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Abstract: Pain is one of the most common symptoms experienced by patients. The use of current
analgesics is limited by low efficacy and important side effects. Transient receptor potential vanilloid-
1 (TRPV1) is a non-selective cation channel, activated by capsaicin, heat, low pH or pro-inflammatory
agents. Since TRPV1 is a potential target for the development of novel analgesics due to its distribution
and function, we aimed to develop an in silico drug repositioning framework to predict potential
TRPV1 ligands among approved drugs as candidates for treating various types of pain. Structures of
known TRPV1 agonists and antagonists were retrieved from ChEMBL databases and three datasets
were established: agonists, antagonists and inactive molecules (pIC50 or pEC50 < 5 M). Structures of
candidates for repurposing were retrieved from the DrugBank database. The curated active/inactive
datasets were used to build and validate ligand-based predictive models using Bemis–Murcko
structural scaffolds, plain ring systems, flexophore similarities and molecular descriptors. Further,
molecular docking studies were performed on both active and inactive conformations of the TRPV1
channel to predict the binding affinities of repurposing candidates. Variables obtained from calculated
scaffold-based activity scores, molecular descriptors criteria and molecular docking were used to
build a multi-class neural network as an integrated machine learning algorithm to predict TRPV1
antagonists and agonists. The proposed predictive model had a higher accuracy for classifying
TRPV1 agonists than antagonists, the ROC AUC values being 0.980 for predicting agonists, 0.972 for
antagonists and 0.952 for inactive molecules. After screening the approved drugs with the validated
algorithm, repaglinide (antidiabetic) and agomelatine (antidepressant) emerged as potential TRPV1
antagonists, and protokylol (bronchodilator) as an agonist. Further studies are required to confirm
the predicted activity on TRPV1 and to assess the candidates’ efficacy in alleviating pain.

Keywords: molecular docking; machine learning; pain; drug discovery; TRPV1 agonist; TRPV1 antagonist

1. Introduction

Chronic pain is correlated with disability and significant impairment of the patient’s
quality of life. Furthermore, most of the patients need medical assistance to treat pain [1,2].
Depending on the etiology and type of the pain, current therapeutic solutions include drugs
such as opioids, nonsteroidal anti-inflammatory, analgesic-antipyretics, antidepressants
and anticonvulsant drugs. However, their use is limited by severe side effects and/or
reduced efficacy [3–5]. Current research focuses on the discovery of new drugs with
analgesic effect, with superior efficacy and safety profile [2].

In recent years, multiple studies have revealed the capsaicin receptor, the transient
receptor potential vanilloid 1 (TRPV1), as a therapeutic target for the discovery of new
analgesics [3,6–10].

The non-selective cation channel TRPV1 is highly expressed in peripheral unmyeli-
nated C fibers and thinly myelinated A-delta fibers, and has lower levels of expression in
upstream central components of the pain circuitry [11,12]. It is activated by low pH (<6.5),
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temperature > 42 ◦C and multiple exogenous (such as capsaicin, resiniferatoxin (RTX),
gingerol and zingerone) and endogenous ligands (such as anandamide). The activation
of this receptor was correlated with the appearance of inflammation and pain [13]. Cap-
sazepine (CPZ), ruthenium red and iodo-resiniferatoxin are well-known TRPV1 receptor
antagonists [14].

The role of the TRPV1 channel in pain modulation has been supported by numerous
pharmacological and genetic studies [3]. Its activation enhances various cascades of intra-
cellular signaling, involved in the response to algogenic and inflammatory agents [11]. In
animal models using TRPV1 knockout mice, a significant decrease in thermal hyperalgesia
associated with inflammatory pain has been observed [15,16]. Capsaicin administered in
an increased dose (e.g., 6 nmol/rat administered intra-periaqueductal grey [17]) initially
causes a sensation of irritation followed by loss of sensitivity to mechanical, chemical and
thermal painful stimuli [18]. Thus, pharmaceutical preparations with agonists for different
routes of administration are evaluated for the treatment of chronic pain [19,20].

Owing to the specific side effects of TRPV1 agonists following oral administration
(e.g., digestive irritation and pain), current research has focused on the discovery of new
selective low molecular weight antagonists [3,21]. Antagonists (e.g., BCTC, AMG9810,
A425619, and SB-705498) [11] and powerful agonists (such as capsaicin or RTX), that cause
desensitization of TRPV1 [3,19], have been shown to attenuate thermal and mechanical hy-
peralgesia as well as tactile allodynia in various preclinical models—inflammatory [22–25],
neuropathic [23,26], postoperative, cancer-related [27,28] and osteoarthritic pain [29,30].
Although some of the TRPV1 antagonists (Figure 1) were assessed in clinical phase I and
phase II trials for the treatment of inflammatory, neuropathic and visceral pain, their severe
hyperthermal side effects led to their withdrawal [31].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 3 of 27 
 

 

 
Figure 1. Representative structures of TRPV1 antagonists that have undergone clinical trials for pain 
management [8]. 

2. Materials and Methods 
A virtual screening framework was implemented with the scope of discovering po-

tentially novel TRPV1 antagonists and agonists/desensitizers, using both ligand-based 
and structure-based in silico approaches. The proposed multi-step methodology is pre-
sented summarily in Figure 2. The implemented framework focused on building a ma-
chine learning algorithm (artificial neural network) based on structural scaffolds, flexo-
phores, molecular descriptors and predicted binding affinities. The predictive model was 
used to find promising candidates as potential analgesic agents and is discussed in more 
detail in the following sections. 

 
Figure 2. Schematic illustration of the drug repurposing framework. 

DWP-05195
(Neuropathic pain, Phase I)

MK-2295
(Pain, Phase II)

SB-705498
(Migraine, rectal pain, Phase II)

AMG-517
(Pain, Phase Ib)

Figure 1. Representative structures of TRPV1 antagonists that have undergone clinical trials for pain
management [8].

The discovery of new TRPV1 antagonists with fewer side effects is necessary for
proper pain management. The structural details of the TRPV1 channel are essential for
identifying such compounds. According to mutagenic studies, amino acid residues Tyr511
and Ser512 located in the loop between transmembrane domains (TM) 2 and 3, and Thr550
in the loop between TM4 and 5 are involved in mediating the effect of capsaicin on the
TRPV1 channel [32,33]. However, Cao et al. analyzed the structure of resiniferatoxin- or
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capsaicin-bound TRPV1 and observed that these agonists bind to TM3-4, but also act on
TM4-5 and 6 [34]. This is supported by different chimeric strategies that have revealed
that TM3 and 4 are important for binding agonists (capsaicin and RTX) and antagonists
(CPZ) [35].

Although the approval of analgesic drugs acting on the TRPV1 channel has been
limited for the aforementioned reasons, information on the key elements of the receptor
structure that contribute to its interactions is essential for the discovery of new therapeutic
agents with analgesic potential. Drug repurposing studies are based on the discovery of
new uses for approved or experimental drugs, and advantages such as reduced costs and
time and low risk of failure support the use of this method [36]. A drug repurposing virtual
screening framework was implemented in our study to identify, among approved drugs,
new potential ligands that may interact with the TRPV1 receptor, considering that for these
substances the pharmaco-toxicological profiles are well known.

Thus, the aim of our study was the use of in silico methods (ligand-based methods such
as graph mining, classification models and structure-based methods based on molecular
docking experiments) to identify potential TRPV1 antagonists and agonists/desensitizers
with potential analgesic effects for the treatment of chronic pain.

2. Materials and Methods

A virtual screening framework was implemented with the scope of discovering po-
tentially novel TRPV1 antagonists and agonists/desensitizers, using both ligand-based
and structure-based in silico approaches. The proposed multi-step methodology is pre-
sented summarily in Figure 2. The implemented framework focused on building a machine
learning algorithm (artificial neural network) based on structural scaffolds, flexophores,
molecular descriptors and predicted binding affinities. The predictive model was used to
find promising candidates as potential analgesic agents and is discussed in more detail in
the following sections.
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Figure 2. Schematic illustration of the drug repurposing framework.

2.1. Datasets Curation

Chemical structures of known human TRPV1 antagonists and agonists with their
corresponding activity values expressed as half maximal inhibitory concentration (IC50, nM)
or half maximal effective concentration (EC50, nM) were downloaded from the ChEMBL
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database [37]. Datasets with activity values expressed as inhibitory constant (Ki, nM),
potency (nM), activity (%) or inhibition (%) were also retrieved, to extract molecules
that were further included in the inactive dataset (molecules declared as inactive in the
database). Three datasets were built: active antagonists (ANT), active agonists (AG) and
inactive molecules (IN).

OSIRIS DataWarrior v5.0.0 software [38] was used to further curate the datasets. Mean
IC50 or EC50 values were calculated for compounds tested in multiple activity assays,
duplicate structures being merged into a single entry, and negative logarithmic values of
IC50 (pIC50, M) and EC50 (pEC50, M) were calculated for all compounds, where applicable.
The chemical structures with pIC50/pEC50 values lower than 5 M were saved separately as
inactive ligands and were merged with the structures tagged as “inactive” in the Ki, potency,
activity or inhibition datasets. Notably, some compounds were found within both the ANT
and AG datasets, since agonists can act as desensitizers that inhibit the channel activity
at higher concentrations, and have activity values expressed as both EC50 (for activating
TRPV1) and IC50 (for desensitizing TRPV1), hence not being “true” antagonists [39]. These
compounds were removed from the ANT dataset and were retained as agonists. A diverse
decoy dataset was also created for the validation of the molecular docking protocol. The
decoys were extracted from ChEMBL and were chosen based on common molecular
descriptors widely used for describing drug-likeness, such as the molecular weight (MW),
the logarithm of octanol/water partition coefficient (logP), the number of hydrogen bond
donors (HBD) and the number of hydrogen bond acceptors (HBA). All these values had to
be within the ranges of the active molecules. Three-dimensional coordinates were generated
for all retained structures using OpenBabel v2.4.1 [40].

Compounds that were used for the drug repurposing screening framework were
downloaded from the DrugBank v5.1.9 database [41] with their respective desalted 3D
coordinates. The acquired database consisted only of approved drugs for human use and
included neither organometallic nor biologic drugs.

Molecular descriptors (1D and 2D) were calculated with PaDEL-Descriptor v2.21 [42]
and were integrated into both datasets for future analyses. Constant descriptors were
removed from the datasets.

2.2. Ligand-Based Models
2.2.1. Activity Scores

Activity scores were calculated for agonists, antagonists, inactives and decoys based
on their activity values. These values were equal with pIC50/pEC50 for compounds in the
AG and ANT sets, respectively, and were considered 0 for inactives and decoys. Further,
structural scaffolds were taken into account by generating Bemis–Murcko skeletons and
plain ring systems with DataWarrior. Bemis–Murcko (BM) skeletons are molecular frame-
works that result from the removal of atom types, bond types and side chains, and have
proven to be useful in various in silico screening studies [43,44]. Plain ring systems (PR)
are rings with removed substitution patterns, linkers and side chains [45,46].

Flexophore descriptors were generated for all datasets using DataWarrior. A flex-
ophore is a 3D versatile pharmacophore descriptor calculated based on molecular flexibility,
which is represented using a complete graph. The function compares vertices and edges
between maximum common substructures of two descriptor graphs [47]. Within each set,
compounds were clustered based on flexophores with an 80% similarity threshold.

Activity scores were generated for each specific BM skeleton, PR and flexophore cluster
by calculating the arithmetic means of activity values. The average activity score (Score) of
each individual compound was calculated as the average of BM scores (BMS), PR scores
(PRS) and flexophore similarity clusters scores (SCS) (Equations (1)–(4)).

SCS =
1
n ∑n

1 pX (1)
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BMS =
1
n ∑n

1 pX, if BMx is present, else BMS = 0 (2)

PRS =
1
i

(
1
n ∑n

1 pX +
1
m ∑m

1 pX + · · ·+ 1
z ∑z

1 pX
)

, if PRx are present, else PRS = 0

(3)

Score =
BMS + PRS + FRS

3
(4)

where i—number of plain rings,
pX—pIC50 or pIC50; 0 for inactives.

2.2.2. Binary Classification Model

Binary classification models were built based on setting cutoff values for several de-
scriptors, similar to our previous work [48]. An independent sample t-test was applied
in order to identify molecular descriptors that were statistically different between active
and inactive molecules. Descriptors with areas under the receiver operating characteristics
(ROC) curve >0.8 were further processed by building the correlation matrix and were
referred to as variables. Variables that were highly intercorrelated (R > 0.75) were excluded.
Cutoff values of the classifiers were chosen using ROC curves and by identifying the coor-
dinates with a good balance between sensitivity and specificity. Classification performance
parameters were calculated (sensitivity, specificity, accuracy, ROC AUC and F1 score) for
model evaluation. The classification model was applied thereafter to the DrugBank dataset.

2.3. Structure-Based Approaches

Molecular docking experiments were carried out to estimate the predicted binding
affinity of screened molecules to the TRPV1 channel. The crystal structures of human
TRPV1 in complex with either RTX or CPZ were retrieved from the RCSB Protein Data
Bank (PDB codes: 5IS0 [49] and 7MZC [50]) and were further optimized using YASARA
Structure [51], by removing solvent molecules, correcting structural errors, adding missing
residues and polar hydrogens at physiological pH (7.4), and by optimizing the hydrogen-
bonding networks. The retrieved protein–ligand complexes were thereafter minimized
using the NOVA2 forcefield.

The docking protocols were validated by extracting the co-crystallized ligands and
redocking them into the binding sites. Thereafter, the predicted conformations of the
ligands were superposed on the experimentally determined structure and the root-mean-
square deviation (RMSD) values were calculated. Ligands used for validation also served
as positive controls in terms of the correct binding pose.

Three-dimensional structures of TRPV1 agonists and antagonists, inactive molecules,
decoys and DrugBank compounds were prepared for docking using energy minimization
with the MMFF94s+ force field and protonation at physiological pH. Docking runs were
executed using the AutoDock Vina v1.1.2 algorithm [52], and the grid box was selected
based on the coordinates of the co-crystallized ligands. For the validation of the docking
experiment in terms of prioritizing active ligands over inactive molecules and for balancing
the datasets, a selection of antagonists and inactive compounds was performed based
on structural similarity and clustering, as suggested by expert opinions on molecular
docking-based virtual screening protocols [53], while all agonists were retained. Therefore,
ligands were clustered using a 0.75 structural similarity threshold and only the most potent
compound from each cluster was retrieved. Validation of the docking score accuracy was
performed through ROC curve analysis.

Docking scores (binding energies, ∆G, kcal/mol) and ligand efficiencies (LE, ∆G/no.
of heavy atoms) corresponding to the first conformation generated for each ligand were
retrieved for the screened compounds (TRPV1 agonists and antagonists, inactive molecules,
decoys and repositioning candidates). Graphical depictions of ligand poses and molecular
interactions were generated using BIOVIA Discovery Studio Visualizer (BIOVIA, Discovery
Studio Visualizer, Version 17.2.0, Dassault Systèmes, 2016, San Diego, CA, USA).
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2.4. Integrated Repurposing Model

A global predictive model was applied for all retrieved DrugBank molecules by in-
tegrating average activity scores, satisfied descriptor criteria and docking scores. The
repurposing model was a multi-class classification algorithm based on a multilayer percep-
tron neural network (MLP NN) and was trained to discriminate not only between active
and inactive molecules but also between TRPV1 agonists and antagonists. The ChEMBL
datasets were randomly split into training (70%) and test (30%) subsets for model training
and validation. This dataset included all the agonists, but only the antagonists and inactive
molecules selected for the molecular docking study. Therefore, the ratio between antago-
nists, agonists and inactive ligands was approximately 1:1:2, which is relatively balanced.
The network input layer consisted of the normalized values of the 6 dependent variables.
The most optimal network architecture was established by varying the number of hidden
layers and neurons in each layer. Moreover, hyperparameters such as initial learning rate,
momentum and the maximum number of epochs were also varied until the most optimal
model was generated. A gradient descent algorithm was used for optimization. Since we
were dealing with a multi-class classification problem, hyperbolic tangent (tanh) activation
functions were used for the hidden layers, and the softmax activation function was used
for the output layer.

2.5. Statistical Analysis, Machine Learning and Performance Metrics

ROC curve analysis, independent t-tests, correlation analysis and MLP NN generation
were performed using IBM SPSS Statistics v20 (Armonk, New York, NY, USA). Performance
metrics of binary classification and logistic regression models were calculated using the
following equations:

ACC =
TP + TN

TP + TN + FP + FN
(5)

TPR =
TP

TP + FN
(6)

TNR =
TN

TN + FP
(7)

F1 =
2TP

2TP + FP + FN
, (8)

where ACC = accuracy;
TPR—true positive rate (recall or sensitivity);
TNR—true negative rate (selectivity or specificity);
F1—F-score (harmonic mean of precision and recall);
TP—true positives;
TN—true negatives;
FP—false positives;
FN—false negatives.

3. Results
3.1. Dataset Preparation

Virtual chemical libraries were constructed in order to implement the in silico drug
repurposing campaign. After initial curation, the datasets contained the chemical structures
and activity values of 2377 TRPV1 antagonists (ANT set), 194 agonists (AG set), and
996 experimentally determined inactive molecules (IN set). In order to establish a set
of decoy molecules with matching properties with the active molecules, ANT and AG
sets were merged and four drug-likeness parameters were calculated with DataWarrior:
MW, logP, HBD and HBA. Further, a set of molecules was downloaded from ChEMBL,
containing structures with MW values ranging between 226.3 and 796.6 g/mol, logP
values between 0.837 and 11.074, 1–12 HBA and 0–4 HBD atoms. Among these structures,
500 diverse molecules, presumably inactive on TRPV1, were retrieved as the decoy set
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(DCY). Candidates for repurposing were retrieved from DrugBank database and contained
a total of 1981 approved drugs.

In order to train the predictive models, antagonists were considered true positives, and
non-antagonists (agonists and inactive molecules) were considered true negatives when
predicting antagonists, while agonists were labeled as true positives and non-agonists
(antagonists and inactive molecules) as true negatives when predicting agonist molecules.
This rationale was used in the attempt to build a framework that discriminates between
TRPV1 agonists and antagonists.

A total of 1444 1D and 2D molecular descriptors were calculated for all datasets using
PaDEL-Descriptor software.

3.2. Activity Scores

The first independent variable that was established in the proposed framework was
the average activity score (AAS). This average score was calculated as the arithmetic
mean of three scores based on the structural features of TRPV1 antagonists and agonists:
Bemis–Murcko structural skeletons, plain ring systems and clustering based on flexophore
descriptors. Firstly, a scaffold analysis was performed to extract Bemis–Murcko skeletons
and plain ring systems. For each individual BM skeleton, the specific score (BMS, Bemis–
Murcko score) was established by calculating the mean activity value (pIC50 for antagonists,
pEC50 for agonists, 0 for inactive molecules) between all compounds that share the same
skeleton. The same rationale was applied for plain rings (PRS, plain ring score). However,
when PR scores were calculated for each compound, we took into account that some
molecules contain more than one ring. Thus, for compounds with multiple rings, the mean
PR score was calculated as the arithmetic mean between scores of all rings. Moreover,
if one ring is present more than once in a structure (e.g., phenyl radical), then the score
was calculated considering only one apparition of that ring. Lastly, the similarity cluster
score (SCS, flexophore cluster score) was established by calculating the mean activity
values between compounds that fall into one specific cluster. Therefore, two average
activity scores were calculated, one for predicting antagonists (Score-ANT), and another
for agonists (Score-AG).

After performing the scaffold analysis, a total of 591 BM structures resulted from the
group of 3564 compounds (antagonists, agonists and inactive molecules). Most of the
scaffolds are formed by 3 or 4 cyclic structures. For each BM skeleton the corresponding
ANT and AG scores were calculated. For a total of 256 skeletons, both scores were zero.
For the remaining 335 structures, we analyzed the relationship between the two scores
(Figure S1A). Interestingly, one BM scaffold ({2-[10-(4-cyclohexylbutyl)-hexadecahydro-
1H-indeno[5,4-e]azulen-3b-yl]ethyl}cyclohexane) had both scores above 4, scoring high for
both agonist and antagonist prediction. Moreover, 9 agonists and 26 inactive molecules did
not contain any rings in their structure and BM skeletons could not be generated.

The PR analysis resulted in 271 unique rings. The most frequent ring is benzene, and
it is present in 2682 compounds. Pyridine, the second most frequent ring, is present in
1207 derivatives. The structures contain between 3 and 25 heavy atoms. The corresponding
ANT and AG scores were calculated for each PR structure. For a total of 34 rings both
scores were zero, and the relationship between the two scores is shown in Figure S1B. No-
tably, four plain rings had activity scores between 2 and 4, showing less specificity for one
activity type: (7aR,11bR,13aR,13bS)-icosahydro-1H-cyclopenta[a]chrysene, (2S,10R,11S)-
12,14-dioxatetracyclo[8.7.0.02,6.011,15]heptadeca-3,8-dien-5-one, (1S,2R,10S,11R)-12,14,18-
trioxapentacyclo[11.4.1.01,10.02,6.011,15]octadeca-3,8-dien-5-one and 1,2-dihydroisoquinolin-
1-one.

Flexophore descriptors were generated for the merged dataset containing TRPV1
antagonists, agonists and inactive compounds. A total number of 419 clusters was obtained,
using a similarity threshold of 80% between flexophores. Scores based on structural
similarity clustering were also calculated since some TRPV1 agonists and inactive molecules
are acyclic compounds, thus lacking both BM skeletons and plain rings. As observed in
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Figure S1C, several clusters had mean activity scores between 1 and 4 for both agonist and
antagonist prediction (SCS-AG and SCS-ANT), thus being non-specific for either class. A
map of flexophore-based similarity relationships generated using automatically determined
similarity limits is shown in Figure S1D, highlighting that several TRPV1 antagonists share
structural similarity with agonists or experimentally determined inactive compounds.

The top five scoring BM and PR structures, ranked by activity scores are highlighted
in Table 1, for both antagonists and agonists. BM and PR structures were labeled by fre-
quency of apparition in the dataset, in descending order. BM-75 (3-[(decahydronaphthalen-
1-yl)methyl]-1,1′-bi(cyclohexane)) and BM-230 (1-[(3,4-dicyclohexylcyclopentyl)methyl]-
decahydronaphthalene) are two similar antagonist-specific Bemis–Murcko skeletons with
high activity scores, BM-230 having a cyclopentane scaffold instead of cyclohexane, which
also has one additional substitution forming an uncondensed tricyclic substructure instead
of the bicyclohexane scaffold. In the case of agonists, BM-145 ({2-[10-(3-cyclohexylpropyl)-
hexadecahydro-1H-indeno[5,4-e]azulen-3b-yl]ethyl}cyclohexane) and BM-106 ({2-[10-(5-
cyclohexylpentyl)-hexadecahydro-1H-indeno[5,4-e]azulen-3b-yl]ethyl}cyclohexane) have
highly similar structural skeletons and activity scores, the only difference between the
structures being the number of linker atoms (three for BM-145 and five for BM-106).
Additionally, structures of BM-264 ((11-cyclopropylundecyl)cyclohexane), BM-176 ((10-
cyclopropyldecyl)cyclohexane) and BM-205 ((3-cyclopropylpropyl)cyclohexane) are com-
prised of two cyclic substructures (cyclohexane and cyclopropane) linked together by an
aliphatic chain, the activity score increasing with the number of linker atoms (3 for BM-205,
10 for BM-176 and 11 for BM-264).

Interestingly, the top five scoring plain rings for antagonists are nitrogen hetero-
cycles. Among these fragments, PR-126 (pteridine), PR-127 (pyrido[3,2-d]pyrimidine)
and PR-87 (pyrido[2,3-d]pyrimidine) are variations of the same scaffold. Furthermore,
azocane (PR-100) had a higher activity score than 2,3,4,5-tetrahydro-1H-2-benzazepine
(PR-136), the latter being specific to TRPV1 antagonist CPZ and other related deriva-
tives. The PR with the highest score for agonists (PR-126, 1,2-dihydroisoquinolin-1-
one) share structural similarities with the highly ranking antagonist-specific PR-128 (1,2-
dihydroquinoxalin-2-one). Moreover, two out of the top five scoring agonist-specific plain
rings, PR-57 ((2S,10R,11R)-12,14-dioxatetracyclo[8.7.0.02,6.011,15]heptadeca-3,8-dien-5-one)
and PR-45 ((1S,2R,10S,11R)-12,14,18-trioxapentacyclo[11.4.1.01,10.02,6.011,15]octadeca-3,8-
dien-5-one), are also highly similar.

The distributions of activity scores for antagonists, agonists and inactive compounds
are shown in Figure S2. As observed, antagonists had overall higher AAS values than ago-
nists, since antagonists represented a significantly larger population among the biologically
active compounds.

The predictive power of the established average activity score was assessed by gener-
ating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting
agonists (Figure S3B), denoting high predictive accuracies in both cases.
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Table 1. Top five Bemis–Murcko skeletons and plain rings ranked by activity scores for both antago-
nists and agonists.

Antagonists Agonists

Type Label Structure Score Frequency Label Structure Score Frequency

Bemis–
Murcko

skeletons
BM-487
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are acyclic compounds, thus lacking both BM skeletons and plain rings. As observed in 
Figure S1C, several clusters had mean activity scores between 1 and 4 for both agonist and 
antagonist prediction (SCS-AG and SCS-ANT), thus being non-specific for either class. A 
map of flexophore-based similarity relationships generated using automatically deter-
mined similarity limits is shown in Figure S1D, highlighting that several TRPV1 antago-
nists share structural similarity with agonists or experimentally determined inactive com-
pounds.  

The top five scoring BM and PR structures, ranked by activity scores are highlighted 
in Table 1, for both antagonists and agonists. BM and PR structures were labeled by fre-
quency of apparition in the dataset, in descending order. BM-75 (3-[(decahydronaphtha-
len-1-yl)methyl]-1,1′-bi(cyclohexane)) and BM-230 (1-[(3,4-dicyclohexylcyclopentyl)me-
thyl]-decahydronaphthalene) are two similar antagonist-specific Bemis–Murcko skele-
tons with high activity scores, BM-230 having a cyclopentane scaffold instead of cyclohex-
ane, which also has one additional substitution forming an uncondensed tricyclic sub-
structure instead of the bicyclohexane scaffold. In the case of agonists, BM-145 ({2-[10-(3-
cyclohexylpropyl)-hexadecahydro-1H-indeno[5,4-e]azulen-3b-yl]ethyl}cyclohexane) and 
BM-106 ({2-[10-(5-cyclohexylpentyl)-hexadecahydro-1H-indeno[5,4-e]azulen-3b-
yl]ethyl}cyclohexane) have highly similar structural skeletons and activity scores, the only 
difference between the structures being the number of linker atoms (three for BM-145 and 
five for BM-106). Additionally, structures of BM-264 ((11-cyclopropylundecyl)cyclohex-
ane), BM-176 ((10-cyclopropyldecyl)cyclohexane) and BM-205 ((3-cyclopropylpropyl)cy-
clohexane) are comprised of two cyclic substructures (cyclohexane and cyclopropane) 
linked together by an aliphatic chain, the activity score increasing with the number of 
linker atoms (3 for BM-205, 10 for BM-176 and 11 for BM-264). 

Interestingly, the top five scoring plain rings for antagonists are nitrogen heterocy-
cles. Among these fragments, PR-126 (pteridine), PR-127 (pyrido[3,2-d]pyrimidine) and 
PR-87 (pyrido[2,3-d]pyrimidine) are variations of the same scaffold. Furthermore, azo-
cane (PR-100) had a higher activity score than 2,3,4,5-tetrahydro-1H-2-benzazepine (PR-
136), the latter being specific to TRPV1 antagonist CPZ and other related derivatives. The 
PR with the highest score for agonists (PR-126, 1,2-dihydroisoquinolin-1-one) share struc-
tural similarities with the highly ranking antagonist-specific PR-128 (1,2-dihydroquinox-
alin-2-one). Moreover, two out of the top five scoring agonist-specific plain rings, PR-57 
((2S,10R,11R)-12,14-dioxatetracyclo[8.7.0.0²,⁶.0¹¹,¹⁵]heptadeca-3,8-dien-5-one) and PR-45 
((1S,2R,10S,11R)-12,14,18-trioxapentacyclo[11.4.1.0¹,¹⁰.0²,⁶.0¹¹,¹⁵]octadeca-3,8-dien-5-one), 
are also highly similar. 

Table 1. Top five Bemis–Murcko skeletons and plain rings ranked by activity scores for both antag-
onists and agonists. 

 Antagonists Agonists 
Type Label Structure Score Frequency Label Structure Score Frequency 

Bemis–
Murcko 

skeletons 
BM-487 

 

9.00 1 (0.03%) BM-264 
 

8.50 1 (0.03%) 

 BM-433 
 

8.90 1 (0.03%) BM-176 
 

8.04 3 (0.08%) 

9.00 1 (0.03%) BM-264
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(1S,2R,10S,11R)-12,14,18-trioxapentacyclo[11.4.1.0¹,¹⁰.0²,⁶.0¹¹,¹⁵]octadeca-3,8-dien-5-one 
and 1,2-dihydroisoquinolin-1-one. 

Flexophore descriptors were generated for the merged dataset containing TRPV1 an-
tagonists, agonists and inactive compounds. A total number of 419 clusters was obtained, 
using a similarity threshold of 80% between flexophores. Scores based on structural simi-
larity clustering were also calculated since some TRPV1 agonists and inactive molecules 
are acyclic compounds, thus lacking both BM skeletons and plain rings. As observed in 
Figure S1C, several clusters had mean activity scores between 1 and 4 for both agonist and 
antagonist prediction (SCS-AG and SCS-ANT), thus being non-specific for either class. A 
map of flexophore-based similarity relationships generated using automatically deter-
mined similarity limits is shown in Figure S1D, highlighting that several TRPV1 antago-
nists share structural similarity with agonists or experimentally determined inactive com-
pounds.  

The top five scoring BM and PR structures, ranked by activity scores are highlighted 
in Table 1, for both antagonists and agonists. BM and PR structures were labeled by fre-
quency of apparition in the dataset, in descending order. BM-75 (3-[(decahydronaphtha-
len-1-yl)methyl]-1,1′-bi(cyclohexane)) and BM-230 (1-[(3,4-dicyclohexylcyclopentyl)me-
thyl]-decahydronaphthalene) are two similar antagonist-specific Bemis–Murcko skele-
tons with high activity scores, BM-230 having a cyclopentane scaffold instead of cyclohex-
ane, which also has one additional substitution forming an uncondensed tricyclic sub-
structure instead of the bicyclohexane scaffold. In the case of agonists, BM-145 ({2-[10-(3-
cyclohexylpropyl)-hexadecahydro-1H-indeno[5,4-e]azulen-3b-yl]ethyl}cyclohexane) and 
BM-106 ({2-[10-(5-cyclohexylpentyl)-hexadecahydro-1H-indeno[5,4-e]azulen-3b-
yl]ethyl}cyclohexane) have highly similar structural skeletons and activity scores, the only 
difference between the structures being the number of linker atoms (three for BM-145 and 
five for BM-106). Additionally, structures of BM-264 ((11-cyclopropylundecyl)cyclohex-
ane), BM-176 ((10-cyclopropyldecyl)cyclohexane) and BM-205 ((3-cyclopropylpropyl)cy-
clohexane) are comprised of two cyclic substructures (cyclohexane and cyclopropane) 
linked together by an aliphatic chain, the activity score increasing with the number of 
linker atoms (3 for BM-205, 10 for BM-176 and 11 for BM-264). 

Interestingly, the top five scoring plain rings for antagonists are nitrogen heterocy-
cles. Among these fragments, PR-126 (pteridine), PR-127 (pyrido[3,2-d]pyrimidine) and 
PR-87 (pyrido[2,3-d]pyrimidine) are variations of the same scaffold. Furthermore, azo-
cane (PR-100) had a higher activity score than 2,3,4,5-tetrahydro-1H-2-benzazepine (PR-
136), the latter being specific to TRPV1 antagonist CPZ and other related derivatives. The 
PR with the highest score for agonists (PR-126, 1,2-dihydroisoquinolin-1-one) share struc-
tural similarities with the highly ranking antagonist-specific PR-128 (1,2-dihydroquinox-
alin-2-one). Moreover, two out of the top five scoring agonist-specific plain rings, PR-57 
((2S,10R,11R)-12,14-dioxatetracyclo[8.7.0.0²,⁶.0¹¹,¹⁵]heptadeca-3,8-dien-5-one) and PR-45 
((1S,2R,10S,11R)-12,14,18-trioxapentacyclo[11.4.1.0¹,¹⁰.0²,⁶.0¹¹,¹⁵]octadeca-3,8-dien-5-one), 
are also highly similar. 

Table 1. Top five Bemis–Murcko skeletons and plain rings ranked by activity scores for both antag-
onists and agonists. 

 Antagonists Agonists 
Type Label Structure Score Frequency Label Structure Score Frequency 

Bemis–
Murcko 

skeletons 
BM-487 

 

9.00 1 (0.03%) BM-264 
 

8.50 1 (0.03%) 

 BM-433 
 

8.90 1 (0.03%) BM-176 
 

8.04 3 (0.08%) 

8.50 1 (0.03%)

BM-433
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(1S,2R,10S,11R)-12,14,18-trioxapentacyclo[11.4.1.0¹,¹⁰.0²,⁶.0¹¹,¹⁵]octadeca-3,8-dien-5-one 
and 1,2-dihydroisoquinolin-1-one. 

Flexophore descriptors were generated for the merged dataset containing TRPV1 an-
tagonists, agonists and inactive compounds. A total number of 419 clusters was obtained, 
using a similarity threshold of 80% between flexophores. Scores based on structural simi-
larity clustering were also calculated since some TRPV1 agonists and inactive molecules 
are acyclic compounds, thus lacking both BM skeletons and plain rings. As observed in 
Figure S1C, several clusters had mean activity scores between 1 and 4 for both agonist and 
antagonist prediction (SCS-AG and SCS-ANT), thus being non-specific for either class. A 
map of flexophore-based similarity relationships generated using automatically deter-
mined similarity limits is shown in Figure S1D, highlighting that several TRPV1 antago-
nists share structural similarity with agonists or experimentally determined inactive com-
pounds.  

The top five scoring BM and PR structures, ranked by activity scores are highlighted 
in Table 1, for both antagonists and agonists. BM and PR structures were labeled by fre-
quency of apparition in the dataset, in descending order. BM-75 (3-[(decahydronaphtha-
len-1-yl)methyl]-1,1′-bi(cyclohexane)) and BM-230 (1-[(3,4-dicyclohexylcyclopentyl)me-
thyl]-decahydronaphthalene) are two similar antagonist-specific Bemis–Murcko skele-
tons with high activity scores, BM-230 having a cyclopentane scaffold instead of cyclohex-
ane, which also has one additional substitution forming an uncondensed tricyclic sub-
structure instead of the bicyclohexane scaffold. In the case of agonists, BM-145 ({2-[10-(3-
cyclohexylpropyl)-hexadecahydro-1H-indeno[5,4-e]azulen-3b-yl]ethyl}cyclohexane) and 
BM-106 ({2-[10-(5-cyclohexylpentyl)-hexadecahydro-1H-indeno[5,4-e]azulen-3b-
yl]ethyl}cyclohexane) have highly similar structural skeletons and activity scores, the only 
difference between the structures being the number of linker atoms (three for BM-145 and 
five for BM-106). Additionally, structures of BM-264 ((11-cyclopropylundecyl)cyclohex-
ane), BM-176 ((10-cyclopropyldecyl)cyclohexane) and BM-205 ((3-cyclopropylpropyl)cy-
clohexane) are comprised of two cyclic substructures (cyclohexane and cyclopropane) 
linked together by an aliphatic chain, the activity score increasing with the number of 
linker atoms (3 for BM-205, 10 for BM-176 and 11 for BM-264). 

Interestingly, the top five scoring plain rings for antagonists are nitrogen heterocy-
cles. Among these fragments, PR-126 (pteridine), PR-127 (pyrido[3,2-d]pyrimidine) and 
PR-87 (pyrido[2,3-d]pyrimidine) are variations of the same scaffold. Furthermore, azo-
cane (PR-100) had a higher activity score than 2,3,4,5-tetrahydro-1H-2-benzazepine (PR-
136), the latter being specific to TRPV1 antagonist CPZ and other related derivatives. The 
PR with the highest score for agonists (PR-126, 1,2-dihydroisoquinolin-1-one) share struc-
tural similarities with the highly ranking antagonist-specific PR-128 (1,2-dihydroquinox-
alin-2-one). Moreover, two out of the top five scoring agonist-specific plain rings, PR-57 
((2S,10R,11R)-12,14-dioxatetracyclo[8.7.0.0²,⁶.0¹¹,¹⁵]heptadeca-3,8-dien-5-one) and PR-45 
((1S,2R,10S,11R)-12,14,18-trioxapentacyclo[11.4.1.0¹,¹⁰.0²,⁶.0¹¹,¹⁵]octadeca-3,8-dien-5-one), 
are also highly similar. 

Table 1. Top five Bemis–Murcko skeletons and plain rings ranked by activity scores for both antag-
onists and agonists. 

 Antagonists Agonists 
Type Label Structure Score Frequency Label Structure Score Frequency 

Bemis–
Murcko 

skeletons 
BM-487 

 

9.00 1 (0.03%) BM-264 
 

8.50 1 (0.03%) 

 BM-433 
 

8.90 1 (0.03%) BM-176 
 

8.04 3 (0.08%) 8.90 1 (0.03%) BM-176
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(1S,2R,10S,11R)-12,14,18-trioxapentacyclo[11.4.1.0¹,¹⁰.0²,⁶.0¹¹,¹⁵]octadeca-3,8-dien-5-one 
and 1,2-dihydroisoquinolin-1-one. 

Flexophore descriptors were generated for the merged dataset containing TRPV1 an-
tagonists, agonists and inactive compounds. A total number of 419 clusters was obtained, 
using a similarity threshold of 80% between flexophores. Scores based on structural simi-
larity clustering were also calculated since some TRPV1 agonists and inactive molecules 
are acyclic compounds, thus lacking both BM skeletons and plain rings. As observed in 
Figure S1C, several clusters had mean activity scores between 1 and 4 for both agonist and 
antagonist prediction (SCS-AG and SCS-ANT), thus being non-specific for either class. A 
map of flexophore-based similarity relationships generated using automatically deter-
mined similarity limits is shown in Figure S1D, highlighting that several TRPV1 antago-
nists share structural similarity with agonists or experimentally determined inactive com-
pounds.  

The top five scoring BM and PR structures, ranked by activity scores are highlighted 
in Table 1, for both antagonists and agonists. BM and PR structures were labeled by fre-
quency of apparition in the dataset, in descending order. BM-75 (3-[(decahydronaphtha-
len-1-yl)methyl]-1,1′-bi(cyclohexane)) and BM-230 (1-[(3,4-dicyclohexylcyclopentyl)me-
thyl]-decahydronaphthalene) are two similar antagonist-specific Bemis–Murcko skele-
tons with high activity scores, BM-230 having a cyclopentane scaffold instead of cyclohex-
ane, which also has one additional substitution forming an uncondensed tricyclic sub-
structure instead of the bicyclohexane scaffold. In the case of agonists, BM-145 ({2-[10-(3-
cyclohexylpropyl)-hexadecahydro-1H-indeno[5,4-e]azulen-3b-yl]ethyl}cyclohexane) and 
BM-106 ({2-[10-(5-cyclohexylpentyl)-hexadecahydro-1H-indeno[5,4-e]azulen-3b-
yl]ethyl}cyclohexane) have highly similar structural skeletons and activity scores, the only 
difference between the structures being the number of linker atoms (three for BM-145 and 
five for BM-106). Additionally, structures of BM-264 ((11-cyclopropylundecyl)cyclohex-
ane), BM-176 ((10-cyclopropyldecyl)cyclohexane) and BM-205 ((3-cyclopropylpropyl)cy-
clohexane) are comprised of two cyclic substructures (cyclohexane and cyclopropane) 
linked together by an aliphatic chain, the activity score increasing with the number of 
linker atoms (3 for BM-205, 10 for BM-176 and 11 for BM-264). 

Interestingly, the top five scoring plain rings for antagonists are nitrogen heterocy-
cles. Among these fragments, PR-126 (pteridine), PR-127 (pyrido[3,2-d]pyrimidine) and 
PR-87 (pyrido[2,3-d]pyrimidine) are variations of the same scaffold. Furthermore, azo-
cane (PR-100) had a higher activity score than 2,3,4,5-tetrahydro-1H-2-benzazepine (PR-
136), the latter being specific to TRPV1 antagonist CPZ and other related derivatives. The 
PR with the highest score for agonists (PR-126, 1,2-dihydroisoquinolin-1-one) share struc-
tural similarities with the highly ranking antagonist-specific PR-128 (1,2-dihydroquinox-
alin-2-one). Moreover, two out of the top five scoring agonist-specific plain rings, PR-57 
((2S,10R,11R)-12,14-dioxatetracyclo[8.7.0.0²,⁶.0¹¹,¹⁵]heptadeca-3,8-dien-5-one) and PR-45 
((1S,2R,10S,11R)-12,14,18-trioxapentacyclo[11.4.1.0¹,¹⁰.0²,⁶.0¹¹,¹⁵]octadeca-3,8-dien-5-one), 
are also highly similar. 

Table 1. Top five Bemis–Murcko skeletons and plain rings ranked by activity scores for both antag-
onists and agonists. 

 Antagonists Agonists 
Type Label Structure Score Frequency Label Structure Score Frequency 

Bemis–
Murcko 

skeletons 
BM-487 

 

9.00 1 (0.03%) BM-264 
 

8.50 1 (0.03%) 

 BM-433 
 

8.90 1 (0.03%) BM-176 
 

8.04 3 (0.08%) 8.04 3 (0.08%)

BM-176
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 BM-176 
 

8.84 3 (0.08%) BM-145 
 

8.04 4 (0.11%) 

 BM-75 
 

8.84 9 (0.25%) BM-106 
 

7.96 6 (0.17%) 

 BM-230 
 

8.79 2 (0.06%) BM-205 
 

7.65 2 (0.06%) 

Plain rings PR-126 
 

9.68 1 (0.03%) PR-126 
 

7.36 1 (0.03%) 

 PR-127 
 

9.20 1 (0.03%) PR-57 

 

7.36 12 (0.34%) 

 PR-128 
 

9.15 1 (0.03%) PR-127 
 

6.90 1 (0.03%) 

 PR-87 
 

7.98 3 (0.08%) PR-45 
 

6.15 20 (0.56%) 

 PR-100 
 

7.94 2 (0.06%) PR-100 
 

5.53 2 (0.06%) 

The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 

8.84 3 (0.08%) BM-145
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7.96 6 (0.17%) 

 BM-230 
 

8.79 2 (0.06%) BM-205 
 

7.65 2 (0.06%) 

Plain rings PR-126 
 

9.68 1 (0.03%) PR-126 
 

7.36 1 (0.03%) 

 PR-127 
 

9.20 1 (0.03%) PR-57 

 

7.36 12 (0.34%) 

 PR-128 
 

9.15 1 (0.03%) PR-127 
 

6.90 1 (0.03%) 

 PR-87 
 

7.98 3 (0.08%) PR-45 
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7.94 2 (0.06%) PR-100 
 

5.53 2 (0.06%) 

The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 

8.04 4 (0.11%)

BM-75
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 BM-176 
 

8.84 3 (0.08%) BM-145 
 

8.04 4 (0.11%) 

 BM-75 
 

8.84 9 (0.25%) BM-106 
 

7.96 6 (0.17%) 

 BM-230 
 

8.79 2 (0.06%) BM-205 
 

7.65 2 (0.06%) 

Plain rings PR-126 
 

9.68 1 (0.03%) PR-126 
 

7.36 1 (0.03%) 

 PR-127 
 

9.20 1 (0.03%) PR-57 

 

7.36 12 (0.34%) 

 PR-128 
 

9.15 1 (0.03%) PR-127 
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 PR-87 
 

7.98 3 (0.08%) PR-45 
 

6.15 20 (0.56%) 
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The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 

8.84 9 (0.25%) BM-106
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The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 

7.96 6 (0.17%)

BM-230

Pharmaceutics 2022, 14, x FOR PEER REVIEW 9 of 27 
 

 

 BM-176 
 

8.84 3 (0.08%) BM-145 
 

8.04 4 (0.11%) 

 BM-75 
 

8.84 9 (0.25%) BM-106 
 

7.96 6 (0.17%) 

 BM-230 
 

8.79 2 (0.06%) BM-205 
 

7.65 2 (0.06%) 

Plain rings PR-126 
 

9.68 1 (0.03%) PR-126 
 

7.36 1 (0.03%) 

 PR-127 
 

9.20 1 (0.03%) PR-57 

 

7.36 12 (0.34%) 

 PR-128 
 

9.15 1 (0.03%) PR-127 
 

6.90 1 (0.03%) 

 PR-87 
 

7.98 3 (0.08%) PR-45 
 

6.15 20 (0.56%) 

 PR-100 
 

7.94 2 (0.06%) PR-100 
 

5.53 2 (0.06%) 

The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 
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The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 
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The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 
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The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 
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The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 
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The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 
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The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 
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The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 
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The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 
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The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
values, statistically significant differences between values of active and inactive mole-
cules, correlation coefficients between each pair of descriptors lower than 0.75 and ease of 
describing the respective molecular property.  

The selected molecular descriptors and their classification performance parameters 
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing 
the descriptor cutoff values are shown in Figure S4.  

We chose to further discuss some of the selected molecular descriptors for AMG-517 
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetam-
ide), a potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antago-
nists have secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, 
between 0 and 4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 
(Figure S5) has in its structure one secondary nitrogen (substituted amide), three halogen 
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The distributions of activity scores for antagonists, agonists and inactive compounds 
are shown in Figure S2. As observed, antagonists had overall higher AAS values than 
agonists, since antagonists represented a significantly larger population among the bio-
logically active compounds.  

The predictive power of the established average activity score was assessed by gen-
erating ROC curves and calculating ROC AUC values. The ROC AUC value for antagonist 
activity scores was 0.963 (Figure S3A), while the same parameter was 0.986 for predicting 
agonists (Figure S3B), denoting high predictive accuracies in both cases. 

3.3. Binary Classification 
ROC curves were generated based on activity classes and molecular descriptors in 

order to build classification models using cutoff values. We chose to include a minimum 
of three and a maximum of eight molecular descriptors as independent variables. ROC 
AUC values were calculated for all descriptors to assess the discriminatory power of each 
variable. The eight descriptors were chosen based on four criteria: satisfactory ROC AUC 
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3.3. Binary Classification

ROC curves were generated based on activity classes and molecular descriptors in
order to build classification models using cutoff values. We chose to include a minimum
of three and a maximum of eight molecular descriptors as independent variables. ROC
AUC values were calculated for all descriptors to assess the discriminatory power of
each variable. The eight descriptors were chosen based on four criteria: satisfactory ROC
AUC values, statistically significant differences between values of active and inactive
molecules, correlation coefficients between each pair of descriptors lower than 0.75 and
ease of describing the respective molecular property.

The selected molecular descriptors and their classification performance parameters
are presented in Tables 2 and 3. The individual ROC curves that were used for choosing
the descriptor cutoff values are shown in Figure S4.
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Table 2. Molecular descriptors included in the classification models for antagonist prediction.

Descriptor Meaning Threshold Sensitivity Specificity ROC AUC

SssNH Sum of atom-type E-State: -NH- >2.962 0.681 0.689 0.743

MDEN-22 Molecular distance edge between all
secondary nitrogens >0.454 0.678 0.685 0.735

ETA_BetaP_s A measure of electronegative atom count of
the molecule relative to molecular size >0.638 0.676 0.662 0.734

nX Number of halogen atoms ≥2 0.641 0.730 0.727

fragC Complexity of a system >172.070 0.682 0.669 0.724

n6HeteroRing Number of six-membered rings
containing heteroatoms at least 1 0.783 0.547 0.723

nHBAcc2

Number of hydrogen bond acceptors (any
oxygen; any nitrogen where the formal charge
of the nitrogen is non-positive, except a
non-aromatic nitrogen that is adjacent to an
oxygen and aromatic ring, or an aromatic
nitrogen with a hydrogen atom in a ring, or an
aromatic nitrogen with three neighboring
atoms in a ring, or a nitrogen with total bond
order ≥4; any fluorine)

>5 0.753 0.574 0.715

maxHother Maximum atom-type H E-State: H on aromatic
CH, =CH2 or =CH- >0.631 0.678 0.678 0.723

Table 3. Molecular descriptors included in the classification models for agonist prediction.

Descriptor Meaning Threshold Sensitivity Specificity ROC AUC

XLogP Octanol/water partition coefficient >3.023 0.689 0.700 0.788
HybRatio Fraction of sp3 carbons to sp2 carbons >0.383 0.689 0.719 0.762

nsOH Count of atom-type E-State: -OH >0 0.736 0.762 0.761
nAtomLAC Number of atoms in the longest aliphatic chain >2 0.668 0.754 0.758

nX Number of halogen atoms =0 0.855 0.702 0.806
nAtomP Number of atoms in the largest pi system <10 0.627 0.918 0.825

nN Number of nitrogen atoms <3 0.870 0.721 0.848

AMW Average molecular weight (Molecular
weight/Total number of atoms) <7.250 0.751 0.802 0.860

We chose to further discuss some of the selected molecular descriptors for AMG-517
(N-[4-[6-[4-(trifluoromethyl)phenyl]pyrimidin-4-yl]oxy-1,3-benzothiazol-2-yl]acetamide), a
potent selective TRPV1 antagonist. Judging by the chosen features, TRPV1 antagonists have
secondary nitrogen atoms in their molecules, between 0 and 8 halogen atoms, between 0 and
4 hexa-atomic heterocycles, and 1–15 hydrogen bond acceptors. AMG-517 (Figure S5) has in
its structure one secondary nitrogen (substituted amide), three halogen atoms (fluorine), one
hexa-atomic heterocycle (pyrimidine), and nine hydrogen bond acceptors (three fluorine
atoms, four nitrogens, two oxygens). Moreover, AMG-517 respects seven out of the eight
criteria for descriptor threshold values, the only unsatisfied feature being the minimum
sum of atom-type E-State for secondary nitrogens. Three of the established criteria require
the presence of at least two halogen atoms, at least one hexa-atomic heterocycle, and a
minimum five hydrogen bond acceptors.

In the case of TRPV1 agonists, it can be noted that active molecules have 0–3 hydroxyl
groups in their molecules, logP values between 0.86 and 10.93, hybridization rations
between 0 and 0.95, 0–3 halogen atoms, 0–5 nitrogen atoms, average molecular weight
between 5.25 and 9.00, 0–22 atoms in the longest aliphatic chain, and between 3 and
21 atoms in the largest pi system. The established criteria for agonists classification were
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logP values above 3.023, hybridization ratios higher than 0.383, at least one hydroxyl group,
at least 3 atoms in the longest aliphatic chain, the absence of halogen atoms, less than
10 atoms in the largest pi system, less than 3 nitrogen atoms and an average molecular
weight lower than 7.25. For instance, the well-known TRPV1 agonist capsaicin ((E)-N-[(4-
hydroxy-3-methoxyphenyl)methyl]-8-methylnon-6-enamide) respected all the threshold
criteria, having a logP value of 3.983, a hybridization ratio of 0.5, one hydroxyl group, nine
atoms in the longest aliphatic chain, no halogen atoms, eight atoms in the largest pi system,
one nitrogen atom, and an average molecular weight of 6.228 (Figure S5).

Notably, neither AMG-517 nor capsaicin met any of the required criteria for being
classified as the opposite type of active compound, and only one molecular descriptor
was included in classification models of both agonists and antagonists (number of halogen
atoms). The optimal number of required criteria for considering a molecule either an
antagonist or an agonist in our classification problem was established by calculating the
performance metrics (such as accuracy and ROC AUC) after varying the minimum number
of satisfied molecular descriptor thresholds from three to eight. The performance metrics
for each classification condition are shown in Figure 3. In the case of antagonists, it can be
noted that the model accuracy decreased when the minimum number of required criteria is
increased, while in the case of agonists the accuracy varies in proportion to the number of
required criteria.
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For classifying antagonists, the accuracy varied between 47.8 and 77.4%, while for
agonist classification models the same parameter ranged between 72.5 and 95.8%. The
classification model for predicting antagonists with the most optimal balance between
sensitivity (0.724) and specificity (0.733) had a minimum number of five satisfied criteria,
the accuracy of the model being 72.7%, showing an ROC AUC value of 0.729. On the other
hand, the most balanced model for classifying agonists had a minimum required criteria of
four satisfied descriptor thresholds, the model’s accuracy being 83.9%, showing sensitivity
and specificity values of 0.834 and 0.839, respectively and an ROC AUC of 0.837. Although
the model that used a minimum number of five criteria had better accuracy (89.7%), the
ROC AUC value was lower (0.819) and this classification model showed a higher preference
for true negatives over true positives.
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3.4. Molecular Docking Simulations

Molecular docking studies were carried out to estimate the binding affinities of po-
tential repurposing candidates and to investigate the predicted binding modes. Molecular
docking results were the third and final independent variable in the proposed repurposing
predictive model. Two crystal structures were used in this study: activated TRPV1 bound
to agonist RTX and TRPV1 in a closed state bound to antagonist CPZ. Both qualitative and
quantitative validations of the docking procedure were performed. First of all, the accuracy
of binding mode predictions was assessed by docking the co-crystallized ligands into the
binding site and superposing the predicted conformation with the experimentally deter-
mined ligand pose. The RMSD values calculated after superposition were 1.1277 Å for CPZ
and 1.2564 Å for RTX, showing low deviations from original conformation and satisfying
accuracy for pose prediction (Figure S6). Binding energies for the positive controls were
−9.13 kcal/mol for CPZ and −11.55 kcal/mol for RTX, respectively.

A second validation of the docking protocol was performed by assessing the capability
of the two TRPV1 conformations to discriminate against active and inactive ligands by
analyzing the predicted binding energies or ligand efficiencies. Therefore, a selection of
TRPV1 agonists (n = 194), antagonists (n = 222), inactive molecules (n = 488) and decoys
(n = 500) were docked against the binding sites of active (PDB ID 7MZC) and inactive (PDB
ID 5IS0) conformations of TRPV1. Molecular docking simulations on TRPV1 in closed con-
formation yielded binding energies ranging from−13.04 to−5.93 (−9.56 ± 1.096) kcal/mol
for antagonists, −11.48 to −5.80 (−8.27 ± 1.260) kcal/mol for agonists, −11.05 to −3.39
(−8.12 ± 1.213) kcal/mol for inactive ligands and from−11.13 to−4.78 (−7.54 ± 1.171) for
decoys. The differences in binding energies between antagonists and inactive molecules,
and between antagonists and decoys, were statistically different (p < 0.05, Student’s inde-
pendent t-test).

After docking on the open state receptor conformation, binding energies between
−12.21 and −5.61 (−8.51 ± 1.412) kcal/mol were obtained for agonists, −12.15 and −5.62
(−9.20 ± 0.934) kcal/mol for antagonists, −11.48 and −3.92 (−8.13 ± 1.187) kcal/mol for
inactive compounds and between −11.53 and −4.77 (−7.52 ± 1.088) kcal/mol for decoys.
Although statistically significant differences were observed between the binding energies
of agonists and inactive molecules and between the docking scores of agonists and decoys
(p < 0.05, independent t-test), the differences were not strong enough to discriminate well
between agonists and experimentally determined inactives. Due to this inconvenience, a
derived parameter was calculated in order to solve the issue of comparable docking scores
between agonists and inactive ligands. Thus, the ligand efficiency-dependent lipophilicity
index (LELP) was calculated for all the docked ligands, which is expressed as logP divided
by ligand efficiency. Mean LELP values were obtained as follows: 13.44 for antagonists,
18.90 for agonists, 9.40 for inactive molecules and 9.61 for decoys. Using LELP values,
statistically significant differences were observed between agonists and inactive ligands
and between agonists and decoys, respectively (p < 0.05).

ROC curves were generated to assess the suitability of the docking procedure for
discriminating between active and inactive ligands. In the first case, antagonists were
labeled as positives and non-antagonists (agonists, inactive compounds and decoys) as
negatives after docking on the closed conformation of TRPV1. ROC AUC values of 0.852
were obtained after testing antagonists against inactive ligands, 0.894 against decoys,
0.779 against agonists (Figure 4A) and 0.844 against all non-antagonists (Figure 4B). The
same rationale was applied after docking on the open conformation, when agonists were
treated as positives and non-agonists as negatives, LELP being used in this case instead of
binding energy as a classifier. ROC AUC values were 0.868, 0.799 and 0.623 when testing
agonists against inactive compounds, decoys and antagonists (Figure 4C), and 0.780 when
testing against all non-agonists, respectively (Figure 4D). Thus, the best performance was
observed when inactive ligands were treated as negatives. Notably, the molecular docking
experiment showed greater accuracies in predicting true antagonists than true agonists.
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3.5. Integrated Predictive Model Based on Neural Networks

After establishing activity scores, the number of satisfied descriptor criteria, and
binding affinities and efficacies for antagonists, agonists and inactive molecules, these
data were integrated into one global predictive model in order to increase the predictive
accuracy by adding weights to each of the aforementioned parameters. Since antagonist,
agonist and inactive datasets are rather unbalanced, we generated the machine learning
model using only the compounds that were selected for molecular docking, thus creating
a more balanced training dataset. The machine learning algorithm that we selected for
this task was the multilayer perceptron neural network since it also allows the prediction
of multiple classes. The architecture with the most optimal parameters had the following
characteristics: six input nodes (average activity scores and satisfied descriptor criteria for
both antagonists and agonists, binding energies for antagonists, LELP values for agonists),
one hidden layer with four neurons (which, in fact, represents the geometric mean between
the number of input and output nodes) activated with tanh function, and the output layer
with three nodes corresponding to the probabilities for each of the three classes, generated
with the softmax function. The most optimal values for the hyperparameters were 0.5 for
initial learning rate, 0.7 for momentum and 25 for maximum number of epochs.
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The chosen neural network correctly predicted 86.3% of inactive molecules, 86.2%
of antagonists and 89.4% of antagonists in the training set, with an overall 86.9% pre-
diction accuracy. Moreover, the trained model did not suffer from overfitting, since the
algorithm correctly predicted 90.7% of the ligands from the test set: 89.7% of inactive
compounds, 90.0% of antagonists and 94.3% of agonists. The distribution of the predicted
pseudo-probabilities is shown in Figure 5A. The overall prediction accuracy was 88.8%
for predicting inactive compounds, 92.04% for antagonists and 93.70% for agonists, the
model showing better accuracies for correctly predicting agonists and antagonists (Table 4).
ROC AUC values were 0.957 for classifying inactive ligands, 0.972 for antagonists and
0.980 for agonists (Figure 5B). The generated classification model showed higher values for
specificity over sensitivity, and thus the algorithm identifies true negatives relatively more
accurately than true positives.
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Figure 5. (A) Estimated pseudo-probabilities for experimentally determined TRPV1 antagonist,
agonists and inactive molecules after applying the MLP NN algorithm; (B) ROC curves for classifying
TRPV1 antagonists, agonists and inactive molecules; (C) importance metrics for independent variables
used in the multi-class classification model; Crit-ANT—number of satisfied molecular descriptor
criteria for predicting antagonists, Crit-AG—number of satisfied molecular descriptor criteria for
predicting agonists.
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Table 4. Performance metrics for the multi-class neural network.

Class

Parameter Inactive Antagonist Agonist

Accuracy 0.888 0.920 0.937
Sensitivity 0.867 0.851 0.876
Specificity 0.913 0.943 0.954
ROC AUC 0.957 0.972 0.980

F1 score 0.893 0.840 0.856

The independent variables with the highest importance in predicting the three classes
were average activity scores for antagonists and agonists, followed by binding energy
and LELP, while the numbers of satisfied molecular descriptor criteria for antagonists and
agonists had the lowest weights (Figure 5C).

3.6. Prediction of Potential TRPV1 Modulators through Drug Repurposing

The 1981 approved drugs retrieved from the DrugBank database were subjected to the
virtual screening protocol to identify potentially new TRPV1 modulators. Firstly, graph
mining techniques were used with DataWarrior software to append appropriate activity
scores for the repurposing molecules. Then, scaffold analysis and flexophore similarity
search were performed to retrieve Bemis–Murcko, plain rings and cluster similarity scores
for approved drugs that had similar structural features with experimentally determined
TRPV1 antagonists, agonists and inactive molecules. After performing the analysis, average
activity scores varied between 0 and 6.23 (1.42 ± 1.151) for predicting antagonists and
between 0 and 4.40 (0.41 ± 0.549) for predicting agonists. Only five compounds had higher
activity scores than the mean score of antagonists (5.79) and only one drug showed a higher
activity score than the mean value for agonists (3.01).

Among the screened compounds, 686 (34.6%) have in their structure Bemis–Murcko
skeletons present among TRPV1 antagonists, and 725 (36.6%) molecules have BM skeletons
observed within agonists. A total of 1348 (68%) compounds contain plain rings contained
by structures of antagonists, and 1406 (80%) drugs contain plain rings commonly found
within agonists, which denotes that agonists contain aromatic or non-aromatic rings that
are not highly specific to TRPV1 agonistic activity. After performing the similarity search
based on flexophore descriptors, we found that 333 (16.8%) and 146 (7.4%) approved drugs
shared structural similarities higher than 0.8 with antagonists and agonists, respectively.

Furthermore, 1D and 2D molecular descriptors were generated for marketed drugs to
establish the number of relevant molecular features that are shared with known TRPV1
ligands. We previously showed that a compound should satisfy at least five antagonist-
specific molecular descriptor criteria to be classified as an antagonist and at least four
agonist-specific criteria to be considered an agonist, with a good balance between sensitivity
and specificity. After applying the thresholds for the 16 chosen molecular descriptors, 315
(15.9%) molecules satisfied the condition of being classified as antagonists, and 1121 (56.6%)
compounds met the criteria for being considered potential agonists. These results hinted
toward the fact that the minimum required number of descriptor criteria for classifying
agonists is too permissive. On another note, we observed while training the neural networks
that the machine learning algorithm performed more accurately when we used the total
number of the satisfied descriptor criteria instead of the binary categorical values (1 for
active antagonist or agonist, 0 for inactive) as classifiers. The last two observations led
to the treatment of the molecular descriptor-derived property as an ordinal independent
variable, rather than dichotomous.

Molecular docking experiments were carried out to estimate binding energies after pre-
dicting the interaction with a closed-state conformation of TRPV1, and the ligand efficiency-
dependent lipophilicity index after simulating interactions with the agonist-bound con-
formation of the ion channel. Among the screened drugs, 79 (4%) molecules showed
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lower binding energies than the mean value for TRPV1 antagonists (−9.56 kcal/mol) after
docking into the antagonist-specific binding site. After simulating the interactions with
the agonist-specific conformation of the binding site, 276 (13.9%) compounds had lower
energies than the mean value for agonists (−8.51 kcal/mol), and 147 (7.4%) showed LELP
values higher than the mean for agonists (18.90).

The distribution of the established input variables for class prediction is depicted
in Figure S7. As observed, only the number of satisfied descriptor criteria for predicting
agonists, predicted binding energies and calculated LELP followed normal distributions
among the screened drugs.

The independent variables that were determined after performing the prerequisite
screening were fed into the validated neural network. The distribution of the estimated
probabilities corresponding to each of the predicted classes yielded after applying the
integrated machine learning model is illustrated in Figure 6A. The implemented model
predicted 1112 (56.1%) compounds as inactive molecules, 258 (13%) as potential antagonists
and 572 (28.9%) as potential agonists, if a 50% probability threshold was applied for being
considered a positive. Moreover, 116 (5.9%) drugs from the predicted antagonist class and
210 (10.6%) from the predicted agonist class showed probabilities over 90%.
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candidate predicted as TRPV1 agonists.

The top 10 (0.5%) predicted antagonists ranked by probabilities and their established
pharmacological activity are shown in Table 5, while the top 10 predicted agonists are
shown in Table 6. Approved drugs with high probabilities of being active antagonists
are very structurally and pharmacologically diverse. For instance, the top 10 predicted
antagonists have entirely different therapeutic indications and had calculated probabilities
over 95%. The top three potential antagonists were repaglinide (antihyperglycemic agent,
ATP-dependent potassium channel blocker), telmisartan (antihypertensive, angiotensin II
receptor blocker) and tafenoquine (antimalarial agent).
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Table 5. Top 0.5% predicted TRPV1 antagonists ranked by estimated probability.

Rank DrugBank
ID

Generic
Name

Pharmacological
Class Score-ANT Crit-ANT ∆G

(kcal/mol)
Probability

(ANT)

1 DB00912 Repaglinide antidiabetic
(meglinide) 5.42 3 −7.78 0.9759

2 DB00966 Telmisartan

antihypertensive
(angiotensin II

receptor
antagonist)

4.29 2 −9.20 0.9730

3 DB06608 Tafenoquine antiparasitic 4.66 5 −7.53 0.9718

4 DB00836 Loperamide antidiarrheals
(opioid agonist) 3.80 2 −8.59 0.9703

5 DB09056 Amorolfine antifungal 4.74 1 −8.42 0.9703
6 DB08820 Ivacaftor CFTR potentiator 3.74 3 −9.34 0.9695

7 DB14677 Gestonorone
caproate

progestin
medication 4.48 1 −7.15 0.9694

8 DB08976 Floctafenine NSAID 4.56 5 −7.48 0.9692

9 DB00354 Buclizine
antiallergic (H1

receptor
antagonist)

3.70 2 −8.21 0.9680

10 DB06202 Lasofoxifene selective ER
modulator 3.91 1 −7.94 0.9678

Crit-ANT—number of satisfied molecular descriptor criteria for predicting antagonists.

Table 6. Top 0.5% predicted TRPV1 agonists ranked by estimated probability.

Rank DrugBank
ID

Generic
Name

Pharmacological
Class Score-AG Crit-AG ∆G

(kcal/mol) LELP Probability
(AG)

1 DB00136 Calcitriol active form of
vitamin D 2.92 8 −8.27 21.65 0.9416

2 DB06814 Protokylol adrenergic β2
receptor agonist 2.76 6 −8.71 5.52 0.9412

3 DB00523 Alitretinoin
retinoid

(antineoplastic
agents)

2.07 6 −7.29 17.56 0.9405

4 DB01597 Cilastatin dipeptidase
inhibitor 2.62 5 −7.29 −2.76 0.9389

5 DB01187 Iophendylate radiocontrast
agent 1.24 5 −6.66 21.40 0.9387

6 DB00162 Vitamin A retinoid 2.07 7 −8.26 15.68 0.9384

7 DB00982 Isotretinoin retinoid
(anti-acne agent) 2.07 6 −8.79 14.56 0.9375

8 DB11570 Padimate O sunscreen agent 1.60 6 −7.01 12.46 0.9374
9 DB04822 Oxeladin antitussive agent 1.24 7 −6.59 13.55 0.9372

10 DB11594 Domiphen antiseptic 1.24 7 −6.31 12.55 0.9368

Crit-AG—number of satisfied molecular descriptor criteria for predicting agonists; ligand efficiency-dependent
lipophilicity index.

Some of the drugs with high predicted probabilities for acting as TRPV1 agonists were
adrenergic receptor modulators, either sympathomimetics (e.g., protokylol, ephedrine,
etilephrine and formoterol) or β-blockers (e.g., bisoprolol, esmolol, practolol, celiprolol,
sotalol and labetalol), indicating that these molecules share common features with TRPV1
agonists. However, timolol, nadolol, carteolol and prazosin were predicted as potential
antagonists. Lidocaine and other local anesthetics (e.g., butacaine, prilocaine, oxetacaine
and procaine) were also identified as potential agonists. Calcitriol (active form of vitamin
D) showed the highest probability of exerting TRPV1 agonist activity. Moreover, vitamin A
and its derivatives (alitretinoin, isotretinoin) were identified among the top 10 potential
agonists. Most of these compounds have high lipophilicity, which is a common property
for TRPV1 agonists as seen from molecular descriptor analysis and LELP values.
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The most promising candidates for repurposing as TRPV1 modulators with pharma-
cotherapeutic utility in pain relief were chosen based on three criteria: high probability
of being active, favorable interactions with relevant residues within the binding site of
TRPV1 and acceptable safety profiles. Therefore, three potential antagonists (repaglinide,
telmisartan and agomelatine) and one potential agonist (protokylol) were proposed as
repositioning candidates and were discussed in further detail (Figure 6B–E).

Repaglinide, an antidiabetic drug acting as a blocker of ATP-dependent potassium
channels [54], showed the highest probability of blocking TRPV1 and had an average activ-
ity score of 5.42, its structure being characterized by a BM-24 skeleton (2-(4-cyclohexylbutyl)-
1,1′-bi(cyclohexane)). Moreover, repaglinide contains in its molecule two phenyl rings
(PR-1) and a piperidine scaffold (PR-5), both being present in structures of TRPV1 an-
tagonists. Repaglinide also has a flexophore similarity of 87% with TRPV1 antagonist
CHEMBL1779679. Furthermore, repaglinide satisfied three out of eight proposed molecular
descriptor criteria, having in its molecule one secondary nitrogen, one hexa-atomic ring
containing heteroatoms and six hydrogen bond acceptors. Telmisartan, an antihypertensive
agent that blocks angiotensin II receptors [55] showed an average activity score of 4.29,
having also the second highest predicted probability of blocking TRPV1. Its structure
contained no antagonist-specific BM scaffold, but the benzodiazole (PR-21) and benzene
(PR-1) rings had high contributions to the overall score. Moreover, telmisartan had a
flexophore similarity of 80.5% with TRPV1 antagonist CHEMBL3961718. Telmisartan sat-
isfied only two molecular descriptor criteria, the measure of electronegative atom count
relative to molecular size and molecular complexity. Another interesting potential TRPV1
antagonist was agomelatine, a melatonin naphthalene analog used to treat depressive
disorders [56], which had an estimated probability of binding to the channel of 80.25%. This
atypical antidepressant had an average activity score of 4.00, its structure being derived
from the decahydronaphthalene BM skeleton (BM-90) or naphthalene scaffold (PR-16),
which are present among potent TRPV1 antagonists. Agomelatine had 83.1% flexophore
similarity with TRPV1 antagonist CHEMBL400371. In fact, the discovered flexophore
similarity pair is characterized by strikingly similar structures, since the two molecules
share a large structural fragment ((7-methoxynaphthalen-1-yl)ethyl), while the acetamide
moiety from agomelatine is replaced with (trifluoromethoxy)benzamide in the TRPV1
antagonist. Although agomelatine contains a secondary nitrogen, its structure did not
satisfy any molecular descriptor criteria for antagonists.

Bronchodilator protokylol [57] showed the second highest estimated probability for
acting as a TRPV1 agonist. Protokylol had an average activity score of 2.76, its molecule con-
taining the 5-(5-cyclohexylpentyl)-octahydro-1H-indene BM skeleton (BM-126), represented
by the benzene (PR-1) and benzodioxole (PR-44) plain rings, these structural features being
also present among TRPV1 agonists. A flexophore similarity match of 87.8% was observed
between protokylol and nylidrin. Nylidrin (buphenine) is a β2-adrenoreceptor agonist act-
ing as a vasodilator (withdrawn for lack of effectiveness) [58], which has 15.85 µm potency
for TRPV1 agonist activity (pEC50 = 4.8 M), the result being declared inconclusive in the
ChEMBL database. Protokylol met six out of eight molecular descriptor criteria for acting
as a TRPV1 agonist, the only violated thresholds being for XlogP and hybridization ratio.

Repaglinide, telmisartan and agomelatine had binding energies after docking into the
antagonist-specific conformation of the vanilloid pocket of−7.78,−9.20 and−7.69 kcal/mol,
respectively. The predicted conformations of the three potential antagonists were not highly
torsioned, while repaglinide and agomelatine adopted spatial orientations similar to antag-
onist CPZ (Figure 7). All three ligands formed hydrogen bonds or carbon–hydrogen bonds
with Thr550, located in the loop between TM4 and 5, which was shown to be a key residue
for TRPV1 modulation [32,33]. Moreover, agomelatine forms a hydrogen bond with Ser512
from the loop connecting TM2 and TM3, while repaglinide forms a hydrogen bond and a
salt bridge with Arg557, a residue that is relevant for CPZ antagonist activity. For instance,
CPZ forms hydrogen bonds with Thr550, Ser512 and Arg557. Multiple non-polar interac-
tions were also observed between the docked ligands and residues within the vanilloid
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binding pocket, the docked ligands showing high potential for blocking the TRPV1 channel
by acting on the CPZ binding site. On the other hand, the structure of telmisartan lacks
a vanillyl head analogous scaffold and therefore did not bind as deep into the vanilloid
pocket as other ligands.
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Figure 7. Predicted molecular interactions between potential antagonists and TRPV1 vanilloid bind-
ing site. (A) Conformation of the predicted repaglinide–TRPV1 complex; (B) 2D interaction diagram
for the predicted repaglinide-TRPV1 complex; (C) conformation of the predicted telmisartan–TRPV1
complex; (D) 2D interaction diagram for the predicted telmisartan–TRPV1 complex; (E) conforma-
tion of the predicted agomelatine–TRPV1 complex; (F) 2D interaction diagram for the predicted
agomelatine–TRPV1 complex; van der Waals contacts were not displayed for simplicity.
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Protokylol showed a predicted binding energy of −8.27 kcal/mol after simulating the
interaction with the agonist-bound conformation of the TRPV1 active site, the calculated
LELP being 5.52. Similar to the other analyzed ligands, protokylol fit very well within
the binding cavity (Figure 8A), showing similar orientations with known TRPV1 ligands.
Protokylol formed three hydrogen bonds with Thr550, Asn551 and Ala566 and multiple
non-polar pi-alkyl interactions with other residues (Figure 8B). Interestingly, after analyzing
the third predicted conformation, we found that protokylol could potentially bind to the
phosphoinositides-specific binding site (−7.52 kcal/mol, Figure 8C,D). This binding site
overlaps with the vanilloid binding pocket and can inhibit capsaicin-induced activation
of TRPV1 [59]. Protokylol formed a salt bridge and a pi-anion interaction with Asp707
and a pi-sigma interaction with Ile703, residues that were shown to be essential for TRPV1
modulation by phosphoinositides [59]. Additionally, the protonated secondary amine
moiety also interacted with Glu513 through attractive charges. Moreover, three hydrogen
bonds and one carbon–hydrogen bond were formed with other residues.
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Figure 8. Predicted molecular interactions between protokylol and different overlapping TRPV1
binding sites. (A) Conformation of the predicted protokylol–TRPV1 complex after binding to the
vanilloid site; (B) 2D interaction diagram for the predicted protokylol–TRPV1 complex after binding
to the vanilloid site; (C) conformation of the predicted protokylol–TRPV1 complex after binding to the
phosphoinositides site (fragment of RTX bound to the vanilloid pocket is depicted in blue); (D) 2D in-
teraction diagram for the predicted protokylol–TRPV1 complex after binding to the phosphoinositides
site; van der Waals contacts were not displayed for simplicity.
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4. Discussion

The ligand-dependent cation channel TRPV1 is a promising target for managing
various types of pain disorders [3]. In recent years, an increasing number of studies
have focused on discovering TRPV1 antagonists and agonists/desensitizers as therapeutic
solutions for chronic, neuropathic and inflammatory pain, but also for migraine and
cluster headache [8,19,60]. Unfortunately, the approval of TRPV1 antagonists is hindered
due to severe side effects observed in clinical trials, such as hyperthermia. However,
the discovery of novel TRPV1 modulators with therapeutic utility in pain conditions
can be accelerated by channeling efforts into drug repurposing approaches, including
consecrated computer-aided drug discovery methods. Drug repositioning strategies are
advantageous due to the significantly lower human, financial and temporal resources
required for discovering new therapies for diseases that lack optimal therapeutic options,
by identifying new pharmacological actions for marketed drugs with well-established
pharmaco-toxicological profiles [36]

In our study, we focused on implementing an in silico drug repurposing framework
aimed at predicting novel TRPV1 antagonists and agonists/desensitizers with analgesic
activity. The predictive model was developed to discriminate between TRPV1 antago-
nists and agonists since virtual screening approaches can lead to discovering ligands with
activity types opposite to the predicted outcome. For instance, in a previous work, we
identified febuxostat (xanthine oxidase inhibitor) as a potential TRPA1 antagonist [48],
which was proven thereafter to act as a weak TRPA1 agonist [61]. Both ligand-based
and structure-based approaches were applied to generate a set of variables that were fur-
ther used to develop an artificial intelligence algorithm based on neural networks aimed
at predicting the probabilities of tested molecules behaving as TRPV1 antagonists, ago-
nists/desensitizers, or being classified as inactive. Artificial neural networks were chosen
as an end-point predictive model due to their increasing usefulness in drug discovery
campaigns. However, neural networks are often elusive in terms of comprehensibility of
nonlinear relationships between chemical structural features and biological activity, and
other authors have suggested that predictive accuracy could be sacrificed in favor of highly
interpretable models [62].

Foremost, this paper presents our strategy for implementing a relative sense of linearity
in characterizing the relationships between the physicochemical and structural properties
of TRPV1 modulators and the biological outcome. In this regard, activity scores based on
biological activity measures were assigned to structural scaffolds of known TRPV1 active
and inactive molecules, such as Bemis–Murcko skeletons and plain rings, to transform
the building blocks present within molecules of active TRPV1 modulators into continuous
variables. Therefore, structural scaffolds that yield highly potent TRPV1 ligands were iden-
tified. For instance, one such substructure was the pyrido[2,3-d]pyrimidine heterocycle,
which is considered a privileged scaffold that can provide compounds with diverse phar-
macotherapeutic indications (e.g., antihypertensive, antidiabetic and antitumor agents) [63].
Further, structural flexibility and pharmacophoric characteristics were also transformed,
by assigning activity scores based on clustering using a flexophore descriptors similarity
threshold of 80%. The calculated average activity score was proven highly accurate in
discriminating between active and inactive molecules.

Several molecular descriptors were chosen for our predictive model by analyzing ROC
curves and relevance in characterizing TRPV1 ligands. In this case, we established a set of
rules defined as certain thresholds for descriptor values that should be respected to confer
antagonist or agonist activity on TRPV1 receptors. Hence, an ordinal categorical variable
was defined, which illustrates the number of such criteria satisfied by each molecule (from
three to eight). The classification model based on these rules was proven to be more accurate
in correctly classifying known agonists than antagonists since the antagonist dataset is
considerably more structurally diverse. However, the models generated for classifying
agonists had a relatively lower F1 score (weighted average of precision and recall), possibly
due to a more unbalanced dataset (agonists/non-agonists ratio of 1:17). This issue was
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further addressed in the process of training the neural networks, by pruning the antagonists
and inactives datasets based on chemical similarity, yielding a training dataset consisting
of an approximately 1:1:2 ratio of agonist/antagonist/inactive compounds.

Molecular docking simulations were carried out using agonist- and antagonist-bound
TRPV1 channel conformations. The docking procedure was more successful in classifying
antagonists. The resulting binding energies and LELP values were further used as variables
in training the neural networks.

Independent variables obtained from the scaffold and flexophore analysis established
molecular descriptors criteria and molecular docking screening were used to train the
machine learning model. The developed multilayer perceptron neural network algorithm
showed higher accuracies in correctly predicting antagonists and agonists than inactive
molecules. On the other hand, specificity values were considerably higher for all three
classes. These observations translate into the fact that the proposed model behaves more
accurately when assigning molecules to antagonist and agonist classes, while there is
a smaller chance that the algorithm would predict false positives. The neural network
architecture also attenuated the modest predictive performances of molecular descriptors
and docking on agonist-specific conformation by assigning lower weights to the variables
described as the number of satisfied descriptor criteria and LELP.

The dataset containing the approved drugs retrieved from the DrugBank database
was subjected to the same analysis as TRPV1 ligands in order to predict probabilities of
acting on the TRPV1 receptor by using the developed neural network. As observed in
many drug discovery campaigns, docking scores alone do not often yield remarkably high
success rates in discovering true positives [53] or appropriate repurposing candidates.
For instance, among the top 1% (20) molecules ranked by predicted binding affinities,
only 6 showed antagonist activity probabilities higher than 0.5. Moreover, antitumoral
tyrosine kinase inhibitors (nilotinib, sorafenib, capmatinib and imatinib) were noticed
among the top-scoring drugs ranked by binding affinity, which cannot be repurposed
as analgesics due to high toxicities. Interestingly, despite having a very high predicted
binding affinity to TRPV1 (−10.52 kcal/mol), paliperidone was predicted as inactive,
which is in concordance with previously published molecular biology studies that assessed
the interaction with TRPV1 activity [61]. Overall, the screened compounds with a high
probability of acting as TRPV1 antagonists are highly pharmacologically diverse. The first
two molecules ranked by TRPV1 inhibition probability were the antidiabetic repaglinide
and the antihypertensive telmisartan.

Binding pose analysis of repaglinide revealed its potential to competitively block
the vanilloid binding site of TRPV1. Moreover, our analysis showed that repaglinide
shares relevant structural features with certain TRPV1 antagonists. To the best of our
knowledge, there are no available preclinical studies that analyzed the analgesic potential of
repaglinide. Frequent adverse reactions such as hypoglycemia and weight gain associated
with repaglinide treatment [64] indicate that its use as an analgesic agent might be limited
to patients suffering from diabetic neuropathy.

The analgesic and anti-inflammatory effects of telmisartan have been evaluated in
preclinical studies of different types of neuropathic pain [65–68]. The main mechanism
underlying these effects is partial activation of PPAR-γ receptors [65,66,68], but according
to one study, telmisartan reduced thermal and mechanical hypersensitivity by inhibit-
ing CYP2J2 [67]. In addition, Sisignano et al. used electrophysiological measurements
and calcium-imaging experiments to investigate the possibility of interaction between
telmisartan and the TRPV1 channel and did not observe an effect of the substance on
TRVP1-dependent calcium transients or inward currents [67]. Considering these findings,
telmisartan can be considered as a false positive discovered by our algorithm as a potential
TRPV1 antagonist. The lack of telmisartan activity on TRPV1 could be explained by the
molecular docking results. Unlike other ligands, telmisartan lacks a vanilloid-like head
substructure and therefore its conformation cannot fit as well into the vanilloid pocket.
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Another interesting compound that was predicted as a TRPV1 antagonist was agome-
latine, a naphthalene analog of melatonin. Agomelatine fits satisfyingly into the vanilloid
binding pocket, and it shares a high similarity with a TRPV1 antagonist, the methyl radical
within the acetamide moiety being replaced with the trifluoromethoxy-methyl substructure
in the known antagonist. Interestingly, melatonin was shown to regulate intracellular
calcium influx, possibly by inhibiting the TRPV1 channel [69]. Since agomelatine is an
analog that acts as an agonist of the melatoninergic receptors MT1 and MT2 [70], other
studies investigated whether agomelatine shows a melatonin-like effect on TRPV1 receptor
signaling, but direct interaction with the channel was not demonstrated, since no direct
and specific experiments were performed to assess the binding of agomelatine to TRPV1
receptor [71]. The role of agomelatine in pain is supported by few preclinical studies [72,73].
In this regard, it has been observed that in various animal models of neuropathic pain (e.g.,
induced by streptozotocin, oxaliplatin or chronic constriction nerve injury), agomelatine
ameliorated pain-associated hypersensitivity [73]. 5-HT2C and MT2 receptors are involved
in pain modulation [74–77]. Researchers believe that the analgesic effect of agomelatine
is due to its action on these receptors (agonist on melatoninergic receptor and antagonist
on the 5-HT2C receptor) [73]. Agomelatine has an optimal safety profile, with few side
effects (such as dizziness, nausea, diarrhea and dry mouth) occurring especially early in
the treatment [78].

Calcitriol, the active form of vitamin D, had the highest probability of acting as a
TRPV1 agonist. Moreover, a recently published study revealed that vitamin D acts as a
partial agonist of the TRPV1 channel, this discovery being in line with our prediction [79].

Protokylol, a β2-adrenergic agonist used as a bronchodilator [57] emerged as a com-
pound with the second highest probability of exerting agonist activity on TRPV1. Two
different, overlapping binding sites were observed for protokylol, one specific to vanilloids
and competitive antagonists and another for phosphoinositides [59]. Protokylol formed
favorable interactions with relevant amino acid residues within both binding sites. There-
fore, protokylol could potentially show analgesic activity either by desensitizing TRPV1
through interaction with the vanilloid binding site or by inhibiting the channel through
allosteric modulation, similar to phosphoinositides [59]. No preclinical studies regarding
the analgesic potential of protokylol are available. The main side effects of beta-adrenergic
agonists such as protokylol are mild tachycardia, tremor or metabolic effects [80]. Moreover,
other adrenergic receptor modulators (bisoprolol, esmolol, practolol, celiprolol, sotalol and
labetalol) were also identified by the repurposing algorithm as potential TRPV1 agonists.
A previous study revealed that catecholamines can upregulate TRPV1 activity in cultured
neurons, but no direct interactions between adrenergic modulators and TRPV1 receptor
were studied [81].

Due to their optimal predicted binding into TRPV1 active sites and high estimated
probabilities of being active ligands, we propose repaglinide and agomelatine as potential
TRPV1 antagonists and protokylol as a potential TRPV1 agonist/desensitizer. Further
studies are required to experimentally evaluate the interactions between the proposed
molecules and TRPV1 and to investigate their activity in various animal models of pain-
related disorders.

5. Conclusions

An in silico drug repurposing framework was established using ligand-based, structure-
based and machine learning approaches for identifying novel TRPV1 modulators. After
screening the approved drugs with the validated algorithm, repaglinide (antidiabetic)
and agomelatine (antidepressant) emerged as potential TRPV1 antagonists, and protokylol
(bronchodilator) as an agonist. Further studies are required to confirm the predicted activity
on TRPV1 and to assess the candidates’ efficacy in alleviating pain.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics14122563/s1, Figure S1: (A) Relationship between
BM scores for predicting antagonists and agonists; (B) relationship between PR scores for predicting
antagonists and agonists; (C) relationship between SC scores for predicting antagonists and agonists
(representative structures are highlighted); (D) map of structure similarity relationships based on
flexophores for TRPV1 antagonists (class 1), agonists (class 2) and inactive molecules (class 0);
Figure S2: Box plots representing activity scores established based on structural features for both
antagonists and agonists. (A) Bemis-Murcko activity scores for predicting antagonists (BMS-ANT);
(B) Bemis-Murcko activity scores for predicting agonists (BMS-AG); (C) plain rings activity scores for
predicting antagonists (PRS-ANT); (D) plain rings activity scores for predicting agonists (PRS-AG);
(E) flexophore similarity cluster activity scores for predicting antagonists (SCS-ANT); (F) flexophore
similarity cluster activity scores for predicting agonists (SCS-AG); (G) average activity scores for
predicting antagonists (Score-ANT); (H) average activity scores for predicting agonists (Score-AG);
Figure S3: ROC curves showing predictive capacity of average activity scores. (A) activity scores for
predicting antagonists (Score-ANT); (B) activity scores for predicting agonists (Score-AG); Figure S4:
ROC curves showing discriminant capacity of each selected descriptor. (A) descriptors included for
antagonists classification (larger values indicate more positive test result); (B) descriptors included for
agonists classification, with higher values indicating more positive test result; (C) descriptors included
for agonists classification, with lower values indicating more positive test result; Figure S5: Chemical
structures of TRPV1 antagonist AMG-517 and TRPV1 agonist capsaicin; Figure S6: Validation of
binding pose prediction. (A) superposition between predicted (purple) and experimental (green)
conformations for CPZ; (B) superposition between predicted (purple) and experimental (green)
conformations for RTX; Figure S7: Distribution of input variables established for approved drugs
(DrugBank). (A) distribution of average activity scores for predicting antagonists (Score-ANT);
(B) distribution of number of satisfied molecular descriptor criteria for predicting antagonists (Crit-
ANT); (C) distribution of binding energies for predicting antagonists (∆G); (D) distribution of average
activity scores for predicting agonists (Score-AG); (E) distribution of number of satisfied molecular
descriptor criteria for predicting agonists (Crit-AG); (F) distribution of calculated LELP values for
predicting antagonists.
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