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Abstract: The pharmaceutical industry has entered an era of transformation with the emergence
of Pharma 4.0, which leverages cutting-edge technologies in manufacturing processes. These hold
tremendous potential for enhancing the overall efficiency, safety, and quality of non-biological
complex drugs (NBCDs), a category of pharmaceutical products that pose unique challenges due
to their intricate composition and complex manufacturing requirements. This review attempts to
provide insight into the application of select Pharma 4.0 technologies, namely machine learning, in
silico modeling, and 3D printing, in the manufacturing process of NBCDs. Specifically, it reviews
the impact of these tools on NBCDs such as liposomes, polymeric micelles, glatiramer acetate, iron
carbohydrate complexes, and nanocrystals. It also addresses regulatory challenges associated with
the implementation of these technologies and presents potential future perspectives, highlighting the
incorporation of digital twins in this field of research as it seems to be a very promising approach,
namely for the optimization of NBCDs manufacturing processes.

Keywords: Pharma 4.0; non-biological complex drugs; three-dimensional (3D) printing; digital twins;
in silico modeling; machine learning

1. Introduction

It is widely recognized that bringing a new pharmaceutical drug to the market is
a complex, lengthy, and costly process associated with high uncertainty. This process
is known as drug development and encompasses various stages, including preclinical
research, drug design and production, regulatory filling, clinical trials in humans, obtain-
ing regulatory approval, and the subsequent steps of manufacturing and marketing [1].
Throughout the years, the pharmaceutical industry has undergone significant changes and
advancements, progressing from Pharma 1.0 to Pharma 4.0, and more recently reaching the
era of Pharma 5.0. Even though Pharma 4.0 is a relatively recent development, the truth is
that certain pharmaceuticals are already venturing into the 5.0 era [2].

During Pharma 1.0, the processing of materials derived from minerals, animals, and
plants underwent a significant transformation. The use of basic hand-operated tools gave
way to the introduction of commercial-scale equipment capable of crushing, blending,
milling, and pressing a larger quantity of medicines. In fact, certain key machines devel-
oped during the Pharma 1.0 era continue to be widely used in the present day, showcasing
their durability and effectiveness [3]. Subsequently, electricity and early electronic ma-
chines ushered in a new era in the evolution of the pharmaceutical industry. This phase
witnessed the integration of digital tools into various aspects of pharmaceutical research,
development, manufacturing, and distribution [4]. For the pharmaceutical sector, this
technological incorporation marked a significant milestone because it allowed for a more
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data-driven and patient-centric approach, besides providing a larger-scale production
and more efficient quality control. However, these process controls were far from perfect,
since they were confined to pre-determined and static settings, which only allowed for the
monitoring of process performance and passive control strategies [3]. The third industrial
revolution was enabled by the emergence of computers and communication technologies,
including networked computing, the internet, and wireless communications [4]. This
development resulted in increased automation of both processes and equipment, fostering
the implementation of continuous manufacturing and enhanced active control. This revolu-
tion, known as Pharma 3.0, enabled the adoption of advanced control strategies, elevating
product and process quality and reducing the need for human operators. This decrease in
reliance on human operators also streamlined the tracking of parameters and production
metrics. Although some industries are well into Industry 3.0, the pharmaceutical industry
is still very much transitioning into it [3]. Pharma 3.0 also brought the implementation of
advanced process analytical technology (PAT), which provides real-time data on process
and product quality. It also enhanced quality-by-design (QbD) processes, which focus
on controlling product quality within specific parameters [3]. While Pharma 3.0 already
enables a much-improved understanding of how to capture, analyze, and secure large
amounts of data in pharmaceutical manufacturing, there is still room for further techno-
logical advancements to achieve the full potential of PAT and QbD [5]. Later on, with the
appearance of artificial intelligence (AI), cloud computing, machine learning (ML), big data
analytics, in silico modeling, 3D printing, and other advanced manufacturing technologies,
the manufacturing process was actualized, forcing the emergence of another industrial rev-
olution, known as Pharma 4.0 [6]. These advanced manufacturing technologies empower
autonomous and self-organizing systems capable of operating independently without
human intervention [3].

In the pharmaceutical sector, the fourth industrial revolution allowed for a shift in
the paradigm of formulation development [7]. The potential to integrate diverse data
sources facilitates the connection of both external and internal information, establishing a
comprehensive network. In the context of pharmaceutical manufacturing, this integration
entails merging external data, including patient experiences, market demands, supplier
inventories, and public health emergencies, with internal data encompassing energy and
resource management, modeling and simulation results, and laboratory data. This fu-
sion enables unparalleled real-time responsiveness, monitoring, control, and predictive
capabilities [3].

In an ever-evolving marketplace characterized by a fast-changing and smartly inte-
grated supply chain, coupled with more active participation of patients in their healthcare
decision-making, pharmaceutical companies face an urgent imperative to maintain their
competitive advantage. In this setting, the key factor that sets businesses apart is their
ability to meet the expectation of Pharma 4.0, which, despite being a complex process to
implement, provides enhanced resources for ensuring product safety compliance, safe-
guarding the supply chain, and fostering pharmaceutical development [6]. This concept
of Pharma 4.0 is closely linked to artificial intelligence (AI), a technology-based system
involving various advanced tools and networks that can mimic human intelligence [3]. It
possesses systems and software with the ability to interpret and learn from the input data,
enabling them to autonomously make decisions in order to achieve specific objectives [8].
AI plays a crucial role in Pharma 4.0 by enabling smart, data-driven decision-making and
optimization throughout the entire pharmaceutical value chain [9].

Non-biological complex drugs (NBCDs) are complex, often comprising intricate struc-
tures and diverse components [10]. Therefore, traditional quality control methods may not
fully capture the complexities of these drugs. Pharma 4.0 techniques can offer real-time
monitoring and predictive quality control, allowing for more effective detection of devia-
tions and potential issues. Besides, since NBCD manufacturing involves handling a vast
amount of data from multiple stages of the production process, these innovative technolo-
gies can leverage this data to support data-driven decision-making, enabling manufacturers
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to identify patterns, trends, and correlations that may impact product quality, stability,
and reproducibility [11]. In this sense, this manuscript presents a view on the application
of select Pharma 4.0 technologies, namely machine learning, in silico modeling, and 3D
printing, for enhancing the overall efficiency, safety, and quality of non-biological complex
drugs (NBCDs), a category of pharmaceutical products that pose unique challenges due to
their intricate composition and complex manufacturing requirements.

However, it is important to keep in mind that to attain Pharma 4.0, while embracing
cutting-edge manufacturing technologies, it is also important to simultaneously overcome
regulatory obstacles [12]. In this context, this review not only addresses these regulatory
challenges but also explores potential future perspectives, notably the incorporation of
Digital Twins in the development and manufacturing of non-biological complex drugs
(NBCDs).

2. Emerging Tools of Pharma 4.0

The following sections of this review will highlight and describe emerging tools of
Pharma 4.0, such as additive manufacturing (3D printing), in silico modeling, and machine
learning, which are represented in Figure 1.
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Figure 1. Emerging tools of Pharma 4.0 and their main advantages in drug manufacturing.

2.1. Additive Manufacturing: Three-Dimensional (3D) Printing

Additive manufacturing encompasses all manufacturing techniques that involve the
sequential addition of material to build a 3D object. Typically, a digital representation of the
desired object is created using computer-aided design software; subsequently, the product
is produced using one or more additive technologies [13].

3D printing, as an additive manufacturing technique, holds immense potential within
the pharmaceutical sector. It consists of the layer-by-layer creation of 3D objects based
on digital designs and holds promise for the development of versatile release models.
These models aim to address clinical needs and facilitate patient-centric treatment, in-
cluding personalized dosing tailored to specific disease states or patient populations [14].
The classification of 3D printing techniques can be simplified into three main categories:
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printing-based inkjet systems, nozzle-based deposition systems, and laser-based writing
systems [15].

Spritam® (levetiracetam), an epilepsy medication developed by Aprecia Pharmaceuti-
cals, was the first 3D-printed pharmaceutical to receive approval from the Food and Drug
Administration (FDA) [16]. It utilizes a unique 3D printing technology called ZipDose®,
which allows for the production of a highly porous tablet that dissolves rapidly in a small
amount of liquid. This orodispersible tablet, characterized by its porous and soluble matrix
composition, demonstrated similar pharmacological efficacy comparable to conventional
tablets. On the other hand, this tablet exhibited a significant solubilization time improve-
ment, indicative of faster dissolution [15]. It is worth noting that the approval of Spritam®

as a 3D-printed pharmaceutical by the FDA was a significant milestone in the field of
pharmaceutical manufacturing, as it demonstrated the potential of 3D printing technology
in the production of unique drug formulations and opened up possibilities for personalized
medicine [16].

Extensive research has been dedicated to advancing the use of 3D printing techniques
in pharmaceutical manufacturing. As these endeavors progress, additive manufacturing
technology has not only demonstrated its potential for creating personalized medications
tailored to individual patients but has also emerged as a viable option for large-scale
manufacturing, thanks to its ability to generate dosage forms with unique performance
characteristics, which would be difficult to achieve via traditional methods [17].

Advancements in the Pharmaceutical Industry Offered by 3D Printing Technology

In the pharmaceutical industry, 3D printing offers the benefit of creating products
with sophisticated external shapes. In fact, this technique was employed to produce orally
disintegrating printlets specifically tailored for individuals with visual impairment. These
printlets were meticulously designed with Braille and Moon patterns on their surfaces,
allowing patients to identify medications even when removed from their original packaging.
This approach shows the potential to enhance accessibility and independence for visually
impaired patients in managing their medication regimens, thereby reducing potential
errors [18].

3D printing has also demonstrated unprecedented potential in controlling drug release
and influencing drugs’ pharmacokinetic profiles. In fact, the use of 3D printing techniques
was leveraged to produce multiparticulates, known as miniprintlets, loaded with parac-
etamol, which exhibited prolonged drug release patterns, offering a novel approach to
drug delivery with remarkable flexibility and control over release properties. By adjusting
parameters such as dimensions and matrix composition, the therapeutic effect can be finely
tuned, enabling the production of multi-drug systems. Furthermore, the possibility of
creating miniprintlets containing two drugs, namely paracetamol and ibuprofen, was also
investigated. A miniprintlet utilizing different polymers was created, so that one drug was
released immediately and the second was sustained over an extended period [19].

Another promising advantage of 3D-printing is the ability to delay drug release, reach-
ing even the colon in the gastrointestinal (GI) tract. This advancement holds tremendous
potential as a breakthrough for the treatment of inflammatory bowel diseases [17,20].

For its numerous advantages, this technology has been employed to manufacture an
extensive range of pharmaceutical products. These includes printlets (3D printed tablets),
capsules, subcutaneous implants, and transdermal microneedles, among other innovative
drug delivery devices [14,21,22].

2.2. In Silico Modeling

In silico modeling refers to the use of computational methods and computer simula-
tions to study and analyze complex systems, typically in the fields of science, engineering,
and medicine [23].

This approach involves creating virtual representations or models of real-world sys-
tems, based on mathematical algorithms, statistical techniques, and biological or physical
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principles. By simulating the behavior of these models, researchers can gain insights into
underlying mechanisms, predict outcomes, and test hypotheses without the need for costly
or time-consuming physical experiments [24].

In the pharmaceutical sector, in silico modeling is used to predict the behavior of
drug molecules, their interactions with biological targets, and their potential efficacy and
safety profiles [25]. From this context arises the term “in silico trials”, which refers to the
application of computer modeling and simulation to assess the safety and effectiveness of
medicinal products, including drugs, medical devices, diagnostic products, and advanced
therapy medicinal products [23].

Over the years, numerous reviews have described how in silico methods can be used
for predicting the absorption, distribution, metabolism, excretion, and toxicity (ADME/TOX)
of different drugs [26]. This plays a crucial role in assisting decision-making, since it is
not possible to experimentally test all possible combinations of drug interactions [27]. By
simulating the behavior of substances in silico, researchers can quickly identify compounds
with unfavorable ADME/TOX profiles and prioritize those with higher chances of success
for further experimental evaluation, thus saving time and resources and reducing the risk
of costly failures in later stages of drug development [26].

This technique also provides a mechanistic insight into the underlying processes and
interactions involved in ADME/TOX because it can simulate the behavior of substances
at the molecular level, allowing researchers to understand the interactions between trans-
porters, enzymes, receptors, and other factors influencing ADME/TOX properties. Such
information can help in understanding the mechanisms of action, potential toxicities, and
the design of safer and more effective drugs [28].

In addition, in silico models can also be employed to study complex biological systems,
such as cellular processes and signaling pathways. These models can help unravel the
underlying mechanisms governing these systems and aid in the understanding of diseases,
as well as the development of therapeutic interventions [29,30].

As an illustrative example of the applicability of in silico modeling in the pharma-
ceutical field, one can consider the design of these models to predict and comprehend
the mechanism of action of the human ether-a-go-go-related gene (hERG) blockers. This
is relevant because the hERG gene encodes a crucial ion channel in the heart, namely he
hERG potassium channel, which plays a crucial role in regulating the electrical activity
of this organ. Certain drugs may inadvertently block the hERG channel, leading to a
drug-induced QT prolongation, which can result in a potentially life-threatening heart
rhythm disturbance called Torsade de Pointes. Therefore, understanding and predicting the
effects of potential hERG blockers through in silico methods are vital in drug development
and safety assessment [31].

2.3. Machine Learning (ML)

ML is an artificial intelligence-based technology that focuses on constructing compu-
tational models by training them with a set of data. It enables machines to automatically
analyze and interpret complex patterns and data, improving their performance in making
predictions or decisions. For instance, ML might predict the stability of a specific drug
formulation by considering data from a range of previous experiments that investigated
formulation stability [32].

Machine learning algorithms identify patterns, anomalies, and potential risks, en-
abling proactive quality management and enhancing accuracy, efficiency, and compliance,
while ensuring high product standards, regulatory compliance, and patient safety [9]. In
fact, by automating inspection processes, analyzing data for defects and deviations, and
predicting quality outcomes, this AI technology is revolutionizing quality control and
assurance processes.

This technology can be broadly categorized into three types: supervised learning,
unsupervised learning, and reinforcement learning [33]. In the first one, the algorithm is
supplied with training data that includes both recorded observations and their correspond-
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ing labels. With this information, the algorithm constructs a model that can predict the
appropriate output label for new observations [34]. Unsupervised learning, on the other
hand, deals with unlabeled data, where the algorithm aims to discover hidden patterns or
structures in the data without any predefined labels. Basically, the model learns to cluster
similar data points or find relationships between the variables [35]. Finally, reinforcement
learning involves a learning approach that relies on the use of rewards to categorize inputs
as “good” or “bad” data, based on their interaction with the surrounding environment.
Through this process, the algorithm learns to optimize its actions to maximize positive
outcomes and minimize negative ones [36].

The initial applications of machine learning in drug formulation date back to the 1990s
when neural networks (NNs) were employed to forecast properties related to immediate-
release oral tablets. This involved the preparation and assessment of a diverse array of tablet
formulations and the training of the neural network with the acquired data, enabling the
prediction of different outcomes such as disintegration time, dissolution rate, and friability.
These early experiments marked the pioneering use of machine learning techniques in
optimizing drug formulation processes [32].

In fact, regarding the machine learning domain, these neural networks remain the most
used technique. However, when dealing with a small amount of data, this can be prone to
overfitting due to the high complexity and risk of learning noise in the limited dataset. In
such cases, alternative machine learning methods such as support vector machines (SVMs)
and random forests can be more suitable choices.

SVMs represent a category of learning machines rooted in statistical learning theory.
The fundamental concept behind employing SVMs for pattern classification can be sum-
marized as follows. Initially, input vectors are mapped into a feature space, which can
be of higher dimension, achieved via either linear or non-linear transformations. Subse-
quently, within this feature space, the objective is to identify an optimal linear division.
This involves constructing a hyper-plane capable of effectively separating two classes with
minimal error and maximal margin. The SVMs’ training process consistently strives for
a globally optimized solution while preventing overfitting, rendering them proficient in
managing a large number of features [37].

The random forest algorithm is a well-established machine learning technique which
operates by creating decision trees using random subsets of the provided dataset. These
trees are divided into nodes, which serve as decision points where the algorithm categorizes
the given sample. As the data are processed, each decision tree generated by the algorithm
makes an individual prediction, which is then compared against those of other trees. The
final prediction is then determined based on the majority vote of the individual decision
trees. This approach is particularly useful in handling small datasets effectively [38].

Nowadays, the application of ML in the healthcare sector allows for improved cancer
diagnosis, the discovery of new antifibrotic and antibiotic molecules, and the development
of self-driving laboratories. It also allows for the prediction of the products of certain
chemical reactions and, consequently, the optimization of these reactions [32].

2.4. Digital Twins

In the pharmaceutical industry, digital twins can have several uses and take different
forms and as such are being increasingly adopted to improve efficiency, productivity, and
quality control of drug manufacturing processes. For instance, researchers have developed
computer simulations to create digital twins of dissolution apparatuses, namely USP II,
and tablets to mimic their behavior realistically. By using these digital twins, they could
investigate drug release profiles and shear rates that act on the tablet, under different paddle
speeds, in both USP II and biorelevant colon models. The objective was to understand
how the USP II could be operated to achieve more realistic hydrodynamic conditions that
resemble the conditions in the human colon in vivo. To ensure accuracy and relevance
in the simulations, the behavior of the tablet and the motility patterns within the colon
are derived from experimental data and in vivo observations, respectively. Based on their
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findings, the researchers recommend using an “on–off” operating mode in the USP II rather
than a constant paddle speed. This “on–off” mode generates shear rate peaks, which better
reflect the in vivo conditions of the human colon. This change in operating mode can
help achieve more realistic simulation results, providing deeper insights into the tablet’s
disintegration and drug release processes in colon-targeted solid dosage forms [39].

These digital twins were also employed as a digital representation of the continuous
manufacturing process for pharmaceuticals. This allows for the prediction of critical
process parameters (such as those in the feeders, blender, and tablet press) and critical
quality attributes (tablet composition, weight, thickness, and hardness) throughout the
manufacturing process. This means that pharmaceutical companies can study the steady-
state operation of the process within the design space; examine the impact of different
operating conditions, materials, and process parameters; and understand dynamic response
to disturbances or variations in the process [40].

In addition, researchers have developed a new and innovative concept called a “neural
network–intelligent digital twin” to describe, predict, and optimize the outcomes of the
manufacturing process of solidified nanosuspensions. The authors integrated the artificial
neural network into the digital twin development process in a stepwise manner. The steps
included data sampling, model deployment, and curve fitting. This means that the NN was
trained using a dataset containing information about the manufacturing process, where
the network´s architecture and parameters were optimized (curve fitting) to effectively
represent the behavior of the process. One of the primary roles of the ANN within the
digital twin is to augment the amount of available data. Since training a neural network
typically requires a significant amount of data, the ANN generates additional simulated
data points to further calibrate and validate the model. In the process, the digital twin can
be fine-tuned to better represent the real-world manufacturing process, without the need
for extensive physical experiments, while reducing uncertainties in the model´s predictions.
Overall, this research introduces a sophisticated approach that combines NN technology
and digital twin concepts to improve the understanding, prediction, and optimization of
the manufacturing process for solidified nanosuspensions. This has the potential to lead to
more efficient and cost-effective manufacturing processes in the pharmaceutical sector [41].

Another—and very recent—example of the applications of digital twins is the use of
this technology, enabled by process analytical technology (PAT) approaches, to improve
various aspects of the SARS–COVID-19 vaccine manufacturing process, such as capacity
multiplication, reduction of out-of-specification batch failures, personnel training, efficient
operation, optimal utilization of resources, and faster product release. Specifically, the focus
is on messenger ribonucleic acid (mRNA) vaccine processing and the potential use of digital
twins to address bottlenecks and optimize the process. Researchers have suggested creating
a digital twin of the entire process which would convert plasmid deoxyribonucleic acid
(pDNA) into mRNA. By combining digital twins with PAT, the vaccine production process
can be enhanced, rendering it more efficient, and manufacturing capacity can be multiplied
without compromising production quality and efficiency. In addition, researchers also
believe that digital twins can also be used as a training tool for personnel to become
qualified in operating the manufacturing process effectively and efficiently. The technology
additionally facilitates the optimization of the utilization of scarce buffers and chemicals.
This in turn leads to better resource management in the manufacturing process and a faster
product release, enabling vaccines to be swiftly distributed to meet global demand [42].

In general, digital twins allow for enhanced drug formulation development, reduced
reliance on costly experiments, and improved drug performance assessment. They enable
pharmaceutical companies to move towards more data-driven and agile manufacturing
processes, leading to better products and reduced costs. However, despite their potential
benefits, the pharmaceutical industry has not fully embraced the use of digital twins in
their operations [41].
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3. Non-Biological Complex Drugs (NBCDs)

NBCDs are defined as medicinal products that are not derived from living organisms
but are entirely synthesized via a fully synthetic process. They are also characterized by an
active substance comprising multiple structures that cannot be entirely isolated, quantified,
characterized, or fully described using physicochemical analytical methods [43].

NBCDs are closely related to nanoparticles, and some examples include fat emulsions,
liposomes, polymeric micelles, iron-carbohydrate complexes, dendrimers, swelling cross-
linked polymers, and glatiramoids, among others. Sometimes, low molecular weight
heparins, dry powder inhalers, ocular/intravenous emulsions, and dermal patches are
seen as NBCDs as well [11]. Figure 2 illustrates the NBCDs that are within the scope of this
manuscript.
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In a conference that took place in Budapest (October 2014), Dr. De Vlieger listed a few
key attributes for an NBCD [1]: (1) it consists of a multitude of closely related structures;
(2) the entire complex is the active pharmaceutical ingredient; (3) the properties cannot
be fully characterized via physicochemical analysis; and (4) a robust and well-controlled
manufacturing process is key to reproducing the product.

Regarding NBCDs, one of their major challenges lies in the characterization process,
specifically in evaluating batch-to-batch similarity and assessing the impact of manufactur-
ing process variations. This sensitivity to manufacturing changes can give rise to challenges
in ensuring reproducibility when produced by different manufactures. A noteworthy
example of this occurred with follow-on products for iron sucrose complexes, where re-
ports indicated that patient safety was compromised by switching patients to a follow-on
product [44]. The complex nature of NBCDs may arise from various factors. For instance,
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the complexity may stem from the active substance itself, as seen with glatiramer acetate,
or it may arise from the formulation, as observed with liposomes [10].

All of above explain why NBCDs fall under a distinct regulatory framework compared
to small molecule drugs [45].

Much like biologics, the quality of NBCD products is intricately linked to a robust
and meticulously controlled manufacturing process. This poses challenges for generic
drug developers aiming to replicate NBCD products once the market exclusivity of the
originator product has expired. Unlike biologics, which benefit from a well-established
biosimilar pathway, NBCDs lack recognition as a distinct category of medicines. Conse-
quently, a formal regulatory pathway for their approval has yet to be defined. Presently,
a “case-by-case” approach is employed to regulate NBCD follow-on products in the EU.
Additionally, NBCDs may undergo a non-centralized authorization procedure, decentraliz-
ing regulatory approval to competent national authorities. However, this decentralized
approach can introduce heterogeneity in the regulatory assessment of NBCD follow-on
products across the EU, potentially leading to varied outcomes and, in some instances,
raising concerns related to safety and efficacy. For that reason, given the regulatory uncer-
tainty still surrounding these products, we can only infer that by incorporating Pharma 4.0
tools, a more standardized and data-driven approach can be applied to the development
and manufacturing of NBCDs. For example, the implementation of real-time monitoring
systems, guided by Pharma 4.0 principles, enhances our understanding of critical manufac-
turing parameters for complex NBCDs, ensuring consistency in product attributes essential
for establishing pharmaceutical equivalence. Data analytics tools analyze vast datasets,
enabling trend identification and maintenance of product attributes. In silico modeling
capabilities of Pharma 4.0 optimize NBCD formulation design, predicting and assessing
variations to ensure bioequivalence. Machine learning algorithms enable adaptive con-
trol strategies during NBCD manufacturing, dynamically responding to variations and
contributing to bioequivalence maintenance, particularly in the absence of a consistent
regulatory framework. Aligning with the QbD principles of Pharma 4.0, a systematic QbD
approach addresses factors affecting bioequivalence, providing a structured framework
for regulatory assessments. In totality, Pharma 4.0 tools offer comprehensive solutions
to bridge the current regulatory gap associated with NBCDs, promoting consistency and
efficacy in their evaluation and approval processes. Moreover, the conventional generic
approach, centered on establishing pharmaceutical equivalence and bioequivalence, has
been instrumental in introducing numerous safe and effective alternatives to innovative
medicines. Nevertheless, this approach has primarily been employed for products that
can be thoroughly characterized. In the case of more intricate molecules characterized by
inherent complexities and challenges in characterization, such NBCDs demonstrating bioe-
quivalence may benefit from the exploration of alternative methodologies [46,47]. However,
given the criticality of this issue, more research, more evidence and discussion are needed
around it.

3.1. Polymeric Micelles

Polymeric micelles are nanoscale particles (sizes ranging between 20 and 200 nm) that
consist of a hydrophobic core, serving as a reservoir for poorly soluble active pharmaceu-
tical ingredients (APIs), and a hydrophilic shell that offers colloidal stability and limits
protein adsorption and opsonization, leading to extended circulation times [48]. Since the
physicochemical properties and the in vivo distribution, safety, and efficacy of the final
product are highly dependent on the chosen polymer chemistry and manufacturing process,
this explains why polymeric micelles are classified as NBCDs [49]. Despite the challenges
associated with them, these structures hold great promise in drug manufacturing and
delivery, as they offer several advantages which make them attractive for various therapeu-
tic applications [48]. By encapsulating hydrophobic drugs in their core, these structures
provide increased solubility and stability, facilitating their delivery to target sites. [49].
Simultaneously, these nanocarriers also have shown improved therapeutic outcomes when
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compared to the free drug [50]. In addition, the biocompatibility of many polymers used in
micelle formulation makes them well tolerated by the body, reducing the risk of adverse
reactions [48]. Moreover, by modifying the surface properties of the micelles, these can
be engineered to selectively accumulate at specific disease sites, taking advantage of the
enhanced permeability and retention effect of tumor tissues or inflamed regions [51].

More recently, researchers have been studying combinations of two or more polymers
in order to assemble polymeric mixed micelles [52]. The underlying concept is to combine
polymers with complementary characteristics to enhance drug encapsulation, stability, and
targeted delivery. Overall, this is a direct and convenient approach to improve the physical
stability and enhance the drug-loading capacities of conventional polymeric micelles for
drug delivery [53].

3.2. Liposomes

Liposomes are colloidal and spherical vesicles composed of lipid molecules, primarily
phospholipids, which have a hydrophilic head and hydrophobic tails, allowing them to
form, in an aqueous environment, a closed bilayered structure [54]. They are classified
according to their size, which can go from 0.025 µm (very small liposomes) to several
µm (large liposomes), and their number of double layers [55]. The formulation of these
structures involves the dispersion of the lipid molecules in an aqueous phase to form the
vesicles. This can be carried out via mechanical methods (microfluidization, extrusion), re-
placement of organic solvents via aqueous media methods (ethanol injection, reverse phase
evaporation), and detergent removal methods [54]. These structures have been studied in
several pharmaceutical studies as drug delivery systems due to their remarkable capacity
to encapsulate molecules with varying solubilities, namely that hydrophilic molecules can
be accommodated in the internal core, hydrophobic molecules within the lipid bilayer, and
amphiphilic molecules at the water/lipid bilayer interface. Moreover, their exceptional
biocompatibility, biodegradability, lack of toxicity, and non-immunogenic nature further
enhance their potential as an excellent therapeutic options [56].

Liposomes offer a host of additional benefits, including the capability to carry sub-
stantial drug loads, the capacity for self-assembly, and the versatility to modify a wide
range of physicochemical and biophysical properties, thereby allowing for precise control
over their biological characteristics [54]. It is therefore clear that liposomes are incredibly
versatile structures that find applications across diverse fields. In fact, they can be found
as a therapeutic option for cancer [57] as well for the treatment of skin conditions such as
hyperpigmentation, among many others [58].

Over the years, diverse delivery systems based on liposomes have been developed,
such as niosomes, transfersomes, ethosomes, and dendrossomes, of which we highlight the
first two.

3.2.1. Niosomes

Niosomes were initially developed for the cosmetic industry but have now a wide
range of applications in the pharmaceutical field [59]. They consist of biodegradable and
biocompatible vesicles composed of nonionic surfactants and, sometimes, cholesterol or
its derivatives [60]. These structures allow us to overcome some limitations associated
with liposomes, since they are not only more cost-effective and easier to prepare but also
demonstrate a higher encapsulation efficiency [61]. This explains why niosomes have
garnered significant attention in numerous studies for diverse applications, including for
several types of cancers and fungal infections [62].

3.2.2. Transfersomes

Transfersomes are specialized lipid-based nanocarriers composed of phospholipids
and edge-active agents. These systems possess exceptional deformability and flexibility,
allowing them to squeeze through the narrow pores of the stratum corneum [59]. This char-
acteristic enables efficient transdermal drug delivery, offering a non-invasive alternative for
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systemic drug administration [63]. Transfersomes have garnered significant attention due
to their potential to enhance drug absorption, minimize side effects, and improve patient
compliance [64,65].

3.3. Glatiramoid/Glatiramer Acetate (GA)

Glatiramer acetate (GA), also known as Copolymer-1 or Cop-1, is a heterogeneous
mixture of synthetic polypeptides, comprising L-alanine, L-lysine, L-glutamic acid, and L-
tyrosine [66]. Its discovery took place in the late 1960s, when researchers were investigating
the immunological properties of synthetic amino acid polymers in the quest for a synthetic
antigen capable of inducing experimental autoimmune encephalomyelitis (EAE), the most
commonly used model for studying multiple sclerosis (MS) [67]. In the US and Europe, GA
has been approved as a disease-modifying treatment (DMT) for patients with relapsing
forms of MS, a chronic inflammatory disease of the central nervous system (CNS) that starts
as an autoimmune reaction leading to acute CNS inflammation, along with the disruption
of myelin, ensheathing axons, and axonal damage [67].

Despite not being completely random, the amino acid sequences are not completely
conserved from batch to batch, even when the process is tightly controlled. Therefore, the
quality of these substances heavily relies on the precision of the manufacturing process [66].

GA falls under the category of NBCDs not only due to its intricate structure and
variable composition, but also because fully characterizing and analyzing its molecular
structure is exceptionally challenging compared to traditional small-molecule drugs [66,68].

3.4. Iron Carbohydrate Complexes Drugs

Iron carbohydrate complexes drugs are effective iron replacement agents for iron
deficiency anemia treatment [69]. This is an area of great interest because it is the most
common micronutrient deficiency worldwide [70].

Oral iron supplements in the form of ferrous iron may not be the perfect therapeutic
approach due to their association with gastrointestinal intolerance, prolonged iron store
repletion time, and impaired iron absorption. As a way to overcome these problems, intra-
venous iron–carbohydrate complexes appear to be an alternative approach that can lead to
higher hemoglobin levels as well as faster replenishment of the body’s iron stores [71].

These structures consist of colloidal formulations composed of an iron core and a
complex carbohydrate coating with an average particle size at the nanoscale. Different
formulations differ in terms of the iron core size, carbohydrate shell coating material, and
hydrodynamic size of the product. The stability of iron–carbohydrate complexes and
the rate at which iron is released from the matrices vary among different products [72].
Furthermore, it is crucial to have a comprehensive knowledge of the physicochemical
characteristics of the various intravenous iron–carbohydrate complexes to improve the
safety and efficacy of the currently available products as well as for the formulation of new
iron preparations in the future [69].

3.5. Nanocrystals

Nanocrystals are carrier-free drug particles with sizes in the nanometer range and
crystalline characteristics [73]. Thanks to high drug loading, nanocrystals guarantee effi-
cient drug delivery to cells or tissues and maintain potent therapeutic concentrations to
achieve the desired pharmacological effect. Consequently, these transporters have become
very attractive treatment options for various types of diseases [74].

This technology of nanocrystallization offers a very promising and effective way to
deal with the low solubility and poor bio-availability of poorly soluble drugs because, due
to their nanosize, they allow for increased dissolution pressure and a higher dissolution
rate [73]. To produce nanocrystals, several methods have been implemented and they can
be divided into three main categories: top-down (nanonization), bottom-up (crystal growth
or nucleation), and combination techniques [75].
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Capitalizing on the aforementioned advantages, these NBCDs have found application
across various disease categories, such as in cancer therapy, inflammatory diseases (due to
their capacity to improve on the physicochemical properties of Biopharmaceutics Classifi-
cation System (BCS) class II drugs), and in the prevention of preterm birth (as progesterone
is a BCS class IV drug, with poor solubility and very low permeability, which renders
therapeutics difficult), among many other purposes [74,76].

4. Applying Pharma 4.0 Tools in the Production of Non-Biological Complex Drugs
4.1. Additive Manufacturing: 3D Printing
4.1.1. Polymeric Micelles

3D printing has exhibited promising results in the manufacturing of diverse drug
delivery systems, such as polymeric micelles. In a recent investigation, chitosan-based
polymeric micelles containing camptothecin (CPT) were integrated into 3D printing systems
and coated with an enteric layer. This approach aimed to safeguard the nanosystems from
the harsh conditions of the gastrointestinal tract [77]. The manufacturing process involved
the use of a bioprinter that combines fused deposition modeling (FDM)—a widely used 3D
printing method that involves melting and extruding filament materials layer by layer—and
injection volume filling (IVF)—a technique that enables the incorporation of solutions or
dispersions at room temperature into the extruded scaffold [77,78]. The internal structure
of the printfills is depicted in Figure 3A. The in vitro drug release profile showed that
both printfills containing the free drug and those with micelles effectively managed drug
release. Consequently, there was no drug release from the printfills within the initial 2-h
period at pH 1.2. However, when pH changed to 6.8, the retarding polymer began to
dissolve, permitting the entry of water (Figure 3B). Researchers also concluded that both
polymeric micelles and the free drug present in the dissolution media did not exhibit any
cytotoxic effects on Caco-2 cells, a colorectal cancer cell line. In fact, these cells showed an
increase in metabolic activity of up to 100%, which could be attributed to the presence of
simulated gastrointestinal fluids (Figure 3C). Furthermore, as illustrated in Figure 3D, the
permeability of CPT from the micelles was observed to be higher than that of the free drug
in both Caco-2 standard model (a) and a 3D intestinal model (b), with significant differences
becoming evident during the final incubation periods. In the 3D model, CPT permeability
reached approximately 27%, representing an enhancement compared to the standard
model´s permeability of 20%. This heightened permeability in the 3D model aligns more
closely with the in vivo human intestine, reflecting a drug permeability that is more akin
to real-world conditions. The experiment also demonstrated consistent transepithelial
electrical resistance (TEER) maintenance for both micelles and the free drug, reflecting
the monolayer integrity and consequently suggesting that the tested formulation is safe.
Besides, the apparent permeability coefficients exhibited notable disparities between the
micelles and the free drug. In the 3D model, the apparent permeability coefficients of CPT
from the micelles indicate a significant increase in CPT permeability and, consequently,
bio-availability. On the other hand, the free drug maintained an apparent permeability
coefficient that was similar in both models, signifying that the drug´s permeability was
nearly half that of the micellar drug, specifically within the context of the 3D model
(Figure 3D(c)). Furthermore, to ensure the structural integrity of the membrane following
the permeability experiment, hematoxylin, and eosin (H&AND) staining was conducted
for both models and under all conditions (Figure 3E). This staining process employed
two dyes: hematoxylin, a basic dye, and eosin, an acidic dye. Hematoxylin imparts a
purple hue to acidic structures, such as the nucleus, while eosin imparts a pink color to
basic structures, such as the cytoplasm and extracellular matrix. Considering this staining
mechanism, Figure 3E presents a consistent monolayer in both models, which underscores
the preservation of cellular membrane integrity. These observations indicate that the
membrane remained intact and well-formed throughout and following the permeability
assay. Overall, this study’s findings showed that the printfills were able to keep the
micelles intact until they reached the intestinal pH, increasing the CPT intestinal absorption
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and, consequently, its oral availability. Furthermore, the combination of 3D printing and
nanotechnology holds considerable potential for the targeted release of polymeric micelles
in the colon. This advancement can enhance the absorption of drugs in the intestines while
safeguarding them from degradation as they go through the gastrointestinal tract [77].
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In another study, researchers focused on creating a bio-ink suitable for 3D printing a
hydrogel implant with controlled drug release capability. To achieve this, simvastatin was
loaded into polymeric micelles composed of polylactide/poly (ethylene glycol) triblock
copolymers (PLA-PEG-PLA). These micelles were then incorporated into hydrogels via a
photo-cross-linking 3D printing process. The resulting simvastatin-loaded triple-network
hydrogel demonstrated remarkably long-term drug release for over 14 weeks, consistently
maintaining a therapeutic concentration. These findings indicate that these micelles hold
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great promise as a bio-ink material, providing long-term hydrogel stability, biodegradability,
and sustained delivery of hydrophobic drugs, such as simvastatin [79].

4.1.2. Liposomes/Niosomes

Due to their numerous benefits, liposomes have garnered significant attention, es-
pecially in the fields of cancer treatment and vaccinology. However, their development
remains a challenge, making it crucial to seek out innovative approaches that enable fast,
safe, and consistent production with high-level batch-to-batch reliability [80].

In an experimental study, researchers used 3D printing technology to create a 3D-
printed niosomal hydrogel (3DP-NH) containing cryptotanshinome (CPT) as a topical
delivery system for acne therapy. To formulate the CPT-loaded niosomal hydrogel, the
CPT-loaded niosomes were carefully added, drop by drop, into the hydrogel. Subsequently,
the resulting mixture was printed using an extrusion-based 3D printer to produce a 3D-
printed CPT-loaded niosomal hydrogel (3DP-CPT-NH) with a specific drug dosage, shape,
and size. The findings were that the 3DP-CPT-NH exhibited a significant anti-acne effect
without causing any skin irritation [81].

Another investigation was conducted, combining microfluidic technology (MF) and
3D printing, leading to the formulation of “diamond-shaped” devices designed for the
production of liposomes loaded with lysozyme as a model drug. Computer-aided design
software was used to design microfluidic devices with diverse geometries, which were then
printed using high-resolution digital light processing (DLP)—3DP. Stability tests confirmed
the consistency of the developed formulations, and an encapsulation efficacy study showed
positive results. Overall, this study showcased the effectiveness of combining MF and 3DP,
highlighting the potential for synergistic growth in this field [80].

4.1.3. Nanocrystals

In the pharmaceutical field, 3D printing has also been making an impact in the manu-
facturing of nanocrystals, allowing for more precise control over drug dosage and release
profiles [82]. For instance, additive manufacturing has been used to encapsulate nanocrys-
tals within polymeric matrices, creating drug-loaded filaments or tablets, and improving
the solubility and bio-availability of poorly soluble drugs. The precise control over the
placement of nanocrystals in the printed structure allows for enhanced drug delivery
and therapeutic efficacy. In fact, a recent study aimed to develop fast-dissolving oral
polymeric film formulations loaded with indomethacin nanocrystals using 3D printing
technology, and the outcomes demonstrated that this offers a promising approach for
enhancing solubility in immediate-release formulations [83].

Another experiment focused on the development of an in situ forming robust injectable
and 3D printable hydrogel based on cellulose nanocrystals. The results demonstrated
that the hydrogels exhibited excellent injectability and maintained their shape fidelity
without the need for additional cross-linking steps. The interlayer bonding between the
printed layers was strong, resulting in the formation of sTable 3D structures, even up to
10 layers [84].

Additive manufacturing also allows for the creation of personalized drug delivery
systems by incorporating nanocrystals. For instance, researchers have used 3D printing
to fabricate patient-specific tablets containing nanocrystals of poorly soluble drugs. This
enables customized dosages and controlled release profiles to be tailored to individual
patient needs. In the first-ever study that included nanocrystals within 3D-printed tablets,
albendazole nanocrystals were successfully incorporated into tablets, achieving a con-
centration of up to 50% w/w, which is not typically attainable with conventional tablets.
Moreover, the printlet formulation with nanocrystals exhibited superior efficacy in im-
proving drug dissolution in HCL 0.1N when compared to nanocrystals in hard gelatin
capsules. The nanocrystals exhibited consistent particle size, crystallinity, and chemical
stability both before and after 180 days of storage. Overall, the findings demonstrated the
promising pharmaceutical potential of combining 3D printing and nanocrystals for the
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development of stable, fast-release, oral solid dosage forms of poorly soluble drugs. This
experiment employed propylene glycol as a carrier and demonstrated that this technique
holds promise for printing objects utilizing various types of nanocrystals embedded in
low-melting-temperature polymers [85].

4.2. In Silico Modeling
4.2.1. Polymeric Micelles

A recent study focused on developing a novel technology called MeltDrops, which
used hot-melt extrusion (HME) for continuous manufacturing of in situ gelling systems
(ISGS) known to prolong the retention time and improve the bio-availability of ophthalmic
drugs. This is relevant because the traditional manufacturing of ISGS has been challenging
and costly, hindering their industrial scale-up and clinical implementation. However, Melt-
Drops technology offers a one-step extrusion process to develop these systems (Figure 4A),
which overcomes the limitations of batch manufacturing. Based on in silico modeling,
researchers employed a molecular dynamics (MD) simulation to analyze the difference
in physical properties of two types of MeltDrops—loaded with timolol maleate (TIM) or
dorzolamide hydrochloride (DRZ)—under two different temperature conditions, 300 K
(room temperature) and 308 K (physiological temperature) (Figure 4B). These simulations
offered evidence of heightened interactions among drug, polymer, and water molecules at
a higher temperature (308 K), suggesting the formation of ISGS with desired properties,
including a solution–gel transition at physiological temperatures. Researchers also con-
cluded that the in vitro drug release from MeltDrops technology demonstrated sustained
and controlled release behavior, while marketed eyedrops showed complete drug release
in less than 30 min (Figure 4C). Besides, the results demonstrated a percentage decrease
in intraocular pressure (IOP) following the administration of MeltDrops and marketed
eyedrops, highlighting the superior IOP-reducing potential of MeltDrops compared to
conventional options (Figure 4D). Finally, a HET-CAM test was conducted in order to eval-
uate the potential ocular irritancy of MeltDrops. The results showed no signs of irritation,
indicating that they are safe and well tolerated for ocular use [86].

Previously, a continuous manufacturing technique that utilizes a coaxial turbulent
jet in co-flow was established for the production of paclitaxel-loaded polymeric micelles.
More recently, researchers have employed coarse-grained molecular dynamics simulations
to gain deeper insights into the impact of material attributes (specifically, the drug-polymer
ratio and ethanol concentration) and process parameters (such as temperature) on the
self-assembly process of polymeric micelles. Additionally, these simulations provided
molecular-level information on micelle instability. The findings demonstrated a clear cor-
relation between the micelle shape and drug encapsulation. As the paclitaxel content
increased, the micelles transformed from spherical to ellipsoidal structures. From the
simulation data, researchers were able to identify the critical aggregation number, which
represents the minimum number of polymer and drug molecules required for this shape
transition. Moreover, this investigation indicated that larger micellar size and reduced
solvent accessibility contributed to the enhanced structural stability of the micelles. Ad-
ditionally, researchers conducted an evaluation of the micellar dissociation free energy
using steered molecular dynamics simulations across various temperatures and ethanol
concentrations. The simulations showed that higher ethanol levels and temperatures led to
micellar destabilization, resulting in a more significant release of paclitaxel. This increased
drug release was attributed to the solvation of the hydrophobic core, promoting micellar
swelling and reducing hydrophobic interactions, ultimately leading to a loosely packed
micellar structure. In general, the computational predictions provided valuable insights
into the micelle self-assembly process, morphological changes, drug release, and thermody-
namic instability and showed excellent agreement with experimental results, underscoring
its efficacy in studying the impact of material attributes and process parameters on the
polymeric micelle formulation during continuous processing [87].



Pharmaceutics 2023, 15, 2545 16 of 32

Pharmaceutics 2023, 15, x FOR PEER REVIEW  16  of  34 
 

 

difference in physical properties of two types of MeltDrops—loaded with timolol maleate 

(TIM)  or  dorzolamide  hydrochloride  (DRZ)—under  two  different  temperature  condi-

tions, 300 K (room temperature) and 308 K (physiological temperature) (Figure 4B). These 

simulations offered evidence of heightened interactions among drug, polymer, and water 

molecules at a higher temperature (308 K), suggesting the formation of ISGS with desired 

properties, including a solution–gel transition at physiological temperatures. Researchers 

also concluded that the in vitro drug release from MeltDrops technology demonstrated 

sustained and controlled release behavior, while marketed eyedrops showed complete 

drug release in less than 30 min (Figure 4C). Besides, the results demonstrated a percent-

age decrease in intraocular pressure (IOP) following the administration of MeltDrops and 

marketed eyedrops, highlighting the superior IOP-reducing potential of MeltDrops com-

pared  to conventional options  (Figure 4D). Finally, a HET-CAM  test was conducted  in 

order to evaluate the potential ocular irritancy of MeltDrops. The results showed no signs 

of irritation, indicating that they are safe and well tolerated for ocular use [86]. 

 
Figure 4. (A) Schematic depiction of the ISGS manufacturing process via MeltDrops technology. (B) 

Molecular interactions forming between the components of the formulation at two different tem-

peratures: 300 K (a) and 308 K (b): Green CPK model = TIM; Red = DRZ; Blue = Sodium chloride; 

Yellow  = Benzalkonium  chloride; Pink  = HPMC; Orange = Poloxamer  407; Green wire model  = 

Poloxamer 188; Blue = water.  (C) Cumulative  release of  timolol maleate  (TIM) and dorzolamide 

hydrochloride (DRZ) over time from both MeltDrops and commercially available solutions. (D) Per-

centage decrease  in  IOP  following  the administration of MeltDrops and  commercially available 

eyedrops. (E) HET-CAM test results after the application of (a) MeltDrops with no signs of irritation, 

(b) 0.9% w/v saline solutions, also showing no signs of irritation, and (c) 0.1 N Sodium hydroxide 

solution, revealing features such as vascular lysis, coagulation, and hemorrhage [86]. DRZ: dorzola-

mide hydrochloride; IOP: intraocular pressure; ISGS: in situ gelling system; TIM: timolol maleate. 

Previously, a continuous manufacturing technique that utilizes a coaxial turbulent jet 

in  co-flow was  established  for  the production of paclitaxel-loaded polymeric micelles. 

More  recently,  researchers  have  employed  coarse-grained  molecular  dynamics 

Figure 4. (A) Schematic depiction of the ISGS manufacturing process via MeltDrops technology.
(B) Molecular interactions forming between the components of the formulation at two different
temperatures: 300 K (a) and 308 K (b): Green CPK model = TIM; Red = DRZ; Blue = Sodium
chloride; Yellow = Benzalkonium chloride; Pink = HPMC; Orange = Poloxamer 407; Green wire
model = Poloxamer 188; Blue = water. (C) Cumulative release of timolol maleate (TIM) and dorzo-
lamide hydrochloride (DRZ) over time from both MeltDrops and commercially available solutions.
(D) Percentage decrease in IOP following the administration of MeltDrops and commercially avail-
able eyedrops. (E) HET-CAM test results after the application of (a) MeltDrops with no signs
of irritation, (b) 0.9% w/v saline solutions, also showing no signs of irritation, and (c) 0.1 N
Sodium hydroxide solution, revealing features such as vascular lysis, coagulation, and hemor-
rhage [86]. DRZ: dorzolamide hydrochloride; IOP: intraocular pressure; ISGS: in situ gelling system;
TIM: timolol maleate.

In another study, researchers used coarse-grained molecular dynamics simulations
to investigate the behavior of a specific type of block copolymer called poly (ethylene
oxide)-poly (propylene oxide)-poly (ethylene oxide) (PEO-PPO-PEO), commonly known as
pluronics or poloxamers. They studied the effect of polymer and surfactant concentration on
the morphology of these block copolymers and ionic surfactants, namely sodium dodecyl
sulfate (SDS), in aqueous solutions. The results showed that when pluronics and SDS are
present together in the solution, they tend to form mixed micelles and that the shape of
those micelles depends on the relative concentrations of pluronics and SDS in the solution.
The core of the mixed micelles consists of PPO chains from the pluronics, the alkyl tail of
SDS, and some water molecules. The surrounding shell is composed of PEO chains, water
molecules, and the sulfate headgroups of the SDS. Notably, with an increasing amount of
added SDS, the observed morphology of the mixed micelles undergoes a transition from
spherical to wormlike–cylindrical geometry. Overall, the molecular insights gained from
studying the co-assembly of an ionic surfactant and an amphiphilic triblock copolymer in
aqueous media have potential applications in various complex fluid mixtures. However,
the accuracy of the results relies on the coarse-grained force field used, which can be
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improved with more computationally expensive atomistic simulations for quantitative
comparisons with experimental data [88].

4.2.2. Liposomes/Transfersomes

In silico modeling has been employed in the manufacturing of liposomes because it
allows researchers to simulate and predict the behavior of these structures, such as their
stability, size, composition, drug encapsulation efficiency, and release kinetics. Furthermore,
these models can help to optimize the manufacturing process, predict the performance of
liposomal formulations, and guide experimental design [89].

In a recent study, the authors constructed computational models to identify active
pharmaceutical ingredients (APIs) that can achieve the desired high concentrations in nano-
liposomes via remote loading. The models aimed to predict the suitability of APIs for nano-
liposomal delivery by considering fixed main experimental conditions, such as liposome
lipid composition and size. The researchers also added a prediction of drug leakage
from the nano-liposomes during storage, which is crucial for ensuring the development
of pharmaceutically viable nano-drugs. More so, by using “load and leak” models, this
group screened two large molecular databases to identify candidates’ APIs for delivery by
nano-liposomes. Through the screening process, the researchers identified 667 molecules
that showed positive results in both the loading and leakage models, indicating high-
loading and stable characteristics. Among these molecules, 318 received high scores in both
properties and, notably 67 of them are FDA-approved drugs [90]. These findings underscore
the significance of computational modeling in optimizing liposomal formulations. By
narrowing the search to molecules exhibiting high-loading and stability characteristics,
researchers can concentrate their efforts on candidates with a higher likelihood of success.
This approach facilitates efficient use of time, resources, and cost savings compared to
traditional trial-and-error methods.

These computational approaches can—and should—be combined with experimental
studies because it allows for a better understanding of the mechanisms that are being
investigated. Computational modeling not only aids in explaining experimental results,
but has also the potential to guide and inspire new directions for experimental research in
the development of liposomal drug delivery systems [91].

In a study that aimed to develop active targeting liposomes to deliver anticancer agents
to the treatment of hepatocellular carcinoma, computational modeling was used to gain
insight into the structure and behavior of the intended targeted liposomal drug delivery
systems within the bloodstream. This research showcases the complementary nature of
these simulations alongside experimental research, often offering valuable mechanistic
context [92].

Another example of the predictive power of in silico modeling in the pharmaceutical
industry is an investigation that explored the use of thermosensitive liposomes (TSL) for
targeted drug delivery to tumors. The researchers created a three-dimensional computer
model to simulate the delivery of the TSL-encapsulated doxorubicin to mouse tumors. To
do so, a mouse hind limb was scanned using a 3D scanner, and the resulting geometry was
imported into finite element modeling software. A virtual tumor was added to the model,
and the authors simulated the heating process using a surface probe. In addition to the heat
transfer model, the researchers also developed a drug delivery model that simulates the
kinetics of drug release. It is important to mention that the computed model was validated
by performing experimental studies using gel phantoms and in vivo fluorescence imaging
studies in mice with lung tumor xenografts. By comparing the results of the computer
model with the experimental studies, the researchers can assess the accuracy of the model.
The results showed that in silico modeling accurately reproduces the temperature profile
observed in the phantom experiments and that the drug delivery profile simulated by
the model also aligns with the results of the in vivo studies. Overall, it demonstrates the
feasibility of using a computer model to accurately simulate drug delivery in preclinical
studies [89].
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To investigate the distribution of three drugs with different polarities (5-fluorouracil,
ligustrazine, and osthole) within liposomes and transfersomes, researchers conducted a
study using molecular dynamics simulation. To understand the drug distribution, these
authors employed the radial distribution function—which calculates the probability of
finding a drug molecule at a specific distance from a reference drug molecule within the
vesicle—and the potential of mean force—which describes the potential energy between
a drug molecule and the surrounding lipid molecules, indicating the strength of their
interactions. By using these measures, the authors were able to characterize the distribution
of drugs within the lipid vesicles. The results highlight the potential of molecular simulation
technology in understanding the characteristics of lipid vesicles and their interactions with
drugs [93].

4.2.3. Nanocrystals

A study aimed to develop and evaluate an advanced in silico modeling for under-
standing the pharmacokinetics of Foscan®, a formulation containing temoporfin that has
received approval for palliative photodynamic therapy of squamous cell carcinoma of the
head and neck. The researchers conducted precipitation experiments in the presence of
biorelevant media, thereby simulating conditions akin to those encountered in the human
body. This approach aimed to observe the behavior of Foscan® under these physiologically
relevant circumstances. When introduced in these media, the drug underwent a process
of precipitation, forming nanocrystals. Moreover, nanoparticle tracking analysis was em-
ployed to investigate these nanocrystals, providing the means to measure their size and
analyze the distribution of these structures within the sample. Incorporating the data from
these precipitation experiments and nanoparticle tracking analysis, the model predicted
how nanocrystals of Foscan® were formed, their size distribution, and how they interacted
with biological fluids in the body. This information could help them explain and predict
the Foscan® pharmacokinetics more accurately, as nanocrystals can significantly impact
how a drug is absorbed, distributed, and eliminated [94].

In another study, to evaluate the impact of polymers in the production of stable dex-
ibuprofen (Dexi) nanocrystals with improved therapeutic potential, researchers combined
in silico modeling techniques (namely AutoDockVina, Marven Sketch, and Maestro) with
experimental studies. The results provided molecular insight into the mechanisms of
binding of the optimal polymers to the surface of Dexi nanocrystals, showing that the
combination of hydroxypropyl methylcellulose (HPMC)-polyvinyl pyrrolidone (PVP) and
HPMC-Eudragit (EUD) was the most effective in stabilizing Dexi nanocrystals. Overall,
the combination of computational modeling with experimental studies allows researchers
to save time and resources by focusing on the most promising polymer combinations,
thereby expediting the drug development process. Additionally, this integrated approach
provides a deeper understanding of the molecular mechanisms underlying the stabilization
of nanocrystals, helping researchers make more informed decisions in their pursuit of
developing better pharmaceutical formulations [95].

4.3. Machine Learning
4.3.1. Polymeric Micelles

Machine learning algorithms can be utilized to predict various properties and behav-
iors of polymeric micelles. For example, models can be trained using data on polymer
structure, composition, molecular weight, and other relevant parameters, along with exper-
imental outcomes such as micelle size, stability, drug loading, and release profiles. These
models can then be used to predict the behavior of new polymeric systems, guiding the
design and selection of optimal micellar formulations [96].

Researchers used an artificial neural network (ANN) to create a model for the release
of a chemotherapeutic drug—doxorubicin—from polymeric micelles (specifically Pluronic
P105) under two different ultrasound frequencies. Although the exact number of samples
used in the study was not explicitly mentioned, the model was trained using experimentally
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obtained input–output data concerning the release of doxorubicin from the micelles. The
developed ANN model was then employed to optimize the application of ultrasound in
order to achieve the desired drug release at the tumor site. The ANN method accurately
predicted the release behavior and demonstrated maximum prediction errors of 0.002 and
0.001 at ultrasound frequencies of 20 and 70 kHz, respectively. The results demonstrate
the successful design and testing of a controller capable of adjusting ultrasound frequency,
intensity, and pulse length to maintain a constant release of Dox, potentially enhancing
targeted drug delivery to tumor sites [97].

4.3.2. Liposomes/Niosomes

By analyzing large datasets of liposomal properties and characteristics, machine learn-
ing models can identify patterns and correlations between various liposome components
(lipids and encapsulated substances, among others) and their properties (size, stability,
drug release profile). This information can guide the selection of optimal liposome com-
positions and improve formulation success rates [98]. In addition, ML models can also
be trained on existing data to predict important liposomes properties, which may include
encapsulation efficiency, drug release kinetics, stability under different conditions, and
targeting capabilities. By utilizing historical data and relevant features, machine learning
algorithms can provide valuable insights and predictions, enabling more efficient and
targeted liposome development [99].

In fact, there are some trials applying machine learning for liposome formulation
optimization or prediction. For instance, one study proposed a machine learning framework
to address the challenges associated with optimizing the drug entrapment efficiency of
niosomal vesicles, showing that these algorithms allow for the synthesis of niosomal systems
with optimal entrapment efficiency at a lower cost and time (Kashani-Asadi-Jafari et al.,
2022). In another study, scientists built an artificial neural network (ANN) and advanced
machine learning model to optimize the percentage of cytarabine entrapped in the liposome,
showing that the ANN provided more accurate prediction formulations when compared
with the multiple regression analysis method [100]. An ANN model was also developed
to predict the size and polydispersity index of liposomes made of DOPC (1,2 Dioleoyl-
sn-glycero-3-phosphocholine), cholesterol, and DSPE-PEG 2000 1,2 Distearoyl-sn-glycero-
3-phosphoethanolamine-N [amino (polyethylene glycol)-2000] (ammonium salt)) using
a microfluidic system. The results demonstrated that microfluidic-based preparation
techniques assisted by computational tools can accelerate the development and clinical
translation of nano-based pharmaceutical products [101].

Recently, machine learning has been combined with molecular descriptors, which are a
set of quantitative values or features that represent various properties of a molecule’s struc-
ture, composition, and behavior. These are used to encode complex chemical information
into numerical data, which can then be used as input for various computational analysis
and machine learning models. Fundamentally, ML models leverage patterns within data to
predict the properties of novel molecules, eliminating the need for physical synthesis or
testing [98,102]. To illustrate this, an ANN was constructed to develop computational mod-
els focused on optimizing a continuous liposome manufacturing system. In this system, the
liposomes were generated using a co-axial turbulent jet within a co-flow technology. This
means that two phases were used—an ethanol phase with lipids and an aqueous phase—to
create liposomes of uniform sizes. The ANN was used to optimize this manufacturing
process and so, it took various input parameters known as critical material attributes
(CMAs) and critical process parameters (CPPs). CMAs include characteristics of the raw
materials, such as the length of the hydrocarbon tail in lipids, the percentage of cholesterol,
and the type of buffer used. CPPs include process conditions, such as solvent temperature
and flow rate. The ANN’s purpose was to predict critical quality attributes (CQAs) of the
liposomes. In this study, the CQAs were the particle size and polydispersity index (PDI),
which indicate how uniform the liposome sizes are. Thus, two types of ANN architec-
tures were evaluated, namely a multiple-input–multiple-output (MIMO) model—which
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takes multiple inputs and produces multiple outputs—and a multiple-input–single-output
(MISO) model—which takes multiple inputs but produces a single output (Figure 5A). The
study found that the MISO architecture outperformed the MIMO architecture in terms of
accuracy for the task at hand. Apart from the ANN model, a graphical user interface was
also created to help end-users perform interactive simulated risk analysis and visualize
the predictions made by the ANN model (Figure 5B). Evaluations demonstrated that the
developed graphical user interface yields accurate predictions for both liposome particle
size and PDI as long as the chosen inputs fall within the scope of the studied conditions
during the initial ANN training. These predictions have the potential to contribute to the
formulation of a control strategy designed to mitigate the impact of process disturbances
on liposome particle size. Utilizing the five input features mentioned earlier, an ANN was
trained with the primary goal of minimizing the mean relative error (MRE), which was
successfully achieved at a level below 5%. It was notably a very low error for predicting
particle size, as is evident from the comparison between the target and predicted values pre-
sented in Figure 5C. However, the prediction accuracy for PDI was notably inadequate, as
indicated by the results displayed in Figure 5D. Basically, despite the successful predictions
for particle size, the model encountered challenges in accurately forecasting PDI values. To
mitigate the training error, researchers introduced molecular descriptors as supplementary
inputs to the ANN. These were obtained using PaDEL-Descriptor software and helped
the ANN understand the characteristics of the raw materials. A combination of CMAs,
CPPs, and molecular descriptors was used to train the MISO ANN model and allowed
for the reduction of errors during both training and testing, indicating improved model
performance (Figure 5E). Overall, via a combination of critical material attributes, process
parameters, and molecular descriptors, this study improved the accuracy of predicting the
quality attributes of liposomes [103].

In another study, ML techniques were used to create prediction models capable of
individually predicting crucial parameters of liposomes, such as size, PDI, zeta potential,
and encapsulation efficiency. To validate the predictive prowess of these models, liposome
formulations were created for two distinct compounds: naproxen (NAP) and palmatine
HCL (PAL), representing insoluble and water-soluble molecules, respectively. In order to
evaluate the significance of drug properties in liposome behavior, further investigation
into the molecular interactions and behaviors of NAP and PAL within liposomes was
undertaken via coarse-grained molecular dynamics simulations. Figure 6A(a,a1) depict
the initial configurations of the two systems, of which ten underwent dynamic simulations
lasting 1 microsecond. Snapshots captured during the modeling process are illustrated in
Figure 6A(b,b1), while the ultimate structures of the respective liposomes are displayed
in Figure 6A(c,c1). Additionally, the size distribution was assessed, and the structures of
the liposomes containing NAP and PAL were characterized using transmission electron
microscopy, showcased in Figure 6A(d1,d2). These simulations demonstrated that NAP
molecules tend to integrate into the lipid layer, while a majority of PAL molecules aggregate
within the inner aqueous phase of the liposome. The marked disparity in the physical
states of NAP and PAL underlines the pivotal role of drug properties in formulating
liposomes. Additionally, formulation attributes were ranked to offer significant insights
for designing effective formulations. Given that logS (logarithm of a compound’s aqueous
solubility), molecular complexity (an assessment of the intricacy of a structure), and XLogP3
(represent a predictive estimation of the octanol–water partition coefficient, determined via
a specific algorithm) of the drug molecules held significant influence over encapsulation
efficiency, their correlation was illustrated using a heatmap, depicted in Figure 6B. This
heatmap employed color visualization in a two-dimensional format to depict the data
relationship effectively. Basically, drug molecules with certain properties, such as a logS
value between −3 and −6, a molecular complexity between 500 and 1000, and a XLogP3
value greater than or equal to 2, are considered a priority for formulating liposomes with
better encapsulation. Finally, in Figure 6C, it is possible to observe a congruence between
predicted and experimental outcomes, which serves as confirmation of the ML model’s
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satisfactory accuracy. In summary, the researchers established comprehensive prediction
models for anticipating liposome formulations, and the influences of key factors were
dissected by combining ML techniques with molecular modeling. The study successfully
validates the availability and rationality of these intelligent prediction systems, offering
promising applications for the future development of liposome formulations [98].
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Based on all of that, it is safe to say that machine learning plays a valuable role in
the development of liposomes by assisting in formulation design, predicting liposome
properties, optimizing drug loading and release, analyzing characterization data, and opti-
mizing manufacturing processes. By leveraging machine learning techniques, researchers
can expedite the development and improve the performance of liposomal formulations for
drug delivery and other biomedical applications [104].
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4.3.3. Nanocrystals

Machine learning techniques have been increasingly employed in the field of nanocrys-
tal development. For instance, they can be trained to predict the properties of nanocrystals
by using data from a variety of sources, including experimental measurements, theoret-
ical calculations, and molecular descriptors. These predictive models can assist in the
design and selection of nanocrystals with desired properties, saving time and resources
by reducing the need for extensive experimental testing. In fact, to address this issue,
researchers collected data on nanocrystal size (910 data points) and polymer dispersity
index (341 data points) using three different preparation methods—ball wet milling (BWM),
high-pressure homogenization (HPH), and antisolvent precipitation (ASP)—in order to
construct prediction models [105].

The results indicated that the machine learning performed well in predicting those
properties for BWM and HPH methods but showed relatively poor predictions for the ASP
method. Figure 7A displays scatter plots comparing the predicted values, generated by
the machine learning model, with the experimental values of nanocrystals sizes within
BWM, HPM, and ASP size dataset subsets. Within the BWM subsets, the predicted values
closely matched the experimental values in the size range of 0–500 nm. Nevertheless, for
data points outside of this range, particularly those exceeding 500 nm, predicted values
displayed significant disparities from the experimental values, especially in the validation
and test datasets. The findings suggest that the constructed learning model exhibits
superior predictive accuracy for data points falling within the 0–500 nm range, particularly
where the data density is higher in the BWM size dataset. It is evident that the uneven
distribution of data within the dataset significantly influences the model’s construction
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and predictive performance. On the other hand, due to the limited availability of input
data within the size range of 500 to 1000 nm, learning algorithms struggled to discern the
underlying data patterns, leading to less accurate predictions. The scatter plots for the
HPH and ASP subsets showed comparable results, with predicted values closely aligning
with experimental values in regions where data density was higher [105].
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ated by the algorithm with the actual sizes of nanocrystals prepared with BWM (a–d), HPH (e–g),
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Figure 8A, on the other hand, displays scatter plots comparing the predicted values to
the experimental values of PDI data. The machine learning algorithm performed admirably
in predicting this property values within the BWM and HPH subsets, as indicated by the
close alignment of data points with the black line. Despite the relatively small datasets with
only 133 and 119 data points in the BWM and HPH PDI datasets, respectively, the algorithm
still demonstrated accurate predictions, likely due to the concentrated data distribution.
Conversely, in the ASP subsets, the predictive performance in the training set was notably
less accurate. This could be attributed to the smaller volume of data and the lower data
quality within these subsets [105].

The researchers speculated that the poor prediction for the ASP method might be
due to the lower quality of data resulting from the poor reproducibility and instability of
nanocrystals prepared using this method. It was also found that the majority of commer-
cialized nanocrystals products were manufactured using BWM and HPH approaches. ML
helped rank the factors influencing nanocrystal properties, indicating that milling time, cy-
cle index, and stabilizer concentration were crucial factors for the nanocrystals prepared by
BWM, HPH, and ASP methods, respectively. The accuracy of these predictions was further
confirmed by experiments with newly prepared nanocrystals. Concerning the nanocrystals
size, the findings indicate that the algorithm delivered accurate predictions for most of
the nanocrystals produced through the BWM (Figure 7B(a–d)) and HPH (Figure 7B(e–g))
methods. However, the predicted performance for ASP nanocrystals (Figure 7B(h–k)) fell
short, with predicted values being roughly twice as large as the experimentally measured
sizes. Regarding PDI predictions, the algorithm also demonstrated effective forecasting
for BWM (Figure 8B(a–d)) and HPH (Figure 8B(e–g)) datasets, but showed comparatively
poorer performance for ASP (Figure 8B(h–k)). The most likely reasons for this subpar
predictive performance were the limited volume of data available for ASP size and PDI
datasets used in constructing machine learning models, and the lower data quality stem-
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ming from the constraints of the preparation methods. These issues ultimately led to the
failure of predictions within the ASP dataset.
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Overall, the results highlights the potential of using machine learning in nanotech-
nology manufacturing, providing a promising alternative to traditional, labor-intensive
approaches in nanocrystal formulation development [105].

4.4. Digital Twins

Digital twins have emerged as a transformative technology in the pharmaceutical
industry, offering a powerful tool for improving drug development processes and product
lifecycle management [106]. In the realm of traditional pharmaceuticals, their significance
is already well recognized, as digital twins enable the creation of virtual replicas of physical
drugs and manufacturing processes, facilitating real-time monitoring, optimization, and
quality control [39,40]. However, it is important to highlight the lack of experimental
studies on the application of these technologies in the NBCD domain. This is an exciting
frontier for innovation and has the potential to significantly advance the development,
manufacturing, and quality assurance of these pharmaceutical products.

5. Regulatory Issues

Regulatory agencies, including the FDA, believe that the incorporation of computa-
tional methods into the field of pharmaceutics can enhance product quality. When these
methods are used, a deeper understanding of the process involved in product design is
achieved, aligning with the principles of QbD [7]. In fact, the FDA has been moving towards
performance-based regulation, focusing on measurable outcomes rather than prescriptive
processes, which aligns well with Pharma 4.0 and its extensive data capabilities [3].

To attain Pharma 4.0, it is essential to embrace cutting-edge manufacturing technolo-
gies while simultaneously surmounting regulatory obstacles [12]. For instance, initially,
the absence of a well-defined regulatory framework was notable, hindering innovators
from integrating digital technologies with traditional processes due to a lack of regulatory
precedents. However, more recently, significant strides have been taken in this direction. In
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particular, the FDA has taken a proactive step by establishing the Digital Health Center of
Excellence, aiming to adopt a comprehensive approach to digital health technology [107].

Moreover, filing regulatory applications across different jurisdictions with varying
expectations can be burdensome, particularly for emerging manufacturing technologies.
Achieving international regulatory convergence could provide clarity and certainty for
manufacturers. Besides, the industry may simultaneously comprise companies operating
under Pharma 2.0, 3.0, and 4.0 paradigms. Regulating such a diverse landscape requires
flexible frameworks to enable the adoption of new technologies without disrupting supply
from older technology-based manufacturers [3].

It is important to note that, at present, the FDA has already approved several 3D
printed products, which encompass not only drug products—such as Spritam®—but also—
and essentially—a diverse range of medical devices that include orthodontic implants,
prosthetics, anatomical models, and reaction-wares [108]. In December 2017, the FDA
released a set of guidelines titled “Technical Considerations for Additive Manufactured
Medical Devices”, which provides guidelines covering various aspects, including software
and hardware requirements, quality control, and process validation procedures. However,
considering the complexity of medicinal products, which often have more demanding
requirements than medical devices, separate regulatory considerations are needed. APIs
present additional challenges, such as potential incompatibilities and the stability of the
active substance during the printing process [109].

Nonetheless, due to the variability of additive manufacturing methods, it is challeng-
ing to devise a universal set of guidelines applicable to all 3D printing techniques. The
truth is that, given the multitude of factors influencing the quality of computationally de-
signed dosage forms and the safety of their use, the establishment of appropriate regulatory
requirements is of utmost importance. However, currently, there are no valid regulations
concerning the design, manufacturing process, and quality testing considerations specific
to three-dimensional printing in the pharmaceutical industry [110]. Recently, it has been
emphasized that 3D printing, as a manufacturing process, does not pose regulatory limi-
tations as long as the final product meets the established requirements. For instance, the
previously mentioned approved 3D printed tablet, Spritam®, includes the same excipients
that are found in conventional tablets. The only difference lies in the production process.
Consequently, it is reasonable to assume that similar quality requirements apply in this
case as they do for other orally disintegrating tablets [111].

Overall, as the pharmaceutical industry is transitioning into the Pharma 4.0 era,
regulatory agencies are exploring ways to adapt and accommodate the advancements
brought by these new technologies [107].

6. Future Prospects

Pharma 4.0 technologies have demonstrated significant promise in the manufacturing
of NBCDs. The integration of advanced digital techniques, automation, and data analytics
in the pharmaceutical industry has the potential to optimize processes, enhance quality
control, enable customization, and improve supply chain efficiency, ultimately leading to
improved production and delivery of NBCDS.

However, there is still much potential for further development and some areas where
ongoing work and future efforts can be focused. For instance, these technologies can extend
to various other NBCDs, such as glatiramer acetate and iron carbohydrate complexes as,
to the best of our knowledge, there are no experimental studies available that assess the
impact of Pharma 4.0 in these NBCDs. The implementation of digital twins is also expected
to assist in simulating and optimizing NBCD manufacturing. By integrating real-time data
from sensors and process models, digital twins can enable virtual testing, scenario analysis,
and optimization of manufacturing operations to enhance productivity and efficiency. It is
important to take into consideration that as the implementation of Pharma 4.0 techniques
progresses, regulatory frameworks need to evolve to accommodate the use of advanced
technologies in NBCD manufacturing. This includes addressing data security and privacy
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concerns and establishing guidelines for the validation and qualification of digital systems
while ensuring compliance with evolving regulatory requirements.

In the machine learning domain, SVMs and random forests stand out as increasingly
promising alternatives to ANNs. Particularly in cases where datasets are limited, ANNs
tend to be prone to overfitting due to their complex nature. SVMs, with their remarkable
ability to capture intricate relationships within data, and random forests, with their en-
semble learning capabilities, offer a more robust and adaptable solution for the challenges
unique to NBCDs. These methods, by effectively handling complex NBCD compositions
and diverse characteristics, could provide a brighter prospect for the domain, emphasizing
precision, reliability, and the capacity to meet quality and safety standards [37,38].

Still in the machine learning domain, experimental studies that employ multiple
metrics to quantify the model’s performance are surprisingly scarce. This gap in the
research landscape highlights the need for a more comprehensive approach to assessing
the effectiveness of these models. By incorporating a variety of evaluation metrics, such as
accuracy, precision, recall, F1 score, ROC-AUC (receiver operating characteristic–area under
the curve), and others tailored to the specific problem, researchers can gain a more nuanced
and holistic understanding of their model’s performance. This multifaceted evaluation
approach is vital in ensuring a more accurate and reliable appraisal, ultimately leading to
better-informed decision-making and higher-quality work within the realm of machine
learning [112,113].

In addition, it is also important to keep in mind that the implementation of Pharma 4.0
principles and technologies implies a reevaluation and readjustment of economic policies
and legal frameworks and the establishment of financial stability to accommodate these
emerging techniques. This also calls for a transformation in the academic curriculum to
facilitate the acquisition of necessary skills, upskill the workforce, and foster system-wide
awareness [6].

Overall, the prospects of Pharma 4.0 in the manufacturing of NBCDs are very promis-
ing. The implementation of advanced digital technologies and data-driven approaches
can optimize processes, improve quality assurance, enhance customization capabilities,
and streamline supply chains, ultimately leading to more efficient and effective NBCD
manufacturing.

While the concept of Pharma 4.0 continues to grow and its techniques are slowly
applied, there is an ongoing discussion about the potential evolution of the pharmaceutical
industry beyond the current Pharma 4.0 framework. In fact, the term Pharma 5.0 has
already been mentioned. It represents a possible future stage in which the integration of
advanced technologies and data-driven approaches in the pharmaceutical sector goes even
further. Hence, the prospects are very ambitious, considering the potential of these tools,
but also a challenge, in particular for the regulatory follow-up that will have to be given in
this context.

7. Conclusions

Concerning non-biological complex drug manufacturing, Pharma 4.0 techniques such
as machine learning, in silico modeling, and 3D printing allow for enhanced overall
production efficiency by streamlining operations and reducing production time, ultimately
leading to cost savings. Additionally, the increased automation and use of real-time data
analytics have improved process monitoring and control, minimized the risk of errors, and
ensured a higher level of product quality and consistency.

However, the integration of Pharma 4.0 in the manufacture of NBCDs is still limited,
essentially restricted to nanocrystals, liposomes, and polymeric micelles. It would be of
great interest to extend the investigation of these techniques to other NBCDs, such as
glatiramer acetate and iron carbohydrate complexes, for example. On the other hand, in
the realm of machine learning, where extensive research has been conducted, it would be
relevant to approach some other algorithms instead of focusing solely on ANN. Another
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constraint in the machine learning domain is the fact that there is a scarcity of experimental
studies that use multiple metrics to gauge the model’s performance.

Digital twins seem to be very promising in the field of pharmaceutical industry, but
they have not been applied to the domain of NBCDs. However, by integrating real-time data
from sensors and process models, digital twins can enable virtual testing, scenario analysis,
and optimization of manufacturing operations to enhance productivity and efficiency.

It is also important to acknowledge the challenges associated with the adoption of these
technologies, such as the need for skilled personnel capable of operating and maintaining
advanced technologies, ensuring data security and privacy, and addressing regulatory
concerns regarding the validation and qualification of these novel manufacturing processes.

Overall, it is safe to say that the implementation of Pharma 4.0 technologies in the
manufacturing of NBCDs represents a transformative approach and a paradigm shift in
the pharmaceutical industry. As we move forward, continuous research and innovation
will pave the way for a more sustainable and patient-focused pharmaceutical landscape.
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Abbreviations

ANN Artificial neural network
AI Artificial intelligence
API Active pharmaceutical ingredient
ASP Antisolvent precipitation
BWM Ball wet milling
CESS® Controlled expansion of supercritical solution
CMAs Critical material attributes
CNS Central nervous system
CPPs Critical process parameters
CQAs Critical quality attributes
3D Three-dimensional
Dexi Dexibuprofen
DMT Disease-modifying treatment
DRZ Dorzolamide hydrochloride
EAE Experimental autoimmune encephalomyelitis
EUD Eudragit
FD Freeze-dried
FDA Food and Drug Administration
GA Glatiramer acetate
GI Gastrointestinal
hERG Human ether-a-go-go-related gene
HME Hot-melt extrusion
HPH High-pressure homogenization
HPMC Hydroxypropyl methylcellulose
IOP Intraocular pressure
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ISGS In situ gelling system
MD Molecular dynamics
MIMO Multiple-input–multiple-output
MISO Multiple-input–single-output
MF Microfluidic technology
ML Machine learning
MRE Mean relative error
MS Multiple sclerosis
NanoPRX Nanoformed piroxicam
NN Neural network
NAP Naproxen
NBCD Non-biological complex drug
PEO-PPO-PEO Poly(ethylene oxide)-Poly(propylene oxide)-Poly(ethylene oxide)
PAL Palmatine HCL
PAT Process analytical technology
PDI Polydispersity index
PVP Polyvinyl pyrrolidone
QbD Quality by design
RTD Room temperature-dried
SDS Sodium dodecyl sulfate
SVM Support vector machines
SSE Semi-solid extrusion
TEER Transepithelial electrical resistance
TIM Timolol maleate
TNF-α Tumor necroses factor-α
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