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Abstract: The generation and accumulation of an electrostatic charge from handling pharmaceutical
powders is a well-known phenomenon, given the insulating nature of most APIs (Active Pharmaceu-
tical Ingredients) and excipients. In capsule-based DPIs (Dry Powder Inhalers), the formulation is
stored in a gelatine capsule placed in the inhaler just before inhalation. The action of capsule filling,
as well as tumbling or vibration effects during the capsule life cycle, implies a consistent amount
of particle–particle and particle–wall contacts. A significant contact-induced electrostatic charging
can then take place, potentially affecting the inhaler’s efficiency. DEM (Discrete Element Method)
simulations were performed on a carrier-based DPI formulation (salbutamol–lactose) to evaluate
such effects. After performing a comparison with the experimental data on a carrier-only system
under similar conditions, a detailed analysis was conducted on two carrier–API configurations with
different API loadings per carrier particle. The charge acquired by the two solid phases was tracked
in both the initial particle settling and the capsule shaking process. Alternating positive–negative
charging was observed. Particle charging was then investigated in relation to the collision statistics,
tracking the particle–particle and particle–wall events for the carrier and API. Finally, an analysis of
the relative importance of electrostatic, cohesive/adhesive, and inertial forces allowed the importance
of each term in determining the trajectory of the powder particles to be estimated.

Keywords: triboelectric charging; electrostatics; DPI; DEM; inhalation; carrier-based formulation

1. Introduction

Pharmaceutical powders are used in various stages of drug manufacturing and are an
essential part of the pharmaceutical industry. As for most non-conductive materials, the
handling and processing of these powders often leads to the transfer and accumulation of
electrostatic charges. This, in turn, can cause issues in drug manufacturing, such as cross-
contamination, intermittent powder flow, and even explosion hazards [1]. Poor powder
flow can lead to difficulties in powder handling, filling, and packaging processes [2]. The
agglomeration of particles can affect the powder’s dissolution rate, which can impact the
drug’s bioavailability [3]. Segregation of the powder blend can result in non-uniformity of
the drug content and, consequently, inconsistent dosing [4]. Therefore, understanding the
mechanisms of electrostatic charge transfer and accumulation in pharmaceutical powders
is crucial for ensuring the safety and quality of drug manufacturing processes.

Tribocharging is the process responsible for the charge transfer between contacting
material surfaces, and it takes place upon detachment [5]. Carrier-based inhalation for-
mulations used in Dry Powder Inhalers (DPIs) are composed of two solid components
(i.e., the active pharmaceutical ingredient (API) and the carrier) with significantly different
sizes and exhibit a complex tribocharging behavior. Effects such as the bipolar charging
phenomena, i.e., particles the same material charged both positively and negatively, have
been observed [6]. In some cases, experimental studies that focused on the tribocharging
phenomenon [7–11] reported somewhat conflicting results, even in the polarity of the
reported charge, calling for additional investigations at small scales. The charge polarity of
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lactose particles (a widely used carrier and excipient) depends on the chosen inhaler [8],
on the material of the containing capsule [12], and even on their manufacturing process;
for example, milled lactose tends to charge positively, while sieved lactose tends to charge
negatively [8]. Salbutamol sulphate (a commonly used API in inhalation formulations)
tends to acquire a positive charge if it is amorphous and a negative charge if it is in its
crystalline form [11]. Peart [13] reports that salbutamol charges positively when in contact
with PVC, while lactose charges negatively. However, when salbutamol particles detach
from lactose, the opposite polarity is measured for the two materials (salbutamol’s specific
charge is about −3000 nC/g, and lactose’s specific charge is about 100 nC/g).

When strong size polydispersity is present, the charge polarity also depends on
particle size, with smaller particles that charge negatively and larger particles that charge
positively [11,14–16]. This effect cannot be predicted using the triboelectric series, which is
usually employed to rank the electronegativity of powder materials [1,2]. The concentration
of the API plays a role as well, with the electrostatic charge of drug–carrier mixtures usually
decreasing by increasing the concentration of the API [10,17,18].

Electrostatics also plays a major role in the design and use of hard capsules for capsule-
based DPI. Chow et al. [19] found that mechanical vibration such as tapping induced
significant static charge on lactose stored in a gelatine capsule. Hoe et al. [10,17] hy-
pothesized that the surface charge on the capsule might be high enough to ionize the
surrounding air. Understanding such a variety of observations requires a careful analysis
of the links between microscopic charge transfer processes and the macroscopic mani-
festations. Particle-scale information is an important ingredient that is accessible only
through simulation.

In recent years, Discrete Element Method (DEM) modeling has emerged as a powerful
simulation tool for studying the behavior of powders in inhalation devices [20]. Cou-
pled DEM-CFD (Computational Fluid Dynamics) studies showed the detailed motion
of particles from the initial dispersion in air through to the mouthpiece [21–25]. In the
last decade, model formulations have been introduced to extend the particle-scale contact
tracking capability of DEM with surface–surface charge transfer and physical electrostatic
interaction models (see, e.g., [26–28]), allowing triboelectric charging phenomena at the
particle scale to be studied [27,29–33]. Naik et al. [34] studied the triboelectrification of
binary mixtures of drug and excipient in a blender. They found that particle–particle inter-
actions enhance the electrostatic interaction between the drug and excipient and decrease
the overall charge transfer between particles and walls. The overall charging process that
resulted was mitigated by this effect, leading to a lower total charge than that acquired by
single components, and differences in excipient concentration, in some cases, caused charge
polarity reversal. The importance of particle–particle contact charging was also highlighted
by Chowdhury et al. [33]. Zhu et al. [35] studied the contact electrification effect of selected
API agglomerates in the Turbuhaler®, finding a reduction in inhaler efficiency due to the
triboelectrification of powders. Specific numerical studies on the motion of particles in
the capsule of capsule-based DPIs are available in the literature [36–39], but the effects of
charges generated upon contact on the release of powder from the capsule itself are not
taken into account. Most of previous works in DPI applications focus on the influence
of electrostatic interactions between previously charged particles, rather than the charge
buildup process, and the charging of capsule walls is typically neglected.

The aim of the present study is to apply extended DEM simulations to evaluate
triboelectric charging dynamics of a lactose–salbutamol binary mixture in the chargeable
capsule of a DPI. The capsule is vibrated to simulate the routine handling operations to
which a filled capsule is subjected during its life cycle, with the aim to assess the extent
to which such movements give rise to electrostatic charge accumulation. The simulation
tool offers the possibility to relate individual contact events and local charge transfer to
the macroscopic influence that such a charge exerts on the material dynamics. The model
formulation, simulation setup, and material parameter are presented first. After validation,
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the results of simulations of representative systems at low- and high-dosage conditions
are discussed.

2. Materials and Methods
2.1. DEM Simulation Technique

DEM is a numerical method for simulating the behavior of a system of discrete particles
by tracking their individual motions and interactions due to the forces and momenta acting
on each of them. Spherical particles are considered in the present work.

The translational (
→
v i) and rotational (

→
ωi) velocities of the i-th particle are calculated

by integrating Newton’s second law of motion:

mi
d
→
v i

dt
=
→
F T =
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where
→
F T is the sum of all the forces acting in the i-th particle—contact, electrostatic, and

gravitational forces; and
→
T T is the sum of all the torques acting on the i-th particle—contact

torque and rolling resistance, Tr.
Cohesive-contact forces are modeled following the JKR contact theory [40], which

accounts for attractive forces due to van der Waals effects and is hysteretic, i.e., loading
and unloading cases are different in that cohesive contact is initiated at zero distance,
while detachment occurs at non-zero distance. A velocity-dependent dissipation is also
introduced to be able to model (coefficient of) restitution after impacts. The magnitude of
the normal contact force between two contacting particles is given by the following:

Fn
c,ij = 4

√
πγEeqa

3
2 −

4Eeq

3Req
a3 − ηH

n δ
1
4
n vn (3)

where γ is the surface energy, a is the radius of the contact area, vn is the normal velocity,
δn is the normal overlap, ηH

n is the normal damping coefficient (related to the restitution
coefficient; see, e.g., [41]), and Eeq and Req are the equivalent Young modulus and radius of
the two contacting particles (i and j) [42].

The normal overlap, δn, is related to the radius of the contact area as follows:

δn =
a2

Req
−
√

4πγa
Eeq

(4)

As mentioned above, according to the JKR theory, during the detachment phase,
the contact remains active at negative overlaps between the spheres (as actual surfaces
are elongated shapes that are still in contact) until a threshold overlap is reached. The
maximum attractive force, usually referred to as the pull-off force, occurs at a negative
overlap and is given by the following:

Fpull−o f f = 3πγReq (5)

The tangential contribution to the contact is considered following the no-slip solution
of Mindlin and Deresiewicz [43] for the frictional–elastic part and a velocity-dependent
dissipation term similar to the normal direction. The tangential contact force is calculated
as follows:

Ft
c,ij = −

(
µsFn

c,ij, 8Geq

√
Reqδ

1
2
n δt + ηH

t δ
1
4
n vt

)
(6)

where µs is the static friction coefficient, Geq is the equivalent shear modulus, δt is the
tangential overlap, ηH

t is the tangential damping coefficient, and vt is the tangential velocity.
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In the rotational motion, the contact torque results from the action of the tangential
contact force. The rolling friction torque is calculated according to the Constant Directional
Torque model [44], introducing the rolling friction coefficient, µr, as material parameter.

All the models presented above are described in more detail in Alfano et al. [39,45].
The DEM simulations were carried out using an in-house customized version of the

open-source code MFIX (NETL MFS, Department of Energy (Morgantown, WV, USA), ver-
sion 18.1.5 [46]. Johnson-Kendall-Roberts (JKR) model for the cohesive force and constant
directional torque (CDT) model for the rolling friction were implemented in the original
version of the code (see [45] for more details). Moreover, a different approach for wall
contacts [47] was preferred to the standard MFIX formulation. Special precautions have
also been taken to prevent very fine particles from being unrealistically pushed out of
the domain by the carrier particles, crossing the domain boundary. In terms of hardware
resources, an own-managed cluster was extensively utilized by running parallel tests on
up to 32 cores.

2.2. Triboelectric Charging Model and Electrostatic Forces

Consideration of the charge transfer, buildup, and corresponding modification to
the powder dynamics requires two essential ingredients: a tribocharging model for the
charge transfer between surfaces after contact and a model for the interaction force between
charged bodies. Our selection for both models is introduced below.

The triboelectric charging model is based on the condenser model developed by
Matsusaka et al. [48] in the formulation for DEM implementation proposed by Pei et al. [27].
It was extensively presented in a previous work [31] and is shortly summarized here.

Each particle and wall element is assigned a net scalar charge that is representative
of its surface-charge distribution. This charge evolves as a result of particle–particle and
particle–wall collisions and contacts (Figure 1a) upon surface detachment. The charge
transferred after each particle–wall impact is calculated as follows:

∆q = kSm

(
Φi −Φs

e
+ ξ

zs

4πε0

qi

R2
i

)
(7)

where Φi and Φs are the work functions of the particle and the wall surface, respectively;
e is the elementary charge (1.602× 10−19 C); Ri is the particle radius; zs is the cutoff distance
for particle–wall charge transfer (considered as 130 nm [27]); qi is the charge on the particle
before impact; ξ is the image correction factor [49], which is set to 2; ε0 is the vacuum
permittivity (8.854 pF/m); k is the charge efficiency, which is set to 10−4 C m−2 V−1 [27];
and Sm is the maximum contact area, which is calculated as follows:

Sm = πδn,maxReq (8)

where δn,max is the maximum normal overlap and Req is the equivalent radius (harmonic
mean) between the two contacting surfaces.

The first term of the sum in brackets in Equation (7) is the contact potential difference,
i.e., the driving force for charge exchange, while the second term arises from the image effect.
Note that charge transfer occurs, increasing one surface by some charge and decreasing the
other one by the same amount, so that the total system charge remains constant.

The particle–particle charge transfer is calculated in a similar fashion [27]:

∆q = kSm

(
Φi −Φj

e
+ ξ

zp

4πε0

(
qi

R2
j
−

qj

R2
i

))
(9)

where zp is the cutoff distance for the particle–particle charge transfer, and it is set to
260 nm [27].
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Figure 1. (a) Schematics of contact charging mechanism. (b) Graphical representation of particle–
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Once each particle has its own charge, the second ingredient of the model, the electrostatic
force between two charged particles (Figure 1b), is calculated according to Coulomb’s law:

→
F

e

i,j =
1

4πε0

qiqj

r2
i,j

n̂i,j (10)

where n̂i,j is the unit vector defined along the direction connecting the two particles’ centers,
and ri,j is the distance between these centers. The cutoff distance for the calculation of the
electrostatic interactions is set to 1.2 times the sum of the two particles’ radii.

Coulombic interactions between charged particles and the walls of the capsule were
considered according to the method of mirror charges [50]:

→
F

e

i,s =
1

4πε0

q2
i

(2ri,s)
2 n̂i,s (11)

where ri,s is the distance between the wall surface and the center of the particle, and n̂i,s is the
unit vector perpendicular to the surface and passing through the particle center. It is useful
to note that while particle–particle interactions may be attractive or repulsive depending
on the charge polarity, particle–wall electrostatic interactions are always attractive.

2.3. Simulation Parameters

The reference materials for API and carrier particles are salbutamol and lactose,
respectively. The diameter of the salbutamol particles is set to 5 µm, while the diameter
of the lactose particles is 100 µm, considering the commercially available Inhalac® 230 as
a reference.

The DEM simulation properties are reported in Table 1. The mechanical data are
selected according to typical values found in the literature [51,52].

Table 1. Particles’ mechanical and physical properties.

Property Carrier API Capsule

Reference material Lactose Salbutamol Gelatine
Diameter, d (µm) 100 5 -

Density, ρ (kg/m3) 1500 1200 -
Sliding friction coefficient, µs (−) 0.5 0.5 0.5
Rolling friction coefficient, µr (−) 0.05 0.05 0.05

Restitution coefficient, en (−) 0.85 0.85 0.85
Young modulus, E (GPa) 0.2 0.2 0.2

Poisson’s ratio, ν (−) 0.35 0.35 0.35
Work function, Φ (eV) 5.18 7.70 4.60
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The work functions were calculated from molecular orbital calculation (MOPAC) by
Naik et al. [9] for the lactose and by Zellnitz et al. [53] for salbutamol. The work function
of the gelatine capsule was not found in the literature. Pinto et al. [12] observed that
the charge acquired by the capsules in contact with stainless steel is about 60% of the
charge acquired by the capsules in contact with PVC. Since the work function of PVC is
5.33 eV [34] and that of stainless steel is 5.05 eV [54], and since the charge is proportional to
the difference between work functions (Equation (9)), the value Φ = 4.60 eV was estimated.

By looking at the work functions, salbutamol is expected to become negatively charged,
while the capsule is expected to become positively charged. The behavior of the carrier
particles is less predictable: lactose will acquire a positive charge after contact with the API
and a negative charge if in contact with the capsule.

The cohesion properties are reported in Table 2 for each material pair [52,55].

Table 2. Surface energy and reference pull-off force values.

Pull-Off Force, Fpull-off (nN) Surface Energy, γ (mJ/m2)

API–API 11 0.93
API–carrier 180 8.02

Carrier–carrier 150 0.64
Particle–wall 60 2.55

2.4. Geometry and Powder Configurations

The geometry used in the simulations is modeled using a size 3 hard-shell gelatine
capsule [56] as a reference. The capsule is filled with a carrier–API blend. Two powder
configurations are considered, as described in Table 3 and shown in Figure 2.

Table 3. Characteristics of the powder in the two simulated configurations.

A B

Sample total mass 25 mg 1 mg
Total no. of particles in sample 123,858 117,233

No. of API particles 92,883 115,825
No. of carrier particles 30,975 1408

API-to-carrier ratio (w/w) 1:3332 1:124
API loading (w/w) 0.03% 0.80%

Total surface area (cm2) 9.80 0.52
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Figure 2. Initial location of powder with the two powder loadings: (a) 25 mg and (b) 1 mg.

Configuration A (Figure 2a) has a total mass of 25 mg. It consists of about 31k carrier
particles and 93k API particles. Configuration B (Figure 2b) has a total mass of 1 mg and is
made of about 1500 carrier particles and 117k of API particles. The total number of particles
is similar, but the mixing ratio between the two solid phases differs consistently: 1:3332
(0.03%, w/w) for Configuration A, and 1:124 (0.80%, w/w) for Configuration B.
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The approach for the dry powder coating of the carrier with API is described in Alfano
et al. [22]. The difference in the coating degree between Configuration A and B can be
noticed in Figure 3, which shows two coated carrier particles.
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Figure 3. API-coated carrier particles in the two configurations considered: (a) 25 mg, 1:3332 (w/w);
and (b) 1 mg, 1:124 (w/w).

The coated carrier particles are initially placed in a regular cubic arrangement, which
was visualized in Figure 2. The initial random condition is obtained by letting them
settle under gravity. Then, the capsule is subject to a periodic oscillatory translation to
reproduce a tapping motion. The shaking frequency is 120 Hz, and the shaking amplitude
is 0.8 mm. The shaking direction changes during the simulations, so that the capsule
shakes alternatively in both horizontal and vertical directions (x and y, respectively). In
implementation, rather than computing the actual motion of the capsule, the motion is
tracked in the frame of reference of the capsule by adding the equivalent corresponding
fictitious forces on the particles. More details of this implementation in MFIX can be found
in Alfano et al. [39].

3. Results and Discussion
3.1. Model Validation

To verify the reliability of the tribocharging model with the selected parameters, a
comparison was made with the data reported by Chow et al. [19], who studied the effect
of powder handling by repeatedly tapping a gelatine capsule filled with 25 mg of lactose
(InhaLac® 230, d50 = 97.2 µm). The specific charge of the sample was measured after 0, 10,
40, 100, and 200 taps.

To reproduce the tapping, a shaking motion with a 120 Hz frequency and 0.8 mm ampli-
tude was considered. The simulation time was set to 1.67 s in order to have 200 full oscillations,
corresponding to 200 taps. The capsule was filled with 25 mg of 100 µm lactose particles,
initially settled at the bottom of the capsule. No API was included in this case. The initial
charge of the particles was set according to a normal distribution with a mean of −0.025 pC
(corresponding to the initial specific charge in the reference article, −0.779 nC/g, multiplied
by the weight of a single particle) and standard deviation of 25% times the mean. The initial
charge distribution is shown in Figure 4a.

Figure 4b shows the total charge of the sample as a function of the number of taps,
which also corresponds to the time evolution. The solid line is the result of the simulation,
and the dots are the reference experimental data [19]. The increase in negative total
charge follows the trend exhibited by the experimental measurements, well within the
experimental uncertainty, except for the second point. Indeed, the data by Chow et al. [19]
show a sudden jump in the charge, followed by a somewhat stationary stage between 10 and
40 taps. The simulations show a more gradual increase in the acquired charge, which may
be helped by the ability to track the charge at every instant during the simulation. Attempts
have been made to better reproduce the charge corresponding to the second point by
considering tri-disperse particle sizes (10%vol 60 µm, 80%vol 100 µm, and 10%vol 150 µm)
by changing the capsule wall’s work function and the charging efficiency coefficient. In
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no case, however, did the abrupt initial change and subsequent less pronounced increase
turn out to be predictable. Overall, the agreement can be judged to be sufficiently good to
proceed with the more complex carrier–API cases.
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Figure 4. (a) Initial charge distribution and (b) sample charge as a function of the number of taps. The
line is the result of the simulations, and the points are experimental data reported by Chow et al. [19].

3.2. Gravity Settling in the Capsule

Starting from the ordered configurations of the powder shown in Figure 2, with
both carrier and API particles, DEM gravity settling simulations have been performed to
evaluate the charge buildup due to operations such as capsule filling and storage. Figure 5
shows the final configuration after the settling simulations. Figure 5a shows Configuration
A (25 mg) after 40 ms, with the powder bed stable at the bottom of the capsule. A much
longer simulation was required for Configuration B (1 mg), as after 40 ms, the particles
were still consistently bouncing off the walls of the capsule. The simulation was extended
up to 200 ms when most of the powder bed was settled (Figure 5b), and the charge level
reached a stationary point (see below).
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(a) (b) 

Figure 5. Powder configuration after gravity settling: (a) 25 mg (after 40 ms) and (b) 1 mg (after
200 ms). Carrier particles are shown in gray, and API particles are in purple.

Figure 6 shows the total charge acquired by the samples following the deposition
simulations. The API and carrier curves are shown individually, as well as the total charge
curve. Note that the charges are evaluated at very short time increments, and the symbols
on the plot lines are only for reference. Contrary to the simulation with only lactose
particles (Figure 4b), which became negatively charged, in this case, the carrier acquires a
positive charge, while the salbutamol acquires a negative charge. Figure 6a shows some
oscillations in the total charge of the carrier: first, it increases, then it decreases, and then it
increases again, probably depending on the instantaneous ratio between carrier–wall and
carrier–API interactions. Similar fluctuations can be observed in Figure 6b, which shows
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the result with the 1 mg sample and a different mixing ratio, but in a less pronounced
way, suggesting that, in this case, the greater quantity of active principle and the reduced
number of carrier particles promote API–carrier interactions at the expense of carrier–wall
interactions. In both cases, the total net charge is negative and has a greater magnitude for
the larger sample. A plateau in the contact charging process is observed more markedly in
the 25 mg case.
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Figure 6. Total charge acquired by (a) 25 mg and (b) 1 mg of powder after gravity settling in
the capsule. The lines show instantaneous evaluation of the charges, and the symbols are only
for references.

In Figure 7, the specific charge evolutions (expressed as the charge-to-surface ratio,
CTS) in the first 40 ms of the two simulations for carrier and API particles are reported.
Carrier particles in the 1 mg simulation acquire a higher specific charge than carrier particles
in the 25 mg case. The opposite behavior is observed for API particles, for which the specific
charge magnitude is higher for the 25 mg simulation.
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In Table 4, a summary of the net and specific charges after gravity settling is reported.
The 25 mg test shows a higher net charge (four times higher), but the specific charge is
higher for the 1 mg test, whether it is expressed as the CTS (charge-to-surface ratio) or as
the CTM (charge-to-mass ratio). The numerical value of the CTS is equal to the CTM for
API particles, since the mass/surface ratio is 1 g/m2.



Pharmaceutics 2023, 15, 1762 10 of 19

Table 4. Charging level after gravity settling.

Net Charge (pC) CTM (nC/g) CTS (nC/m2)

API
25 mg −10.54 −1445 −1445
1 mg −4.77 −525 −525

Carrier
25 mg 3.09 0.13 3.17
1 mg 2.95 2.67 66.67

Sample 25 mg −7.46 −0.38 −7.60
1 mg −1.82 −1.64 −34.18

Compared to the already mentioned specific charge of 25 mg lactose powder stored
overnight in a gelatine capsule reported by Chow et al. [19], CTM = −0.779 nC/g, a lower
value is obtained with the simulations (−0.38 nC/g), suggesting that the presence of
salbutamol as API mitigates the powder charging.

3.3. Tapping of the Capsule

The capsule was subjected to the vibrating motion presented in Section 3.1. in the
presence of both API and carrier particles. The configuration obtained after gravity settling
(Figure 5) was taken as the initial condition, considering the charge recorded after gravity
settling. The simulation was carried out for 400 ms, corresponding to 48 taps, with a
shaking frequency of 120 Hz.

Figure 8 shows the total net charge acquired by the 25 mg (Figure 8a) and 1 mg
(Figure 8b) samples after capsule shaking. Now, the lactose carrier particles acquire an
overall negative charge, as in the simulations with carrier particles only (Figure 4b). The
total net charge is negative in both the 1 mg and 25 mg samples. The final charge is about
−0.6 nC for the 1 mg sample and −0.8 nC for the 25 mg sample. The charge acquired by
25 mg of carrier particles (Figure 4b) shaken 50 times was more than twice, suggesting
again the possible mitigatory effect [9,10] in the total charge acquisition due to the presence
of salbutamol API particles.
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Figure 8. Total net charge acquired by (a) 25 mg and (b) 1 mg of powder after capsule shaking. The
lines show instantaneous evaluation of the charges, and the symbols are only for references.

The evolution of the specific charge is reported in Figure 9 as the charge-to-mass
ratio (CTM) and in Figure 10 as the charge-to-surface ratio (CTS). The specific charge
recorded for the API particles (Figures 9a and 10a) is substantial, exceeding −50,000 nC/g
(or −50,000 nC/m2) with both capsule loadings. The curves for the 25 mg case show a
somewhat flattening trend at the end of the simulations, suggesting the beginning of a
plateau phase.
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Figure 10. Specific charge expressed as charge-to-surface ratio (CTS) during capsule shaking for
(a) API and (b) carrier particles. The lines show instantaneous evaluation of the charges, and the
symbols are only for references.

Observing the evolution of carrier particles’ specific charge (Figures 9b and 10b), the
curve for the 1 mg sample is of particular interest. An initial positive charge buildup is
observed, followed by a decrease in the charge and a subsequent markedly linear trend,
until it reaches a specific charge value of almost−130 nC/g (or−3000 nC/m2). The specific
charge for the 25 mg sample is more than one order of magnitude lower.

Figure 11 shows the individual charge distribution for API (top) and carrier (bottom)
particles at different times: 50 ms, 200 ms, and 400 ms. The charge distribution of API
particles becomes wider, going from 50 ms to 200 ms, slightly narrowing again at the end
of the simulation (Figure 11c, top). The mean value shifts to the left, i.e., with an increase in
charge with negative polarity.

The evolution of carrier particles’ charge distribution is different for the 1 mg and
25 mg samples. With the 25 mg sample, more and more carrier particles acquire a positive
charge over time, while the opposite tendency is observed for the 1 mg sample: after 50 ms,
most of the particles carry a positive charge (Figure 11a, bottom), while no carrier particle
is charged positively at the end of the simulation (Figure 11c, bottom).
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Figure 11. API (top) and carrier (bottom) charge distribution at different times: (a) 50 ms, (b) 200 ms,
and (c) 400 ms.

Figure 12 shows a colored map of the surface charge density (σ) observed in the capsule
after shaking in the x-direction for 60 ms, as estimated according to Equation (9). The charge
is positive, as the wall has the lowest work function. Comparable charge density values are
observed between the two different loadings. However, a wider and more scattered area
is associated to the 1 mg sample case, probably due to the more chaotic movement of API
particles, while the 25 mg case is characterized by higher values localized near the main
impact locations (normal to the shaking direction). The charge density estimated for the
capsule is about 10 times lower than the CTS of carrier particles in the 1 mg configuration
(see Figure 10b), while the opposite trend is observed in the 25 mg simulation. On the other
hand, in both configurations, the CTS calculated for API particles is significantly higher than
the capsule surface charge density (see Figure 10a).
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3.4. Collision Statistics

To interpret the charge acquisition data, it is useful to relate the evolution of the
acquired charge to the events that generate the charge transfer, i.e., the collisions. To
that purpose, the MFIX code was modified to track individual collision events in DEM
separately for particle–particle and particle–wall cases.
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Figure 13a shows the percentage of API particles in contact with the walls of the
capsule as a function of time. In terms of the fraction of the total, the 1 mg case shows a
higher value, but the time variation is not significant in both cases. Figure 13b shows the
evolution of the carrier-to-API coordination number (CN), i.e., the number of API particles
in contact with a carrier particle averaged over all carrier particles. Interestingly, the CN
remains almost constant in the carrier-rich 25 mg simulation, while in the API-rich 1 mg
simulation, the carrier CN goes from about 100 to 4 within the first 100 ms, meaning that
collisions are strong enough to determine that detachment of most of the API particles
from the carrier. This can be the explanation of the shift in the carrier charge distribution,
in which the mean value goes from a positive value at 0.05 s (Figure 11a, bottom) to a
progressively negative value (Figure 11b,c, bottom), as the carrier–API contact is the event
that can give rise to a positively charged carrier particle.
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Figure 13. Collision statistics: (a) percentage of API particles adhered to the walls and (b) mean
coordination number (CN) for carrier particles.

Figure 14a shows the instantaneous number of collision events during the last part of
the simulation (from 300 to 400 ms); the data for particle–particle (PP) and particle–wall (PW)
contacts are presented separately. In the 25 mg simulation, more than 104 particle–particle
contacts are recorded, while the number of particle–wall collision events does not exceed 1000.
The contact events in the 1 mg simulation stand in between, with more particle–wall contacts
than particle–particle contacts, most probably due to the lower total solid mass. Figure 14b
shows the average normal impact velocity; in this case, the velocity values are lower for
the 25 mg simulations. Particle–wall contacts tend to occur with a higher impact velocity in
both configurations.

The contact statistics data are completed in Figure 15, which shows how the col-
lision events are distributed among the various phases involved. The majority of the
collisions in the 25 mg simulations are low-energy carrier–carrier collisions, during
which the charge exchanged is minimal since particles are made of the same material.
The large number of carrier–carrier collisions could also be the reason why settling
occurs much faster than in the 1 mg simulation, since all of these collisions dissipate the
initial kinetic energy of the particles.

3.5. Estimate of Force Contributions

Given the significant value of the observed electrostatic charges (see, e.g., Figure 8),
it is interesting to investigate whether or not the consequent electrostatic forces actually
influence particle trajectories and to what extent.
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two simulations.

By equating the weight force of the particle with the particle–wall electrostatic force
calculated according to Equation (11), it is possible to estimate the charge magnitude
necessary for the particle to remain attached to the wall, assuming for simplicity that the
electrostatic attractive force acts in the opposite direction to the gravitational force:

|qW | = 16πR2

√
ε0ρRg

3
(12)
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Figure 16 shows |qW | as a function of particle diameter. The final charge magnitude
distribution is also reported in the form of a scatter plot for the two systems investigated.
Most API particles at the end of the simulation possess a charge level that is higher than
|qW |, while no carrier particle exceeds such a value (all points are below the blue curve).
The results suggest that during capsule handling and shaking, a fraction of API particles
are likely to end up retained inside the capsule, on its internal walls, due to the charge
buildup, while this is much less likely to happen for a carrier particle.
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It is useful to note that other cohesive/adhesive forces and inertial fictitious forces are
at play (see, e.g., Table 2), so their relative contribution should be compared. An evaluation
in terms of the maximum force values is discussed below.

The maximum electrostatic force was calculated with the Coulomb law, considering
the maximum particle charge magnitude in both simulations, which is 7.7 fC for API
particles and 170 fC for carrier particles. For the calculation of the distance of the Coulomb
force, it is assumed that the two bodies are in contact; therefore, for example, in the case of
a p-P-P interaction, the sum of the particle radii was considered.

To estimate the maximum cohesive and adhesive forces, the reference values of the
pull-off force in the JKR model are considered, i.e., the values reported in Table 2.

The fictitious force associated with the shaking motion follows a sinusoidal trend in
time. Its maximum value is given by the following:

Fshk = 4π2 A f 2 ×mp (13)

where A is the shaking amplitude, f is the shaking frequency, and mp is the mass of the
particle. In the present study, this force reaches about 50 times the weight of the particle.

Figure 17 shows a comparison between the estimated maximum force contribution for
carrier and API particles. As expected from the externally imposed motion, the fictitious
force associated with shaking primarily determines the motion of the carrier particles, as it
is higher than any other contributions. Electrostatic forces are lower than cohesive forces,
with the API–carrier electrostatic interaction being the lowest (and lower than weight). On
the other hand, the adhesive API–carrier force contribution is dominant in the case of API
particles, the fictitious force appears to be irrelevant compared to the other forces at play,
and the electrostatic forces are relevant.

It is interesting to note that the electrostatic API–API force is higher than the cohesive
JKR reference force, suggesting that the repulsive Coulomb force between like-charged
particles can overcome the attractive van der Waals interactions. In reality, with sufficient
charge difference, even like-charged particles can be attracted to one another due to a
mutual polarization of surface charge [57,58]. This is not accounted for in simple Coulombic
interactions, as modeled here, and more sophisticated approaches would be necessary.
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4. Conclusions

An extended DEM approach was applied to evaluate triboelectric charging of a lactose–
salbutamol binary mixture in the gelatine capsule of a DPI. Two powder configurations
were considered, with different loaded doses and mixing ratios. The selected triboelectric
charging model and parameters were validated with the experimental data available in
the literature. Unlike in previous works, dynamic charging and interparticle electrostatic
interactions of carrier and API powders were detailed investigated, including the charge
buildup on the capsule walls. The detailed analysis of the flow and collision behavior
during tapping allowed us to elucidate the mechanisms leading to the final charge polarity
of all three materials, a condition not predictable a priori.

Gravity settling simulations were performed to estimate the charge buildup due to
operations such as capsule filling and storage. The total net charge after settling was found
to be negative, despite the opposite charge polarity acquired by the carrier (positive) and
API (negative). Then, the capsule was subjected to a vibrating motion to simulate routine
handling operations and check whether such movements can give rise to a significant
electrostatic charge. A consistently higher charge buildup was measured with the vibrating
motion compared to the gravity settling simulations, with an overall negative charge also
for carrier particles. The net charge was higher for the carrier-rich 25 mg formulation,
but the specific charge was higher for the API-rich 1 mg formulation. The two different
configurations also show a different charge distribution, with a more pronounced bipolar
charging tendency in the case of the 25 mg dose. To interpret the charging dynamics, a
detailed study of contact statistics was performed. The mechanical shaking movement
promoted API detachment from the carrier, especially in the 1 mg configuration (with higher
API dosage). With the 25 mg configuration, a high number of low-energy carrier-carrier
collisions were recorded which tended to dissipate the kinetic energy of the particles. On
the other hand, API–API and API–wall collisions were prevalent in the 1 mg configuration.
Finally, a comparison of the forces at play revealed that electrostatic forces are relevant
for API particles and might play a major role in cohesion and adhesion phenomena. The
present work lays the foundation for new developments in the relations between particle-
scale charge transfer and buildup and the macroscopic manifestations, particularly in
relation to DPI performances.
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