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Abstract: (1) Background: This investigation aimed at developing a series of c-Met-targeting
cabozantinib-based PROTACs. (2) Methods: Purification of intermediate and target compounds
was performed using column chromatography, in vitro antiproliferation activity was measured us-
ing a standard MTT assay and a c-Met degradation assay was performed via the immunoblotting
technique. (3) Results: Several compounds exhibited antiproliferative activity towards different
cell lines of breast cancer (T47D, MDA-MB-231, SKBR3, HCC1954 and MCF7) at the same level as
parent cabozantinib and 7-demethyl cabozantinib. Two target conjugates, bearing a VHL-ligand
as an E3-ligase binding moiety and glycol-based linkers, exhibited the effective inhibition of c-Met
phosphorylation and an ability to decrease the level of c-Met in HCC1954 cells at micromolar concen-
trations. (4) Conclusions: Two compounds exhibit c-Met inhibition activity in the nanomolar range
and can be considered as PROTAC molecules due to their ability to decrease the total level of c-Met
in HCC1954 cells. The structures of the offered compounds can be used as starting points for further
evaluation of cabozantinib-based PROTACs.

Keywords: c-Met; PROTAC; cabozantinib; cancer

1. Introduction

PROTAC technology has exhibited impressive progress [1] since the first PROTAC
molecule was designed in 2001 by C.M. Crews [2] to the point where several candidates
entered clinical trials in 2019–2021 [3]. In general, the PROTAC molecule consists of an
LP-ligand that connects to the target protein of interest (POI), associated through the linker
with LE-ligand, recruiting E3-ligase. Attractive features of this technology are the ability
of PROTAC degraders to target proteins without distinct active sites (i.e., “undruggable”
proteins) and their catalytic mode of action [4].

The range of targets degraded by PROTAC is constantly growing [5]. Currently, it includes
protein kinases [6–8] (AKT, BCR-ABL, BTK etc.), epigenetic regulators (BRD4/7/9 [9–12],
TRIM24 [13], Smad3 [14], proteins related to neurodegenerative diseases (Tau [15], mutant
huntingtin [16], PSD-95 [17], α-synuclein [18]), nuclear receptors (ERRα [19], AR [20],
PARP1 [21], RAR [22]) and anti-apoptotic proteins [23–25] (MCL-1, BCL-2, BCL-XL).

Auxiliary proteins named E3 ligases are essential for the ubiquitination of POI. To date,
only a few examples (VHL [11,13,19,26], CRBN [9,22,27], MDM2 [10,21,28], IAPs [29,30])
have been confirmed for PROTAC design despite the discovery of more than 700 E3
ligases in humans [31]. Proteins such as VHL can serve not only as E3 ligases but also as
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POIs [32] due to their ability to interact with HIF1α [33] and facilitate their proteasomal
degradation. Based on this consideration, VHL was chosen for the developing of the
co-called “homoPROTAC” [32,34]. Nevertheless, expanding the range of potent E3-ligases
still remains important for PROTACs’ evolution [35–37].

One of the key steps in protein degradation via the ubiquitin–proteasome system
(UPS) is the transfer of the polyubiquitin chain to the POI. The linker between LP and LE
plays an essential role in this process. All factors: length, flexibility, polarity and presence
of functional groups can influence transfer efficiency [38–41]. The most common motifs for
linker design are PEG- or other glycol-based spacers, triazole-, piperidine- and piperazine-
bearing fragments. Meanwhile, the choice of linker structure is often carried out empirically
by screening an activity of a series of PROTAC molecules.

Despite the fundamental principles of PROTAC action being sufficiently understood,
some aspects of PROTAC technology remain unclear. The main issues are related to
identifying new possible targets for UPS degradation and to extend the range of E3-
ligases. Furthermore, evaluation of PROTACs’ pharmacokinetic and pharmacodynamic
characteristics, indicating side targets and determining selectivity, is not trivial. More
efforts are needed to fully understand the complete mechanisms of action and utilization
of PROTACs [42].

This work is focused on the design and synthesis of cabozantinib-based PROTACs,
recruiting CRBN and VHL as E3-ligases and the investigation of their efficiency depending
on the linker structure. The choice of cabozantinib as a warhead stemmed from its excel-
lent activity against hepatocellular endothelial growth factor receptor (HEGFR or c-Met),
endothelial growth factor receptor (EGFR) and other tumor-associated proteins KIT, RET,
AXL, TIE-2 and FLT-3 [43,44]. In addition to the abnormal activation of c-Met along with
the progression of glioblastoma, liver [45], colon [46] and pancreatic [47] carcinomas, the
selection of c-Met as a target protein for degradation is due to its deep involvement in the
activation of several downstream signaling pathways (MAPK, PI3K, SRC, STAT) [48] that
play an essential role in cell proliferation and survival.

Cabozantinib itself has been approved by the FDA for progressive metastatic medullary
thyroid cancer and advanced renal cell carcinoma [49,50]. However, a wide range of dose-
dependent side effects of cabozantinib have occurred in many cases [50–52]. Application of
cabozantinib-based PROTAC is believed to enhance antitumor action and reduce adverse
effects due to the PROTAC catalytic mode of action that could significantly decrease the
required drug dose.

2. Materials and Methods
2.1. Chemistry

Agilent DDR2 400 and Varian Mercury 400 Plus spectrometers were used to record the
1H NMR and 13C NMR spectra at 25 ◦C. The ppm measurement unit was applied for the
report of the chemical shifts (δ) in relation to the solution of the compound in DMSO-d6 and
CDCl3, while the J values and the internal reference TMS were expressed in Hertz. Only the
NMR assignment received the atomic numeration. The Bruker Microflex LT spectrometer
was used to record the MALDI spectra. The electron spray ionization (ESI) was applied for
the high-resolution mass spectra record on a Bruker Daltonics microOTOF-QII instrument.
The Elementar (Vario Micro Cube) apparatus was a tool for the elemental analysis. The
Shimadzu Class-VP V6.12SP1 system was used for the HPLC, A: 0.01 M H3PO4 pH 2.6; B:
MeCN; all the components were characterized to have purity more than 95%. The Merck
Kieselgel 60 (70–230 mesh) was applied for the column chromatography. Commercially
available reagents were acquired to perform all the reactions. The purification of the
solvents was performed in compliance with the standard procedures. The purchased
petroleum ether is appropriate for the fraction of 40–70 ◦C. Syntheses of VHL-ligand 10 [53],
its derivatives 10a,b [54] and conjugates of lenalidomide with caproic acid in forms of
N-Boc protected (12a) and free amine (12b) [36], cabozantinib hydroxyl derivative 3 [54]
were performed as described earlier.
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2.2. Biological Research
2.2.1. Cell Culture Screening and Assessment of the Antiproliferative Effects

The A-431 (skin), A549 (lung), HeLa (cervical), T47D, MDA-MB-231, SKBR3, HCC1954
and MCF7 (breast) cancer cells were acquired from the ATCC center and incubated in
normal media (Gibco, New York, NY, USA) recommended by the manufacturer. The MTT
(3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) (Applichem) assay with
modifications [55] was used to assess the cell growth as described earlier in [56]. The
seeding of the tumor cells was performed in 24-well plates (TPP) using 900 µL of the
appropriate medium. DMSO (AppliChem, Darmstadt, Germany) was applied for the
compound dissolution to a concentration of 10 mM immediately before the experiments.
Subsequently, the obtained solutions were diluted in the DMEM medium to the necessary
doses. The solutions of the investigated compounds with various concentrations in 100 µL
of the DMEM were added a day following the seeding, and the cell cultures were incubated
for 3 days. After the cell growth with the compounds, the DMEM was ablated, and the
MTT dye as part of the medium was added to the end concentration of 0.2 mg/mL to every
well for the incubation during 2 h. All the wells were supplemented with DMSO in the
amount of 350 µL for solvation of the MTT formazan purple crystals. A MultiScan reader
(ThermoFisher, Waltham, MA, USA) was applied for the measurement of the solutions’
absorbance at a wavelength of 571 nanometers. The cell survival was evaluated after
subtraction of the blank value (the absorbance in each well without cells) from all wells.
All of the tests were performed 3 times. The investigation of the dose–response curves was
performed with the usage of regression analysis and sigmoidal curves (Log(concentration)
vs. normalized absorbance). GraphPad Prism was applied for the establishment of the
half-maximal inhibitory concentrations (IC50) (Table 1).

Table 1. Antiproliferative activity of target compounds 15a–d, 16a,b, 17a–d against cancer cells (IC50

values 1, µM); the dose–response curves are presented in Figures S1–S5.

Cell Line

Compound A-431 T47D MCF7 HCC1954 SKBR3

c-Met Status ++ - - +++ -

15a >25 6.1 28.1 5.7 >25
15b >25 14.2 >25 9.1 >25
15c >25 >25 >50 6.7 10.8
15d >25 >25 >50 20.3 >25
16a 12.3 8.2 19.4 >25 >25
16b >25 3.8 >25 >25 >25
17a >25 >25 >25 >25 >25
17b >25 >25 >25 >25 >25
17c >25 >25 >25 >25 >25
17d >25 >25 >25 >25 >25

3 20.6 7.2 14.8 9.8 22.6
cabozantinib 11.2 4.4 9.0 8.7 18.1

1 Cells were incubated with compounds for 72 h; data are shown as the averages of three experiments. Standard
deviations were within 10% and not demonstrated for the simpler reading of the results. “-”, “++” and “+++”
indicates the level of c-Met expression: almost no c-Met, average c-Met expression and high level of c-Met
expression, respectively

2.2.2. Immunoblotting

To prepare samples for immunoblotting analysis, the cells were seeded on 100 mm
dishes (Corning, New York, NY, USA). For experiments with HCC1954 breast cancer cells,
the compounds 15a and 15c were added in fresh medium after 24 h of seeding. For the cell
extracts’ preparation, cell cultures were washed in phosphate-buffered saline (PBS) 2 times
and incubated for 10 min on ice in the lysis buffer. The aforementioned buffer had a pH of
7.5 and contained Tris-HCl (50 mM), NaCl (150 mM), Igepal CA-630 (0.5%), DTT (1 mM),
EDTA (1 mM), sodium orthovanadate (0.1 mM), PMSF (1 mM) and pepstatin, leupeptin,
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aprotinin (1 µg/mL each) as described earlier [57]. The Bradford method [58] was used
to define the level of the protein. The cell extracts were divided in SDS-PAGE (10%) at
reducing conditions, transmitted to a nitrocellulose membrane (GE HealthCare, Chicago,
IL, USA) and treated following a regular methodology. To prevent nonspecific absorption,
the membranes were processed with 5% nonfat milk solution in TBS buffer at a pH of
7.5. The aforesaid buffer contained Tris (20 mM), NaCl (500 mM) and Tween-20 (0.1%).
Thereafter, the membranes were incubated with primary antibodies during the night at a
temperature of 4 ◦C. c-Met and phospho-c-Met (Tyr1234/1235, Tyr1003) antibodies were
acquired from Cell Signaling Technology; the antibodies versus α-tubulin (Cell Signaling
Technology, Danvers, MA, USA) were applied for a loading control. Goat anti-rabbit IgGs
(Jackson ImmunoResearch, West Grove, PA, USA) associated with horseradish peroxidase
were involved in immunoblotting in the quality of secondary antibodies. The detection
of the signals was performed with the usage of the ECL reagent as characterized by Mruk
and Cheng [59] and an ImageQuant LAS4000 system (GE HealthCare, Chicago, IL, USA).
Densitometry for the tested proteins/α-tubulin ratio was carried out using ImageJ software.

3. Results and Discussion
3.1. Chemistry

All synthesized conjugates included cabozantinib as a warhead, whereas CRBN-ligand
lenalidomide (an analogue of thalidomide, a derivative of naturally occurring glutamic
acid) or VHL-ligand (S,R,S)-AHPC were exploited as E3-ligase ligands. The mentioned
molecules were joined with linkers of various lengths and structures. Simple aliphatic
spacers, glycol-based spacers and linkers bearing a triazole core were applied in conjugate
synthesis. The general structures of target conjugates are represented in Figure 1.
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Figure 1. General structures of cabozantinib-based PROTACs.

Since the binding affinity of cabozantinib after conjugation should remain at the same
level as for the intact molecule, it was important to determine the possible conjugation site.
Previously [60], it was reported that structural analogues of cabozantinib functionalized on
the position “7” of the quinazoline core demonstrated almost the same activity as parent
compounds towards c-Met.

The synthetic approach to 7-demethylated cabozantinib congener 3, a common build-
ing block for all target molecules, was based on a previously published protocol [61] and in-
cluded 11 steps. 4-Hydroxy-3-methoxybenzaldehyde (1) and cyclopropane-1,1-dicarboxylic
acid (2) were used as starting materials (Scheme 1).

Starting from 7-demethylated cabozantinib analogue 3, a series of carboxyl-containing
derivatives were synthesized via two approaches. The first route (Scheme 2, pathway A)
was based on the alkylation of 3 with esters of halogenated carboxylic acids with the
subsequent hydrolysis of the ester group (Scheme 2). Various bases (Cs2CO3, K2CO3,
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Na2CO3, DBU, NaH), solvents (1,4-dioxane, DMF, THF, toluene, acetone) and temperatures
were applied, and the highest yields were achieved using NaH in DMF at 65 ◦C. The
treatment of 3 with methyl esters of 5-bromovaleric and 11-bromoundecanoic acids in the
presence of NaH in DMF resulted in 7-O-alkylated cabozantinib derivatives 4a,b (67% and
63%, respectively). When methyl 2-bromoacetate and methyl 3-bromopropionate were
used for the alkylation of 3, the yields of isolated products dramatically dropped; therefore
only two derivatives were entered in the next step. Cleavage of the ester group in 4a,b by
alkaline treatment led to appropriate acids 5a,b in good to high yields. A similar synthetic
approach (Scheme 2, pathway B) was applied to obtain carboxylic derivatives containing
ethylene glycol (7a) as well as a propane-1,3-diol-based linker (7b).
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Scheme 2. Synthesis of ω-carboxyl bearing cabozantinib derivatives. Reagents and conditions:
(a) NaH, DMF, 0 ◦C→ 65 ◦C; (b) NaOH, MeOH-H2O (2:1), 60 ◦C; (c) Cs2CO3, DMF, 65 ◦C; (d) TFA,
rt; (e) Cs2CO3, DMF, rt; (f) TBTA, CuSO4*5H2O, AscNa, DMF-H2O (1:1), 55 ◦C.

Another pathway (Scheme 2, pathway C) included the alkylation of 3 withω-haloalkynes
containing a terminal triple bond and subsequent azide-alkyne cycloaddition with 3-
azidopropionic acid followed by the formation of carboxylic cabozantinib derivatives 9a–d
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containing triazole linkers. Alkynes with various meanings of the chain length were used
to define the impact of triazole moiety location on PROTACs’ activity (Scheme 2).

Next, synthetic blocks, containing moieties-targeted E3-ligases CRBN and VHL, were
synthesized (Scheme 3). For this purpose peptidomimetic ligand 10 for VHL, obtained
by previously published methods, and commercially available lenalidomide (11) for
CRBN [53,62] were treated with ω-N-Boc protected carboxylic acids [36,54] 13 and 14
(Scheme 3) that led to protected amines 10a, 11a and 12a with good to high yields.
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rt; (b) TFA, DCM, rt; (c) 13, HATU, DIPEA, DMF, rt; (d) 14, HATU, DIPEA, DMF, rt.

At the next step, protecting groups were removed by a trifluoroacetic acid treatment
and corresponding amines 10b, 11b and 12b were coupled with carboxylic cabozantinib
derivatives 5a,b, 7a,b and 9a–d to obtain target PROTACs 15a–d, 16a,b and 17a–d (Figure 2).
The final step was carried out under a standard peptide coupling procedure with HATU in
the presence of DIPEA in DMF (Figure 2).
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3.2. Biology
3.2.1. Cancer Cell Line Screening and Antiproliferative Evaluation

The first aim of the biological part of the study was to find the proper cell model for
testing of obtained conjugates. The published data on c-Met expression in cancer cell lines
are quite contradictory. The c-Met expression described in several papers varies consider-
ably. The levels of c-Met expression depend on the method of analysis and characteristics of
antibodies used by the researchers. Moreover, sample preparation techniques can affect the
identified c-Met expression level [63–68]. Considering the above, we screened cancer cell
lines to check the level of c-Met expression. The different cell lines of breast cancer (T47D,
MDA-MB-231, SKBR3, HCC1954 and MCF7), skin cancer (A-431), lung cancer (A549) and
cervical cancer (HeLa) were cultured without obtained compounds and then subjected
to immunoblotting with antibodies against c-Met, as characterized in the Materials and
Methods section. As demonstrated in Figure 3, the c-Met expression level varied consider-
ably between cells. First, no c-Met expression was observed in MCF7, SKBR3 and T47D
breast cancer cells. A rather low c-Met level was revealed in MDA-MB-231 breast tumor
cell cultures; nevertheless, 140 and 170 kDa c-Met proteins were clearly visible in these
cells, as can be seen in Figure 3.
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Figure 3. The c-Met expression level in selected cell lines. (A) Representative immunoblotting images;
(B) densitometry for immunoblotting data (n = 3) was carried out using ImageJ software (Wayne Ras-
band, NIH) with the protocol provided by The University of Queensland and the recommendations
from the work [69].

The c-Met expression level evaluated in A-431, A549 and HeLa cells was moderate.
Finally, the highest level of c-Met was detected in HCC1954 breast cancer cells. Thus, for
further experiments, we used cell lines with different levels of c-Met expression (Table 1).

The antiproliferative activity of target compounds against selected cancer cell lines is
shown in Table 1. Compounds 17a–d bearing a triazole ring in the spacer between cabozan-
tinib (LP) and lenalidomide (LE) demonstrated low activity towards all tested cell lines. The
length of the spacer and position of triazole did not play any role in antiproliferative activity.
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Derivatives 16a,b, in which LP and LE were bound by using a combination of ethylene or
propylene glycol fragments, were slightly superior to triazole-based analogues 17a–d; how-
ever, they had low antiproliferative potency towards HCC1954 cells. In contrast, conjugates
15a–c were found to exhibit the most promising activity, especially towards the HCC1954
cell line with the highest c-Met expression. It may be supposed that the introduction of
VHL as the LE-end of PROTAC conjugates can generally enhance the antitumor potency
of compounds. However, compound 15d, bearing an aliphatic nonpolar linker, was less
potent in comparison with other compounds series 15 as well as with reference molecules 3
and cabozantinib. The high activity of cabozantinib in T47D cancer cells draws attention.
Interestingly, these cells do not express known cabozantinib targets, including c-Met. The
cabozantinib activity against T47D cells described in our work coincides with that described
in [70]. We believe that the search for new targets of cabozantinib in c-Met/VEGFRs/KIT-
negative cells is a promising task. Mimicking the activity of cabozantinib, compounds 3,
15a, and 16a,b were also active against c-Met-negative T47D breast cancer cells.

3.2.2. Assessment of c-Met Inhibition

Compounds 15a and 15c significantly inhibited the growth of c-Met-positive HCC1954
cells and had notably lower antiproliferative effects on the c-Met-negative MCF7 cells. These
compounds were chosen for in-depth evaluation as c-Met targeting agents. HCC1954 cells
were treated with compounds 15a and 15c at concentrations ranging from 14 to 10,000 nM,
and then the levels of c-Met protein and its phosphorylated forms were determined by
immunoblotting (Figure 4).

First, we proved that the cabozantinib part of the PROTAC molecules 15a and 15c
can still interact with the c-Met kinase. The c-Met intracellular sequence consists of a jux-
tamembrane domain, a tyrosine kinase domain and a C-terminal multifunctional docking
site [71,72]. The juxtamembrane domain contains amino acid residues including Tyr1003,
which interacts with casitas B-lineage lymphoma (c-Cbl) and leads to ubiquitin-dependent
c-Met degradation [73,74]. This signalling process is a mechanism of a negative regulatory
loop, which modulates the c-Met activation status. Pascal Peschard and colleagues found
that mutation of the c-Cbl tyrosine kinase binding domain on the c-Met receptor converts it
into a transforming protein [73]. The authors replaced the juxtamembrane tyrosine of c-Met
by phenylalanine. The mutant c-Met had transforming activity in fibroblast and epithelial
cells. The tyrosine kinase c-Met domain, upon phosphorylation of Tyr1234 and Tyr1235,
undergoes a conformational change resulting in increased kinase activity. Although both
compounds demonstrate a similar effect on the Tyr1003 phosphorylation residue at jux-
tamembrane c-Met domain, it appears at 123 nM and above (Figure 4), conjugate 15c
can block phosphorylation Tyr1234/1235 (belonging to tyrosine kinase c-Met domain)
already at 14 nM, whereas similar effects for 15a were observed at concentrations higher
than 100 nM. We believe that the simultaneous blocking of tyrosine phosphorylation in
two receptor domains is a very important characteristic of the lead PROTAC molecules.
Treatment of HCC1954 cells with both conjugates 15a and 15c resulted in a decrease in
the levels of c-Met in a dose-dependent manner. Figure 4 shows that compounds 15a
and 15c at nanomolar concentrations had a weak effect on the level of c-Met, while low
micromolar concentrations led to near complete blocking of the accumulation of p-c-Met
in HCC1954 breast cancer cells. Altogether, PROTAC conjugates 15a and 15c, exhibiting
antiproliferative effects and suppressing c-Met kinase at low concentrations, are promising
leaders for further development.
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Figure 4. Decreasing c-Met phosphorylation and expression with conjugates 15a and 15c. (A) Rep-
resentative immunoblotting images; (B) densitometry for immunoblotting data (n = 3) was carried
out using ImageJ software (Wayne Rasband, NIH) with the protocol provided by The University of
Queensland and the recommendations from the work [69].

4. Conclusions

We characterized the design, synthesis and biological assessment of a series of cabozantinib-
based PROTACs, recruiting CRBN and VHL as E3-ligases. The obtained compounds ex-
hibited antiproliferative effects against a number of tumor cell lines. Compounds 17a–d,
bearing a triazole linker, demonstrated low antiproliferative activity towards all tested cell
lines. No correlation was observed between the distance of triazole and cabozantinib frag-
ments and antiproliferative activity. Compounds 15a–d demonstrated more pronounced
antiproliferative activity towards the panel of selected cell lines. However, compound
15d, bearing a nonpolar linker with 11 atoms as well as compound 15b with a polar but
longer spacer, were less active than compounds with glycol- and propanediol-based linkers
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15a and 15c. They caused a 50% suppression of HCC1954 cell proliferation at a dose of
approximately 6 µM and 7 µM, respectively, meaning they provide a new perspective for
further studies considering c-Met as the main target of the synthesized conjugates. Both
compounds at nanomolar concentrations reduced the level of the phosphorylated form
of c-Met protein and were able to block the c-Met accumulation in tumor cells at higher
concentrations, indicating the high potency of novel anticancer cabozantinib-based PRO-
TACs. Further research may be aimed at the optimization of the PROTAC linker structure
and the search for other PROTAC targets in the cancer cells (MET, RET, KIT, FLT1, FLT3,
FLT4, TIE2, AXL, etc.). The obtained data clearly indicate the complex relationship between
the biological activity of the conjugate and the length, flexibility and polarity of the linker
between LP and LE. Apparently, the glycol-based linkers, bearing 10–12 atoms, are the most
suitable in the case of the described molecules. Moreover, the mechanisms of action of the
leader conjugates, and particularly an assessment of the antitumor efficacy of these agents
in vivo, will be established.

Supplementary Materials: The following supporting data can be downloaded at https://www.
mdpi.com/article/10.3390/pharmaceutics14122829/s1: synthetic procedures, description and copies
of NMR spectra, and dose–response curves. Figure S1. Antiproliferative activity of target com-
pounds 15a–d, 16a,b, 17a–d against A-431 cells; the A-431 cells were incubated with compounds
for 3 days and the cell viability was assessed by the MTT test. Figure S2. Antiproliferative activity
of target compounds 15a–d, 16a,b, 17a–d against T47D cells. Figure S3. Antiproliferative activity
of target compounds 15a–d, 16a,b, 17a–d against MCF7 cells. Figure S4. Antiproliferative activity
of target compounds 15a–d, 16a,b, 17a–d against HCC1954 cells. Figure S5. Antiproliferative ac-
tivity of target compounds 15a–d, 16a,b, 17a–d against SKBR3 cells. Reference [75] is cited in the
supplementary materials.
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