Liposomes Used as a Tumor Vaccine

Through the versatile and operational characteristics of liposomes, there is no doubt
that liposomes are widely applied in antitumor treatment. Existing material design strate-
gies for liposomes acting as tumor vaccines are generally to functionalize them with
immunogenicity, targeting ability and immunomodulatory capacity by carrying adjuvants,
tumor-specific antigens/peptides, molecules specifically recognizing certain receptors or
different RNA types (Table 1). In addition, during fabrication processes, emphasis should
be put on internalization efficiency, circulation traffic, biocompatibility and security. We
list some representative studies about liposomes used for tumor immunotherapy in recent
years (Table 1). The design approaches, application in tumors and immune-associated
mechanisms are briefly described in Table 1.

Table 1. Fundamental applications of liposomes as tumor vaccines.

Modification Strategy Targeting Tumor Types Mechanisms and Outcomes Year, Reference

Cationic liposome
encapsulated with mRNA
encoding cytokeratin 19

Lung caner

DC maturation (CD86 ↑; MHCII ↑);
cytokine elevation (IL-12 ↑, TNF-α ↑,

IL-2 ↑, IL-4 ↑).
Induction of an antitumor immune response.

2020, [87]

Liposomes enveloped with
ErbB-2 and OVA peptide

Lung carcinoma cells;
breast cancer

ErbB-2 (known as Her-2) activates B cells to
generate antibodies targeted by Pertuzumab;

OVA provides T cell support.
2020, [88]

Liposomes carrying tumor
antigens Gangliosides Pancreatic cancer

Ganglioside liposomes bind to CD169 and
are internalized by CD169+ DCs and

macrophages causing cytokine production,
robust cross-presentation and specific

activation of CD8+ T cells.

2020, [89]

pH-sensitive liposomes
containing OVA and α-GalCer T lymphoma

Induction of OVA-specific IgG1 and IgG2b
antibody responses;

increased production of IFN-γ and IL-4;
prophylactic vaccination efficacy.

2018, [90]

Liposomes containing HPV16
E7 peptide and CpG

oligodeoxynucleotides and
modified with DC-targeting

mannose

Cervical cancer

Increased proportions of CD4+ and CD8+ T
cells and CTL;

reducing numbers of inhibitory immune cells
such as MDSCs.

2020, [91]

Liposomes conjugated with
adjuvant cRGD

Lung cancer;
melanoma;

breast cancer;
liver cancer

cRGD promotes immunogenic cell death;
cRGD-liposomes increase cellular

accumulation of thymidine conjugate and
enhance cytotoxicity following UVA

activation.

2019, [92]

Liposomes admixed with
HPV-16 E7 epitope Cervical cancer

Induction of antigen-specific CD8+ T cells
and production of relevant cytokines (TNF-α

and IL-2);
increased percentages of central and effector

memory T cells.

2021, [93]
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Table 1. Cont.

Modification Strategy Targeting Tumor Types Mechanisms and Outcomes Year, Reference

Liposomes modified with the
adjuvant system including

CoPoP, PHAD and
immunostimulatory

molecules QS-21

Colon cancer

CoPoP induces particle formation
of peptides;

particle-based peptides are better taken up
by APCs and are represented on an

MHC-I surface;
generation of antigen-specific CD8+ T cells.

2021, [94]

Liposomes modified with ICG
and pardaxin peptide Melanoma

Under NIR, the liposomes induce the release
of DAMPs and TAAs with

high immunogenicity.
2022, [95]

RNA-loaded magnetic
liposomes Glioblastoma

Iron oxide enhances DCs transfection and
enables tracking of DCs migration with MRI,
thus predicting individual treatment effects

2019, [96]

Liposomal nanoparticles
composed of mRNA

(containing Ψ and 5meC) and
α-GalCer

Melanoma;
lymphoma

The nanosystem leads to the activation of
iNKT after presented by APCs, and then

cytokines (IFN-γ, IL-4, etc.) secreted by iNKT
activate DCs and CTL.

2019, [97]

Liposome-decorated cancer
cell membrane enveloping a

plasmid encoding shRNA
against Pvt1

Colorectal cancer

The biolipid nanoparticles strengthen
Oxa-induced ICD;
activation of DCs;

inhibition of MDSCs;
generation of immune memory responses for
tumor ectopic rechallenging and metastasis.

2022, [98]

Cationic liposome
encapsulated with

tumor-derived mRNA

Melanoma;
lung cancer

Increased coexpression of CD11c and PD-L1
in host-myeloid cells sensitize

immunologically “cold” tumor;
PD-L1+ APCs elicit IFN-γ production

causing expansion of specific CD8+ T cells;
combination with ICIs enhances T cell

activity and synergistic antitumor efficacy.

2018, [99]

MMP2 responsive
folate-modified liposome

carrying doxorubicin
Breast cancer

Elimination of M2-TAMs resulting in a
decrease in immunosuppressive cytokines
and Treg cells, ensuring antitumor effector

T cells;
promotion of DCs maturation and

immunostimulatory cytokines secretion.

2019, [100]

Abbreviations: CpG, cytosine–phosphate–guanine; OVA, ovalbumin; α-GalCer, α-galactosylceramide; CoPoP,
cobalt–porphyrin; PHAD, monophosphoryl lipid A; ICG, indocyanine green; MRI, magnetic resonance imaging;
NIR, near-infrared irradiation; Ψ, pseudouridine; 5meC, 5-methylcytidine; iNKT, invariant natural killer T cells;
shRNA, short hair-pinned RNA; Pvt1, plasmacytoma variant translocation 1; ICIs, immune checkpoint inhibitors;
Oxa, Oxaliplatin; ICD, immunogenic cell death; MMP2, matrix metalloprotease 2; TAMs, tumor-associated
macrophages; TAAs, tumor-associated antigens; BMDCs, bone-marrow-derived DCs. ↑: Upregulation of certain
subpopulations of DCs or cytokines.

4.2. The Design and Engineering Modification of Bacterial Membrane Vesicles

BMVs are designed not only to target tumor sites and provoke effective immune
reactions, but also to reduce inflammatory toxicity and specifically kill tumor cells. Compre-
hensive studies revealing various fabrications of BMVs as tumor vaccines are documented
in Table 2.

BMVs have been reported to induce the production of antitumor-associated cytokines
such as IFN-γ, TNF-α and IL-12 [25,101]. Except the immunological functions of BMVs,
BMVs have a rigid membrane structure which makes nanoplatforms stabilized. Moreover,
it is easy to produce BMVs by fermentation and purification procedures, and it is workable
to acquire genetically engineered BMVs [102]. Owing to theses intrinsic properties, it is not
surprising that integrating BMVs into tumor vaccines is appealing. BMVs can be originated
from various types of bacteria, while nanosized OMVs secreted by Gram-negative bacteria,
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especially E. coli, are mostly developed to be a tumor vaccine. Before collecting BMVs,
original bacteria can be genetically engineered by being transfected with RNA interference,
miRNAs, etc., for some purpose, such as detoxification. Additionally, a modification is
commonly applied after BMVs are ultracentrifuged and purified, for example, binding
them with tumor antigens or immunoadjuvants (Table 2).

Table 2. Fundamental applications of BMVs as tumor vaccines.

Parent Bacteria Modification Strategy Targeting Tumor
Types Mechanisms and Outcomes Year,

Reference

Escherichia coli
(E. coli)

Bacteria and liposome
biohybrid vaccine

combined with tumor
antigen and adjuvant

Colorectal cancer

Increased expression of CD40,
CD80 and CD86 on BMDCs and

enhanced infiltration of CD8+

T cell

2021, [103]

E. coli

Genetically engineered
OMVs binding with L7Ae

(RNA binding protein) and
listeriolysin O (lysosomal

escape protein)

Melanoma;
colon cancer

Listeriolysin O-mediated
endosomal escape contributes to

cross-presentation of DCs;
induction of a long-term

immune memory.

2022, [104]

E. coli
OMVs fused with

thylakoid membranes
from spinach

Colon cancer;
breast cancer

Photodynamic effects from
thylakoid cause tumor destruction,
resulting in release of TAAs and
DAMPs presented by DCs and
inducing tumor-specific CD8+

T cell responses.

2022, [105]

E. coli OMVs fused with protein
cytolysin A

Pulmonary metastatic
melanoma;

colon cancer

The antigen-bearing OMVs
stimulate DCs maturation and

protect animals against
tumorous rechallenge.

2022, [106]

E. coli
Conjunctive products of

OMVs, Mal and 1-MT (IDO
inhibitor)

Colon cancer

The nanoparticles bind to tumor
antigens and overcome the

immune inhibition of IDO on
effector T cells.

2022, [107]

E. coli
OMVs fused with ClyA

protein and decorated with
tag/catcher protein pairs

Lung melanoma
metastasis;

colorectal cancer

The vaccine platform
“Plug-and-Display” technology
displays the tumor antigens and

induces innate and specific
T-cell-mediated immune

responses.

2021, [108]

E. coli Synthetic OMVs combined
with TEVs Melanoma

Synthetic OMVs have barely any
systemic proinflammatory

responses;
The combined membrane vesicles
activate BMDCs, Th-1 T cells and

balance antibody production;
efficacy of antiPD-1 inhibitor is

improved.

2021, [61]

Salmonella
Typhimurium

A eukaryotic–prokaryotic
vesicle (EPV) nanoplatform

containing TEVs
and OMVs

Melanoma

It is verified to be a prevention
vaccine to trigger antitumor
memory immune responses;

photothermal effects are motivated
by combination with EPV through
DCs maturation and production of

TNF-α and IL-12.

2020, [109]
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Table 2. Cont.

Parent Bacteria Modification Strategy Targeting Tumor
Types Mechanisms and Outcomes Year,

Reference

E. coli
OMVs modified by

insertion of the ectodomain
of PD1

Colon cancer;
melanoma

OMVs bind to PD-L1 on the tumor
cell surface and thus protect T cells

from PD1/PD-L1 axis;
OMVs induce the accumulation of

effector T cells in TME.

2020, [110]

Salmonella
Typhimurium

OMVs from Salmonella
Typhimurium

Colorectal carcinoma;
hepatocellular

carcinoma;
breast cancer

OMVs enhance recruitment of NK
cells through upregulation of

caspase-3, Beclin-1 and CD49b.
2021, [111]

Abbreviations: Mal, maleimide; 1-MT, 1-methyl-tryptophan; IDO, indoleamine 2, 3-dioxygenase.

4.3. The Proper and Multiple Strategies for Producing Tumor Vaccines from Tumor-Cell-Derived EVs

As TEVs play a crucial biological role in tumorous biogenesis, development and
metastasis, it cannot be denied that antitumor strategies vary from each other depending
on the distinctive mechanisms, for example, suppressing TEV secretion, interrupting TEV
uptake by recipient cells or delivering functional cargoes [4]. Apart from these approaches,
the applications of TEVs as tumor vaccines in the last few years are summarized below
(Table 3).

Table 3. Fundamental applications of TEVs as tumor vaccines.

Modification Strategy Targeting Tumor Types Mechanisms and Outcomes Year, Reference

Tumor-derived antigenic
microparticles (T-MPs)

carrying nanoFe3O4 and
adjuvant CpG

Melanoma;
colon cancer

Nanomaterials absorbed by APCs elicit
antigen-specific host immune responses;

reversion of tumor-associated
macrophages into a tumor-suppressive

M1 phenotype;
increased infiltration of CTL.

2019, [112]

Irradiated
tumor-cell-derived EVs

Hepatoma;
breast cancer

Radiation endows TEVs with tumor
antigens (for example, CDCP1) and HSP;
enhanced infiltration of CD8+ and CD4+

T cells and activation of CTL.

2020, [113]

TEV surface modification with
glycocalyx and removal of

sialic acids
Glioblastoma

Increased internalization by DCs via
receptor-mediated glycan-depending

targeting to DCs.
2019, [114]

α-LA-engineered cancer
exosomes loaded with ICD
stimulators (ELANE and
TLR3 agonist Hiltonol)

Breast cancer

Homing to the tumor sites and induction
of ICD in cancer cells;

activation of cDC1s and tumor-reactive
CD8+ T cells.

2022, [115]

TEVs mixed with an
oligonucleotide duplex and
assembled with CpG-DNA

Melanoma
TEVs prolong residence in tumor tissue
and activate DCs more efficiently than

tumor or fibroblast cells.
2019, [116]

Exosomes derived from
immunogenically dying

tumor cells and modified with
MART-1 and CCL22 siRNA

Pancreatic cancer

MART-1 peptide can expand
T-cell-related responses;

CCL22 siRNA inhibits the
communication between DCs and Tregs

via the CCR4/CCL22 axis.

2022, [117]

irradiated C6 (malignant
glioma-cell-derived EVs Glioblastoma

Increased percentages of apoptotic tumor
cells and helper, cytotoxic and regulatory

T cells.
2019, [118]
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Table 3. Cont.

Modification Strategy Targeting Tumor Types Mechanisms and Outcomes Year, Reference

TEVs derived from irradiated
cancer cells Breast cancer

TEVs transfer dsDNA to promote
production of IFN-γ via cGAS/STING

pathway;
TEVs evoke specific antitumor responses
of CD8+ T cells and perform prophylactic

vaccination.

2018, [119]

TEVs carrying adjuvant
HMGN1 Hepatocellular carcinoma

TEVs potentiate immunogenicity and
activate DCs;

TEVs promote DCs homing to lymphoid
tissues and augment memory

lymphocytes.

2020, [120]

TEVs modified with
microRNA (miR-155, miR-142

and let-7i)
Breast cancer

Induction of DCs maturation by detecting
expression of MHCII, CD80 and CD40;
microRNA-targeting genes (IL-6, TGFβ,
IFN-γ, TLR4, SOCS1, etc.) are confirmed

to mature DCs.

2019, [121]

TEVs derived from leukemia
cells whose PD-L1 have been

downregulated by PD-L1
shRNA

Leukemia
Modified TEVs evoke DCs maturation,

T-cell activation and release of
Th1 cytokine.

2022, [122]

Abbreviations: HSP, heat-shock proteins; CDCP1, CUB domain-containing protein 1; α-LA, α-lactalbumin;
ELANE, neutrophil elastase; cDC1s, type one conventional DCs; HMGN1, high mobility group nucleosome-
binding protein 1.

Notably, compared with the composition of liposomes or BMVs, TEVs innately con-
tain a plethora of bioactive molecules, especially tumor antigens (TAAs and TSAs), which
are critical when TEVs are involved in immunity modulation. Nevertheless, naturally
autosecreted TEVs cannot be directly applied in tumor immunotherapy, since they have an
important part in tumor biogenesis and progress as we have mentioned above. Therefore,
engineering or modification methods are essential to fully obtain their advantages and
potentials as a tumor vaccine. Before isolation is conducted, tumor-cell-related genetic
engineering can be performed, including gene/protein-encoding interference (miRNAs,
mRNA, siRNAs and others) and genome editing (plasmid DNAs) [1]. Furthermore, thera-
peutic drugs, adjuvants or antigen peptides can also be attached to TEVs before or after
isolation so as to improve their capacity to be a feasible tumor vaccine.

4.4. Transforming Dendritic-Cell-Derived EVs into an Ideal Tumor Vaccine

Since DEVs partially similar to DCs participate in the initiation of proper antitumor
immune responses of T cells consisting of antigen recognition (p-MHC complexes-TCR
communication performs an important role), costimulation and/or production of T-cell
stimulatory cytokines, it is inevitable to further consider the DEVs used in tumor im-
munotherapy [22]. Additionally, DEVs are able to trigger or modulate innate antitumor
immune responses, for example, the activation of NK cells [123]. Rather than the direct
use of naked EVs generated from different types of DCs in tumor immunotherapy, DEVs
also undergo multiple design means. Similar to the approaches described in the previous
section, DEVs can be loaded with therapeutic sensitizers, immunomodulators, adjuvants,
tumor-specific peptides or small molecules targeting some signaling pathway. It is noted
that not only do TEVs carry tumor-associated antigens (TAAs), but DEVs can also be pulsed
with TAAs when they are generated from patient tissues [4].

We document representative preclinical studies in recent years about DEVs modified
to be a tumor vaccine and give a brief description of immune-related mechanisms and how
DEVs evoke potent antitumor immunity (Table 4).
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Table 4. Fundamental applications of DEVs as tumor vaccines.

Modification Strategy Targeting Tumor Types Mechanisms and Outcomes Year, Reference

DEVs loaded with
MBPN-TCyP (an

AIE-photosensitizer)

Breast cancer;
colon cancer

The modified DEVs induce ICD and
immune-modulation function like

parental DCs;
DEVs synergize photodynamic

immunotherapy.

2022, [124]

DEVs derived from A-Pas
chiRNA-transfected DCs Esophagus cancer

DEXs induce DC maturation
(upregulation of CD83, CD86, MHC-I

and MHC-II) and CD8+ T-cell-mediated
antitumor responses.

2022, [125]

DEVs assembled with tumor
peptide P47-P, AFP and

immunomodulators N1ND-N
Hepatocellular carcinoma

DEVs promote DCs recruitment,
activation, cross-presentation of antigens;

DEVs induce antitumor responses by
increasing IFN-γ+CD8+ effector T cells.

2022, [81]

Exosomes derived from
AFP-expressing DCs Hepatocellular carcinoma

DEVs remodel TME by increasing
IFN-γ+CD8+ T cells and cytokines (IFN-γ

and IL-2) and by decreasing
CD25+Foxp3+ Treg and cytokines (IL-2

and TGF-β).

2017, [126]

DEVs conjugated with MUC1
glycopeptide antigen Melanoma

Induction of MUC1-specific IgG antibody;
activation of CTL against MUC1-positive

tumor cells.
2022, [127]

DEVs derived from
OVA-pulsed and activated

dendritic cells modified with
antiCTLA-4 antibody

Melanoma

DEVs target to T cells and activate
tumor-specific T-cell responses;

CTLA-4 in DEVs block inhibitory
immunity and enhance the specific

responses by T cells.

2020, [128]

DEVs loaded with antigen
E749-57 peptide and inducer

poly(I:C)
Cervical cancer

Activation of CTL;
Promoted immunity of vaccinated mice

splenocytes.
2018, [129]

DEVs derived from tumor cell
lysate-pulsed DCs Lung cancer

Induced proliferation of allogeneic T cell,
including the subpopulation of CD3+Vγ9

T and CD8+ T cells;
Activated cytotoxicity of alloPBMCs

against tumor cells.

2020, [130]

Abbreviations: AIE, aggregation-induced emission; A-Pas chiRNA, a cancer-specific aberrant transcription-
induced chimeric RNA; AFP, α-fetoprotein; N1ND-N, nucleosome-binding protein 1; TME, tumor microenviron-
ment; Treg, regulatory T cells; TGF-β, transforming growth factor-β; alloPBMCs, allogeneic peripheral blood
mononuclear cells.

5. The Clinical Applications Relevant to Tumor Vaccines of Biomembrane-Based
Nanovesicles Are Developing

The aforementioned applications of membrane vesicles as potential tumor vaccines are
mainly focused on the fundamental level, that is to say, applied in vitro or in animal models.
Due to the preponderance of drug/molecule-delivery efficiency, internalization ability, ease
of modifying and biocompatibility, these membrane-based nanovesicles (liposomes, BMVs,
TEVs and DEVs) exhibit potential for clinical and biomedical translation. For the purpose of
the clinical evaluation of tumor vaccine efficacy, tumor status (tumor growth, invasion and
metastasis), survival indexes (overall survival and progression-free survival) and systemic
and local immunity (implying how vaccines work and influence the human body) are
involved in the assessment system. In addition to therapeutic effect appraisals, adverse
effects caused by vaccines are always crucial and need careful observation [131]. Since
membrane vesicles act as vaccines potentially influencing patient immunity, monitoring
immune responses is essential for the sake of security during the clinical trials, not just for
the evaluation of curative effects. On account of the fact that a wide range of clinical trials
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has been undertaken, the advances and meanings of complete or developing clinical studies
to date are going to be reviewed in the following section. Additionally, the brief synopsis
of these representative clinical trials appearing in the context can be seen in Table 5.

Table 5. Representative clinical trials applying tumor vaccines.

Trial ID Phase Status Intervention Applied Conditions

NCT04163094 Phase 1 Active, not recruiting A liposome-based mRNA vaccine
combined with chemotherapy. Ovarian cancer

NCT01915524 Phase 1 Terminated RNActive®-derived cancer vaccine coding
for tumor antigens.

Nonsmall cell lung
carcinoma

NCT01052142 Phase 1 Completed A liposomal vaccine. Melanoma

NCT01095848 Phase 1 Completed

DPX-0907 consists of seven tumor-specific
HLA-A2-restricted peptides, a universal

T-Helper peptide, a polynucleotide
adjuvant, a liposome, etc.

Ovarian, breast and
prostatic neoplasms

NCT00623831 Phase 1 Completed;
has Results Mixed bacterial vaccine.

Melanoma, sarcoma,
gastrointestinal stromal

tumor, etc.

NCT02010203 Phase 1/2 Terminated;
has Results

HS-410: a vaccine derived from irradiated
cancer cells genetically engineered to

continually secrete gp96;
BCG: a vaccine derived from a live

bacterium.

Bladder cancer

NCT03762291 Phase 1 Recruiting CVD908ssb-TXSV: Salmonella-based
survivin vaccine. Multiple myeloma

NCT02657460 Phase 2 Unknown Tumor-derived microparticles packaging
chemotherapy drugs.

Malignant pleural
effusion

NCT01550523 Phase 1 Completed Exosomes from autologous glioma cells
combined with an antisense molecule.

Malignant glioma of
brain

NCT00020462 Phase 1 Completed Autologous tumor cell vaccine plus
interleukin-2. Lymphoma

NCT05559177 Early
Phase 1 Recruiting Personalized chimeric exosome

tumor vaccines.
Recurrent or metastatic

bladder cancer

NCT00065442 Phase 3 Completed;
has Results

Sipuleucel-T: Autologous antigen
presenting cells loading with PA2024. Prostate Cancer

NCT02693236 Phase1/2 Unknown
Monocyte-derived dendritic cells

(moDCs) combined with
cytokine-induced killer cells.

Squamous cell
carcinoma of
esophagus

NCT01159288 Phase 2 Completed Dex2: tumor antigen-loaded
dendritic-cell-derived exosomes.

Nonsmall cell lung
carcinoma

Liposomes, amongst membrane vesicles having a relatively long history, are used
for tumor vaccines in a number of clinical trials. In the Netherlands, eligible ovarian
cancer patients are treated with a liposome-formulated mRNA vaccine that can encode
TAAs and later peripheral blood mononuclear cells, and the intratumoral accumulation
of immune cells are used to determine immune responses (NCT04163094). Additionally,
liposome-based mRNA vaccines exhibit fewer side effects, a higher stability and stronger
efficacy than the sole mRNA vaccines in cancer treatment, including lung cancer and colon
cancer (NCT01915524) [132,133]. Furthermore, a liposomal vaccine called Lipovaxin-MM
in a completed phase I trial has been demonstrated to be safe and effective in metastatic
melanoma participants (NCT01052142). Despite the potentially effective vaccines of simple-
ingredient liposomal systems, liposomes can be designed to be encapsulated with several
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components performing their special duties. In a phase I trial, a complex nanovesicle
vaccine named DPX-0907 based on IVT’s DepoVax™ (DPX) formulation was applied to
ovarian, breast and prostatic cancers, which consisted of tumor and T helper peptides, a
polynucleotide adjuvant and lipid components, respectively (NCT01095848). Although the
safety was confirmed in the phase I study, a subsequent study to determine the treatment
effects need to be carefully planned and the results remain unknown.

There have been a batch of clinical studies that used bacteria or modified ones as
potent tumor vaccines to inherently modulate and stimulate antitumor immune responses
or reverse immunosuppressive immunity. In spite of some clinical studies using bacteria for
tumor vaccines (NCT00623831, NCT02010203, NCT03762291, etc.), bacteria may pose a risk
for infection during the treatment, so applying bacteria-derived vesicles that contain concise
components seems to be safer [134]. Bacteria contain lots of unnecessary or even toxic
components, so it is welcomed through discarding the “dross” and meanwhile selecting the
“essence”. Despite the current condition that lots of clinical trials about BMVs emerge to
cure infectious diseases, the existing registered clinical trials about BMVs acting as a tumor
vaccine are limited, indicating that there are many challenges setting obstacles for tumor
vaccines in clinical translation [135]. Meanwhile, lots of concerns have been raised about
the biosafety of BMVs. For example, the introduction of LPS or other proinflammatory
factors in BMVs may potentially cause an inflammatory storm. Therefore, a variety of
methods have been introduced to diminish the component toxicity of BMVs to decrease
the incidence of systemic inflammatory responses [136,137].

The parental materials for TEV fabrication applied in patients are various, for example
using autologous tumor cells or synthesizing tumor neoantigens loaded in TEVs. In
2019, we published our clinical data about autologous tumor-cell-derived microparticles
encapsulated with methotrexate (aTMPs-MTX) used in advanced lung cancer patients
with malignant pleural effusion [138]. The clinical results showed that aTMPs-MTX not
only decreased the pleural effusion volume but also activated patient antitumor immunity
(for example, the upregulation of CTLs) (NCT02657460). Furthermore, TEVs can carry
other bioactive byproducts to play a role in the modulation of antitumor immunity in
clinical studies. For instance, in a phase I clinical trial, exosomes from patient glioma
tissues encapsulated in small diffusion chambers can gently release tumor antigens and
perform the activation of immune cells (NCT01550523). Despite the fact that some synthetic
TEVs as tumor vaccines seem to be effective in prolonging survival, combination therapy
in clinical trials is not unusual. In a phase I trial (NCT00020462), patients with follicular
lymphoma receive the therapy strategy combining the autologous tumor cell vaccine and
IL-2. Additionally, hybrid or chimeric EVs vaccines exist in clinical studies. Currently, an
early phase 1 trial is being conducted, referring to the membrane vesicle combination of
chimeric exosomal tumor vaccines prepared from bladder tumor tissues and peripheral
blood immune cells (DCs or macrophages) (NCT05559177). However, the treatment effects
of incomplete trials remain to be detected.

A decade ago, the FDA approved monocyte-derived DCs pulsed with the antigen
prostatic acid phosphatase and the immunomodulatory factor GM-CSF as a form of cellular
immunotherapy against prostate cancer, which was demonstrated to be effective in phase
III trials (NCT00065442) [139]. In consideration of the functions of DCs being potent
tumor vaccines and the novel promising cell-free EVs from DCs, Narita, Miwako et al.
performed and reported phase I/II clinical trials (NCT02693236) for patients diagnosed
with esophageal cancer, in which DEVs were isolated from antigen peptide-pulsed DCs,
and then CTLs were found activated later after the administration of DEVs in patients,
while the efficacy of DEVs remained unknown [140]. Another phase II clinical trial in France
focused on the immunotherapeutic effects of metronomic cyclophosphamide followed by
tumor antigen-loaded DEVs, whose safety and feasibility on unresectable nonsmall cell
lung cancer was verified in a phase I trial (NCT01159288). It is notable that not all the trials
showed the desired efficacy, which was mainly attributed to the low immune stimulatory
capacities of these synthetic membrane vesicles. To relieve or solve the obstacles occurring
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in the clinical application of membrane vesicle vaccines, the design of the vaccine itself,
timing and frequency of vaccination, routes and sites of injection and vaccine doses should
be gradually and rigorously established.

6. Outlooks

Phospholipid-membrane-based vesicles own evident features making them attractive
for basic or clinical applications. With the membrane properties, membrane vesicles are
born to be flexible and easy-to-carry cargoes or internalized by recipient cells. As a result,
they have inevitably become a promising drug/molecule-delivery platform. Nevertheless,
due to the different sources of membrane vesicles, the function and capacities are distinctive
from each other, so researchers should properly design strategies according to the actual
situations so as to take full advantage of nanosized tumor vaccines, rather than applying
them mechanically. There are several approaches concluded as follows to improve the ther-
apeutic successfulness of tumor vaccines: 1. standardized preparation techniques in order
to improve the uniformity of nanovesicles including their size and contents; 2. detoxicating
toxic components and purifying vesicles to wipe off impurities; 3. selecting a specific and
conducive cargo, including antigen peptides (such as hot-discussed personalized neoanti-
gens), immunomodulatory factors, chemical drugs and nucleic acids (such as mRNA,
miRNA and siRNA encoding with specific functions); 4. The appropriate modification of
vesicle surface or intercellular compartments. It is believed that the advances of membrane
vesicles used in tumor immunotherapy are endless.

Although a number of preclinical studies contribute to exploiting developing methods
in order to design membrane vesicles as ideal tumor vaccines, several reasons as follows
may set obstacles to the clinical translation of membrane vesicles. 1. in the aspect of
biosafety, complex contents in vesicles may not only cause side effects (for example, im-
paired glucose tolerance and fasting hyperglycemia) but may also be difficult to metabolize,
thus prolonging in vivo residence, indicating that the toxicology and pharmacokinetics
should be further carefully concerned during the intervention [51,141,142]; 2. despite ongo-
ing efforts to improve the procedures associated with the isolation and storage of membrane
nanovesicles, the homogeneity of extraction is hard to ensure and the quality control still
remains problematic [143]; 3. the technique causes the therapeutic membrane vesicles
to be expensive and such curative approaches may raise the cost burden to patients [22];
4. due to the physiological uniqueness of each patient and/or low immunogenicity of
nanoscale tumor vaccines, the precision medicine and/or therapeutic effects are difficult
to be determined and guaranteed; 5. ethical issues may hinder the clinical application,
for the reason of the potential adverse impact of genetically modified membrane vesicles,
such as uncomfortable feelings (fatigue, fever, etc.) or even continuous tumor development
probably caused by the cargoes in the membrane nanovesicles [131,144]; 6. the retention
in the systemic circulation is not durable and nanovesicles may be rapidly cleared by the
mononuclear phagocytic system, resulting in a low efficiency and high frequency of vacci-
nation, so novel therapeutic systems such as nanovesicles camouflaged with red blood cell
or platelet membranes are being studied [141,145]. Taken together, uniform and definite
criteria are difficult to accomplish, and researchers have to be faced with and overcome
existing hindrances. In summary, although there is still an arduous and long road to go for
the development of membrane-vesicle-based tumor vaccines, it does not keep membrane
vesicles from being promising tumor vaccines.
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