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Abstract: Chagas disease and leishmaniasis are both neglected tropical diseases that affect millions
of people around the world. Leishmaniasis is currently the second most widespread vector-borne
parasitic disease after malaria. The World Health Organization records approximately 0.7–1 million
newly diagnosed leishmaniasis cases each year, resulting in approximately 20,000–30,000 deaths.
Also, 25 million people worldwide are at risk of Chagas disease and an estimated 6 million people are
infected with Trypanosoma cruzi. Pentavalent antimonials, amphotericin B, miltefosine, paromomycin,
and pentamidine are currently used to treat leishmaniasis. Also, nifurtimox and benznidazole are two
drugs currently used to treat Chagas disease. These drugs are associated with toxicity problems such
as nephrotoxicity and cardiotoxicity, in addition to resistance problems. As a result, the discovery
of novel therapeutic agents has emerged as a top priority and a promising alternative. Overall,
there is a need for new and effective treatments for Chagas disease and leishmaniasis, as the current
drugs have significant limitations. Peptide-based drugs are attractive due to their high selectiveness,
effectiveness, low toxicity, and ease of production. This paper reviews the potential use of peptides in
the treatment of Chagas disease and leishmaniasis. Several studies have demonstrated that peptides
are effective against Chagas disease and leishmaniasis, suggesting their use in drug therapy for
these diseases. Overall, peptides have the potential to be effective therapeutic agents against Chagas
disease and leishmaniasis, but more research is needed to fully investigate their potential.

Keywords: neglected tropical diseases; parasites; Chagas disease; leishmaniasis; life cycle; drug
target; biochemical mechanisms; pharmacological therapeutics; peptides

1. Introduction

Chagas disease (CD), leishmaniasis, and human African trypanosomiasis (HAT) are
neglected tropical diseases (NTDs) caused by insect vector-borne protozoan parasites. Over
100,000 people die each year from NTDs worldwide, most living on less than USD 2 per
day [1]. Chagas disease (aka American trypanosomiasis) is an infectious disease caused
by the parasite Trypanosoma cruzi (T. cruzi), African Trypanosomiasis (“sleeping sickness”)
is caused by Trypanosoma brucei (T. brucei), and leishmaniasis is caused by a protozoa
parasite from over 20 Leishmania species [2,3]. Leishmaniasis is ranked second among all
protozoan diseases for mortality after malaria [4]. The current drugs used against NTDs
are suboptimal. For example, the only Food and Drug Administration (FDA)-approved
medications for leishmaniasis are intravenous liposomal amphotericin B (L-AmB) for
visceral leishmaniasis (VL) and oral miltefosine for cutaneous leishmaniasis (CL), mucosal
leishmaniasis (ML), and VL caused by particular species [5]. The cost of treatment with
amphotericin B deoxycholate varies widely between countries, ranging from less than USD
1 to USD 171 per day. Liposomal amphotericin B is a newer formulation that is less toxic
but more expensive than deoxycholate amphotericin B. The cost of a single dose of 50 mg
amphotericin B deoxycholate varies widely across countries. In Zambia, the Netherlands,
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Russia, and Chile, it is less than USD 1 per day. In India, prices range from USD 1 to USD
10 per dose, while in the United States (US), a single dose costs approximately USD 50 [6,7].
Amphotericin B deoxycholate is well known for its severe and potentially lethal side effects
(e.g., fever, shaking, chills, flushing, loss of appetite, and many more). As a result, the
recommended course of treatment is frequently not followed, resulting in the development
of resistance [8–10]. Moreover, there are no effective vaccines for leishmaniasis [10]. Similar
challenges are also associated with drugs for Chagas disease. The safety profile of the
currently available drugs is far from ideal, with frequent adverse events and high drug
discontinuation rates. There are only two drugs available for treating Chagas disease:
benznidazole (BZN) and nifurtimox (NFX). Although these drugs are effective in the acute
phase, they have limitations for chronic infections, and both drugs are restricted due to
their toxic effects. For example, Nifurtimox is no longer used in many places since it
causes neurological disorders or psychiatric episodes. Therefore, there is an urgent need to
develop effective, safe, and affordable drugs [11].

Drug discovery aims to identify novel compounds that specifically and significantly
change the course of the diseases they are intended to treat. There is a pressing need to
identify new therapeutics for NTDs and novel approaches to drug design and development
are needed. However, due to the lack of commercial benefits, pharmaceutical companies
are discouraged from investing in NTD product development [12,13]. Recently, virtual
screening, a convenient and cost-effective solution in the early stages of drug discovery,
has been used for the discovery of anti-trypanosomal and anti-leishmanial drugs with
some promising results [14]. Nevertheless, computational methods should be validated
experimentally [15]. Other examples are target-based or phenotype-based drug discovery,
which are probably the most effective strategies for drug discovery for NTDs [16]. Another
appealing approach is repurposing existing drugs. Drug repurposing discovers new disease
indications for previously approved drugs that benefit from accessible compound libraries.
This has yielded some promising compounds for various NTDs. Yet, repurposing an
existing drug poses a major challenge in identifying an appropriate therapeutic indication
for it. It involves multiple factors, such as technology, patents, investment, and clinical
trials. Recent advances in production, modification, and analytical technologies have led to
an increased interest in peptides as therapeutics for NTDs [17,18].

2. Leishmaniasis and Chagas Disease
2.1. Life Cycle of Trypanosomatidae

Leishmaniasis and Chagas disease are caused by trypanosomatid parasites. In mam-
mals, leishmaniasis and Chagas disease are transmitted through the sandfly and the tri-
atomine bug, respectively. The differentiation of these trypanosomatids occurs partially in
the vector and the host. This is accomplished with different developmental stages giving
rise to the infective stage of the parasite that infects mammals [19]. We discuss the stages of
development and differentiation of the parasites in the vector and host involved in the life
cycles of both leishmaniasis and Chagas disease (Figure 1).

2.1.1. Life Cycle of Leishmania Species

Leishmaniasis is caused by the protozoan parasite of the genus Leishmania belonging
to the Trypanosomatidae family. It is spread through female sandflies of the genera Phle-
botomus and Lutzomyia [20]. The parasite’s life cycle is complex as it includes vector and
mammalian reservoirs for its morphogenesis; hence, it resembles a digenetic life cycle [21].
The parasite’s entry is during the blood meal event, where motile metacyclic promastigotes
are transferred into the blood through sandfly saliva [22]. Next, the metacyclic promastig-
otes migrate to healthy macrophages. Proteins on the parasite flagella interact with the
macrophagic cell membrane and gain entry through phagocytosis by forming pseudopods
infecting macrophages [23,24]. In the macrophage, promastigote forms differentiate from
motile forms, which have elongated cell shapes and long flagellums, to amastigote forms,
which have short flagellums [1]. After fusing with the parasitophorous vacuole, the host
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lysosomes create an environment for parasite replication. Finally, the macrophages rupture,
and the amastigotes are released into the bloodstream [22].
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Figure 1. The life cycle of Leishmania species and Trypanosoma cruzi. The figure elaborates the simi-
larities and differences between the two parasitic infestations involving the vector, host, and stages 
of parasitic differentiation. Though there are few similarities in the parasitic differentiation of Cha-
gas and leishmaniasis in the host cells, the figure emphasizes parasitic differentiation in the vector. 
During a blood meal, it is also transmitted to the host. When insects feed on blood, they release feces 
that contain metacyclic trypomastigotes. A bite wound or conjunctiva allows the parasite to enter 
the bloodstream. When infiltrating the bloodstream, T. cruzi can infect any nucleated cell. Once the 
parasite enters a host cell and transforms into an amastigote, it reproduces in the cytoplasm. An 
intracellular parasite matures into a trypomastigote after several replications. When a mammalian 
host is disrupted, trypomastigotes are released into the bloodstream and ingested by triatomines 
during a blood meal. Epimastigotes and metacyclic trypomastigotes are present in the insect gut at 
various developmental stages. The figure also distinguishes between various steps involved in par-
asite development inside the cellular compartments and provides a complete life cycle illustration 
with a comparison of the life cycle of the parasites inside the vector and the host. BioRender.com 
(accessed on 25 September 2023) was used to generate this Figure. 
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Figure 1. The life cycle of Leishmania species and Trypanosoma cruzi. The figure elaborates the
similarities and differences between the two parasitic infestations involving the vector, host, and
stages of parasitic differentiation. Though there are few similarities in the parasitic differentiation of
Chagas and leishmaniasis in the host cells, the figure emphasizes parasitic differentiation in the vector.
During a blood meal, it is also transmitted to the host. When insects feed on blood, they release feces
that contain metacyclic trypomastigotes. A bite wound or conjunctiva allows the parasite to enter
the bloodstream. When infiltrating the bloodstream, T. cruzi can infect any nucleated cell. Once the
parasite enters a host cell and transforms into an amastigote, it reproduces in the cytoplasm. An
intracellular parasite matures into a trypomastigote after several replications. When a mammalian
host is disrupted, trypomastigotes are released into the bloodstream and ingested by triatomines
during a blood meal. Epimastigotes and metacyclic trypomastigotes are present in the insect gut
at various developmental stages. The figure also distinguishes between various steps involved in
parasite development inside the cellular compartments and provides a complete life cycle illustration
with a comparison of the life cycle of the parasites inside the vector and the host. BioRender.com
(accessed on 25 September 2023) was used to generate this Figure.

The blood meal is digested in the sandfly midgut where the amastigotes cluster to-
gether forming nest cells. The nest cells are surrounded by an enclosed structure called the
peritrophic matrix, which protects the amastigotes from the insect’s gut environment [22,25].
The amastigotes transform into elongated flagellated procyclic promastigotes inside the per-
itrophic matrix. It is their first replicative stage. After 48–72 h, the procyclic promastigotes
differentiate into long motile nectomonad promastigotes that break open the peritrophic
matrix and enter the midgut lumen. Nectomonad promastigotes transform into short motile
nectomonad promastigotes called leptomonad promastigotes and adhere to the microvilli
of the midgut epithelium of the insect [26,27]. Here, the leptomonad promastigotes migrate
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and concentrate at the anterior stomodeal valve. Here, they differentiate into metacyclic
promastigotes that infect mammalian hosts. During the transformation to metacyclic stages,
they secrete a gel called promastigote secretory gel (PSG), creating a “block fly” that forces
the sandfly to feed on the blood and transfer metacyclic promastigotes from the vector to
the mammalian host, thereby starting the cycle all over [28].

2.1.2. Life Cycle of Trypanosoma cruzi

Chagas disease is a protozoan disease caused by T. cruzi of the genus Trypanosoma
belonging to the Trypanosomatidae family. It is caused by the parasitic defecation of a
blood-sucking vector called the triatomine bug (aka the kissing bug). As a result of the
undetermined spread of feces on the wound by human actions, the parasite enters the
host [29]. The first step upon entry into the host is adhesion. This is where metacyclic try-
pomastigotes attach to host cellular receptors with their flagella. Parasite flagella consists of
molecules belonging to the Apicomplexa family that adhere to the host cell membrane. By
binding glycoproteins to the cell membrane, metacyclic trypomastigotes mobilize calcium
necessary for entry into the cytoplasm [30]. Next, the adhered parasite recognizes and
alters ligands such as lectin-like molecules on the surface for safe internalization via endo-
cytosis mediated by clathrin and caveolar lipids [30]. Also, internalization by phagocytosis,
micropinocytosis, and circular dorsal ruffle formation has been reported [31]. The parasite
resides safely within the parasite phosphorus vacuole formed by the plasma membrane and
then fusses with the lysosome. When lysosomes fuse, parasites can differentiate from trypo-
mastigotes to short globular organisms with small flagella, known as amastigotes, whereas
some remain trypomastigotes [32]. After or during differentiation, the amastigotes secrete
hemolysin, also called Tc-Tox, and trypomastigotes secrete trans-sialidase/neuraminidase,
required for fragmentation of the parasite phosphorus vacuole, and enter the cytoplasm. As
this process occurs during the differentiation of metacyclic trypomastigotes into amastig-
otes, both forms are observed in the cytoplasm. The intracellular amastigote form further
differentiates to form bloodstream trypomastigotes. Bloodstream trypomastigotes rupture
the host cell and enter the bloodstream, infecting other cells [32–34].

During the blood meal of an infected individual, trypomastigotes enter the triatomine
bug’s gut. Here, most bloodstream trypomastigotes are digested. Surviving parasites
differentiate and transform into small spherical structures called spheromastigotes with
a small extended flagellum. In the midgut, the spheromastigotes elongate and further
extend their flagella, differentiating them into epimastigotes [35]. The long-flagellated
epimastigotes migrate to the hindgut and anchor to the perimicrovillar membranes of the
hindgut intestine. This anchorage initiates the non-infective epimastigotes differentiation
to infective metacyclic trypomastigotes which detach from the intestinal membranes and
are migrated to the rectum where they are excreted in the feces and urine of the triatomine
bug, infecting mammalian hosts [36].

2.2. Epidemiology of Trypanosomatids

Trypanosomatids are a family of parasites causing infectious diseases categorized into
trypanosomiasis and leishmaniasis. Trypanosomiasis is further subdivided into Ameri-
can and African diseases, also known as Chagas disease and African sleeping sickness,
respectively. Leishmaniasis is also further classified based on its prevalent geographical
location. Trypanosomiasis and leishmaniasis are neglected diseases widely observed in
underdeveloped countries, mainly in Southern Asian countries, African countries, and
South American countries [36]. Various factors influence trypanosomiasis and leishmania-
sis species and their development, including carrier vectors, vertebrate hosts, biochemical
enzyme patterns, parasite phylogeny, and geographical distribution [37,38]. Table 1 lists
the main Leishmania and Trypanosoma species.
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Table 1. Geographical and species distribution of leishmaniasis and Chagas disease.

No Diseases Species Types Geographic Distributions References

1

Leishmaniasis

Leishmania (L.)
Aethiopica

Cutaneous and
mucocutaneous leishmaniasis Ethiopia, Kenya [39]

2 L. Tropica Visceral and cutaneous
leishmaniasis

Eastern and Northern India,
Central Asia, East and South
Africa, Middle East

[39]

3 L. Amazonensis Cutaneous and
mucocutaneous leishmaniasis Brazil, Bolivia, Venezuela [40]

4 L. Infantum Visceral and cutaneous
leishmaniasis

Mexico, Brazil, Bolivia, Venezuela,
Northern Africa, Middle East,
Mediterranean regions, Southern
Europe, Central Asia

[41]

5 L. Donovani
Post Kala azar dermal
leishmaniasis, visceral and
cutaneous leishmaniasis

India, Myanmar, Nepal, Sri
Lanka, Middle East, China,
Ethiopia, Kenya, Sudan

[41]

6 L. Major Cutaneous and
mucocutaneous leishmaniasis

Central Asia, Middle East,
Central, Northern and West
Africa

[42]

7 L. Mexicana Cutaneous and visceral
leishmaniasis

United States of America,
Venezuela, Ecuador, Peru, Brazil [40]

8 L. Venezuelensis Cutaneous leishmaniasis Northern and Southern America,
Venezuela [43]

9 L. Braziliensis Cutaneous and
mucocutaneous leishmaniasis

Amazon stretch, Brazil, Southern
America, Bolivia, Peru, Venezuela [44]

10 L. Guyanensis Cutaneous and
mucocutaneous leishmaniasis

Southern America, French
Guiana, Suriname, Brazil [45]

11 L. Panamensis Cutaneous and
mucocutaneous leishmaniasis

Panama, South and Northern
America, Brazil, Ecuador,
Columbia, Venezuela

[45]

12 L. Lainsoni Cutaneous leishmaniasis French Guiana, Peru, Bolivia,
Brazil [46]

13 L. Naffi Cutaneous leishmaniasis French Guiana, Brazil [46]

14 L. Lindenberg Cutaneous leishmaniasis Brazil [47]

15 L. Peruviana Cutaneous and
mucocutaneous leishmaniasis Peru, Bolivia, Amazon [48]

16 L. Shawi Cutaneous leishmaniasis Brazil [49]

17 L. Martiniquensis Visceral and cutaneous
leishmaniasis

Martinique, Thailand, France,
Germany, Switzerland, Myanmar [50]

18 L. Siamensis Visceral and cutaneous
leishmaniasis

Central Europe, Thailand, United
States of America [51]

19 L. Colombiensis Visceral and cutaneous
leishmaniasis Columbia [52]

20

African
Trypanosomiasis
(aka Sleeping
Sickness)

T. brucei Acute and chronic infections Eastern, Western, Southern and
Central Africa [53]

21
Chagas disease
(aka American
trypanosomiasis)

T. cruzi Acute and chronic infections Bolivia, Argentina, Paraguay,
Ecuador, El Salvador, Guatemala [54]
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2.3. Clinical Complications and Conditions of Leishmaniasis and Chagas Disease

Leishmaniasis and Chagas disease cover a broad disease spectrum that affects humans
and other mammals. Clinical manifestations and treatment options for leishmaniasis and
Chagas disease are limited due to various factors, including the complexity of the parasitic
species and subtypes. This makes it very difficult for doctors to determine the disease’s
type and choose the optimal treatment plan [55].

2.3.1. Leishmaniasis
Cutaneous Leishmaniasis (CL)

Cutaneous leishmaniasis (CL) is the most typical clinical symptom of Leishmania infec-
tion. Initial signs include single or multiple skin lesions localized to exposed body parts
such as the face and may result in social stigma [56]. Numerous painless brownish erythe-
matous papules with multiple nodules that resemble plague are seen after an incubation
period of between two and seven months. It is followed by itchy and painful fluid discharge,
warmth, swelling, and fever, which further develop into volcanic plagues associated with
lymphangitis that differentiate from other ulcerative plagues (Figure 2). Bacterial and fun-
gal infections are common on exposed cutaneous lesions, causing secondary infections [57].
There are findings of co-infection with diseases like helminthiasis, leprosy, Human African
trypanosomiasis, and Chagas disease [58]. A few reports of leishmaniasis co-infection
with immunosuppressed patients under Human immunodeficiency virus (HIV) treatment
have also been observed among patients. There have also been granulomatous and tumor-
ous skin diseases, including subcutaneous mycosis, deep mycosis, cutaneous lymphoma,
pseudolymphoma, basal cell carcinoma, and squamous cell carcinoma, among patients
(Figure 2) [59]. Due to these clinical complications, doctors cannot use a specific treatment
regimen to treat the disease.

Diffuse Cutaneous Leishmaniasis (DCL)

Diffuse cutaneous leishmaniasis (DCL) is widely observed in patients with a sup-
pressed cell-mediated immune response against the invading parasite, also termed an-
ergy [60]. DCL is characterized in patients with a low count of CD4 T-cells and immediately
after antiretroviral drug therapy [61]. Several Leishmania (L.) species such as L. aethiopica,
L. major, L. amazonensis, L. mexicana, and L. braziliensis cause DCL [62]. An initial symp-
tom is erythematous lesions with a well-defined periphery that extend to mucocutaneous
junctions including nodules, ulcers, and plaques [63]. As the lesions progress, they spread
to the face, buttocks, and extremities and ulcerate the entire surface. The nodules across
the nasopharynx and oropharynx cause airway obstructions and may be associated with
lymphedema and lymphadenopathy, where the lesions are observed as sporotrichoid in
morphology [64,65]. The lesions also resemble other chronic lesions [66]. DCL is associated
with immunocompromised diseases such as acquired immunodeficiency syndrome (AIDS)
and lepromatous leprosy [67]. These findings are a major clinical observation in defining
Leishmania infection.

Mucocutaneous Leishmaniasis (ML)

The majority of mucosal/mucocutaneous leishmaniasis (ML) is transmitted by L.
braziliensis, L. amazonensis, L. panamensis, L. infantum, and L. guyanensis [68]. It is initially
painless, but ulcerative and purulent lesions develop. They continue as erythema, edema,
posterior nasal septal granulomas, and ulceration of the nares [69,70]. It spreads to the
oral cavity of the oropharynx and larynx. This causes perforation of the nasal septum,
periodontitis, palatal ulcers, and gingivitis, damaging the vocal cartilage and resulting
in speech abnormalities (Figure 2) [71]. Lymphedema leads to systemic infection causing
fever and liver inflammation. Secondary complications include airway obstruction and
fungal and bacterial infections [72]. The associated infections include epidermoid carci-
noma, rhinosporidiosis or sinusitis, and AIDS, where a differential diagnosis is required
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(Figure 2) [69]. ML is associated with cross- and co-infections, which can worsen physical
and psychological conditions.
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Figure 2. Clinical presentation of leishmaniasis. Clinical manifestations of individual leishmaniasis
types during infection. It is characterized by early and later stages of infection and possible conditions.
Infection is associated with other types of leishmania infections, complicating the patient’s condition.
The figure also elaborates on the possible co-infections with leishmaniasis to provide the broader
aspects of the infection. BioRender.com (accessed on 25 September 2023) was used to generate
this Figure.

Visceral Leishmaniasis (VL)

Visceral leishmaniasis (VL) is usually caused by L. donovani and L. infantum. These
species are commonly found across North and East Africa, the Indian subcontinent, and
Southern American nations. Infection is prevalent in all age groups but most prevalent in
immune-suppressed patients and children [11]. The parasite incubates for about two to six
months and leads to chronic infection lasting for several years. The initial clinical obser-
vations include fever, weight loss, loss of appetite, and a malaise that progresses to a few
months and is followed by enlarged lymph nodes, splenomegaly, and hepatomegaly [72].
The disease is also called Kala Azar due to hyperpigmentation of the skin and visceral
regions. These hyperpigmentation patches are observed as dark patches stretching the
skin surface associated with abdominal congestion and pain as the infection continues.
The patient also suffers from bone marrow suppression, hemolysis, low albumin levels,
jaundice, thrombocytopenia, cachexia, fluid accumulation, and bleeding from the mucosal
cavities [73]. This may be followed by hemophagocytic lymph cytosis and intravascular
coagulation [74].

Infections of the oral mucosa, nasal, and gastrointestinal tracts are prone to bacterial
and fungal contamination. This leads to sepsis and pneumonia which is fatal in children and
geriatrics. It could cause abortion or congenital leishmaniasis in pregnant patients [75]. HIV
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infection, tuberculosis, anemia, and jaundice cases are frequently reported as co-infections
with VL and increase VL mortality in southern Asian and African countries [76,77]. Post
kala azar dermal leishmaniasis is also common after recovery from VL, which may lead to
other medical complications.

Post Kala Azar Dermal Leishmaniasis (PKDL)

Post kala azar dermal leishmaniasis (PKDL) is mostly observed post VL treatment.
It could be defined as the final stage of VL infection before complete recovery from the
disease. It is mostly observed in Asian and African countries as VL is a concern in these
regions [78]. African and Asian PKDL can be differentiated by macular rashes in Asian
countries and papular rashes in African countries [79]. The onset of PKDL symptoms
usually starts a few months post VL treatment. This mimics a chronic skin infection that
lasts for three to four years if untreated. The initial clinical presentations include dispersed
hyperpigmented maculopapular and nodular lesions on the face which spread to the chest
and arms. These lesions cover the entire length of the skin with scaly skin and dense
nodular skin rashes (Figure 2). The lesions or rashes may be ulcerative, erythematous, or
keloidal [80]. The nodules and papules are hypopigmented, photosensitive, and edematous,
with a succulent nature, which irritates the skin. They appear warty, papillomatous, and
fibroid, with spontaneous ulcerations in the peritoneal area, chin, and parts of the face [81].
As the infection spreads to sensitive parts such as the tongue, groin, genitalia, and axilla, it
can cause permanent deformity in the patient. Treatment approaches should be enhanced
against infection and active surveillance should be carried out for a better understanding
of how diseases spread.

2.3.2. Chagas Disease

Clinical outcomes of T. cruzi infection are divided into two categories: acute and
chronic stages. Before the infection progresses to the chronic stage, it incubates in the
intermediate stage, which mediates chronic infection. We discuss each clinical complication
and condition of Chagas disease in detail below.

Acute Chagas Disease

The acute stage of Chagas disease is mostly asymptomatic and unnoticed by the patient.
Symptoms are rarely observed after 30 days of incubation. During this stage, invasive
trypomastigotes can be detected in fresh blood smears [82]. Less than 5% of patients in their
acute stage of infection display symptoms such as malaise, fever, gastric imbalance, cardiac
imbalances, inflammation at the inoculation site, periorbital swelling, epidermal eruptions,
and edema with conjunctivitis indicating cutaneous infection (Figure 3) [83]. It might be
accompanied by anemia, thrombocytopenia, hepatomegaly, and splenomegaly [84]. Death
during this stage of infection is very rare and is primarily due to congestive heart failure,
bronchopneumonia, myocarditis, or meningoencephalitis [85]. Children are more prone to
death and are affected by myocarditis [86]. The acute stage persists for three–four months
and then the infection enters the intermediate stage, which lasts for six–eight weeks.

Chronic Chagas Disease

The immediate phase after the acute stage is asymptomatic. Clinically, the patient
has a normal electrocardiogram (ECG), gastrointestinal findings, and healthy physical
condition but positive serological findings for infection. The intermediate phase of infection
is followed by the chronic phase of infection, which is fatal [87]. Around 20–30% of
patients with acute and intermediate infections progress to the chronic phase of Chagas
disease, which can have highly symptomatic symptoms. This includes thromboembolism,
conduction abnormalities, arrhythmias, and heart failure due to dilated cardiomyopathy
(Figure 3) [82]. The severity of the disease depends on the duration, location, and nature
of the cardiac lesions. The parasite resides in the cardiac tissues and causes immune
activation in the myocardium. This causes denervation, myocardial fibrosis, microvascular
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disturbances, and myocardial injury [88,89]. Cardiomyopathies in Chagas disease manifest
as ventricular remodeling, dysautonomia, and imbalances in cardiac perfusion [90,91].
Chronic Chagas cardiomyopathy is defined as a left ventricle aneurysm. This leads to an
increase in left atrial pressure resulting in systolic dysfunction and reduced left ventricular
filling [92]. The right bundle branch block is a common ECG found in chronic Chagas
disease and is mostly found in association with an anterior fascicular block [84]. The chances
of sudden death under this condition are very high due to ventricular tachyarrhythmia [93].
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Damage to the brain and stroke are very common in Chagas disease due to hypoxia
and reduced blood supply to the brain [84]. Brain embolism is a clinically recognized event
associated with stroke in asymptomatic patients [82]. Other clinical manifestations include
mega syndrome, which is a result of the denervation of tubular structures of the enteric
nerves that modulate normal gastrointestinal function directed towards acute infection in
the rectum, colon, and esophagus (aka oesophagus). In the colon and rectum, it leads to
bowel dysmotility, constipation, and fecal impaction. In the esophagus, it causes achalasia.
Also, it causes dysphagia, odynophagia, weight loss, idiopathic achalasia, regurgitation,
cough, and chronic aspiration [83].

2.4. Pathways Involved in Leishmaniasis and Chagas Disease

Trypanosomatids survival and differentiation involve various pathways. The parasite
cannot synthesize all the metabolites needed for its survival, so it interferes with the host’s
biochemical mechanisms to fulfill its nutritional needs. There are enzymes that resemble
host intermediates and are salvaged into the parasite to create a safe environment, escape
the immune system, and develop for their own purposes [94]. Some of the biochemical
pathways affected by trypanosomatids infection are discussed below.

Sterols serve as a key metabolic element for Leishmania and T. curzi survival. Both these
parasites increase ergosterol production by interfering with host sterol biosynthesis [94].
Leishmania and T. curzi parasites infest macrophagic sterol levels for parasitic differentiation,
cellular shape, and division. This results in lowering cholesterol levels in macrophage
plasma membranes [94,95]. In Chagas disease, cholesterol is employed in the endocytic
vesicle and cytostome of amastigotes [96]. It leads to CD40 signaling pathway disturbances
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and alters Interleukin 12 (IL-12) production. It also increases arginase I expression, which
inhibits NO synthesis and favors parasite survival and differentiation [97,98].

Both Leishmania and T. curzi are incapable of synthesizing the purines required for
their differentiation and survival; hence, they salvage the purine molecules used by
the host for their living [99]. Purine phosphoribosyl transferase assists Leishmania and
T. curzi salvage purines from the phosphorus vacuole. It helps in catalyzing the for-
mation of guanosine monophosphate and inosine monophosphate, which is required
for parasite survival [100,101]. Typically, hypoxanthine–Guanine Phosphoribosyltrans-
ferase (HGPRT) and xanthine Phosphoribosyltransferase (XPRT) enzymes are involved in
purine salvage [102]. Other enzymes such as adenine phosphoribosyl transferase (APRT),
hypoxanthine–guanine–xanthine phosphoribosyl transferase (HGXPRT), adenosine kinase
(AK), and nucleoside hydrolase (NH) were also identified to play a major role in acquiring
purines from the host in cases of both Leishmania and T. curzi infections [103,104].

Cell surface proteins are anchored by glycosylphosphatidylinositol (GPI) molecules.
GPI molecules, including Lipophosphoglycan (LPG) and Gylcoinositol phospholipids
(GIPL), are synthesized by Leishmania and T. curzi, which help them anchor to macrophages
and internalize them [105]. Most GPI anchors require trimannose backbones and dolichol–
phosphate–mannose (DPM), which act as mannose donors [106]. These GPI molecules
help host and parasite communication and immune invasion [107]. Mucins also play a
role in anchoring parasite development. Trans-sialidase is one such mucin responsible for
active anchorage and infectivity [108]. Both Leishmania and T. curzi contain mucin, but T.
curzi contains more than Leishmania [109]. Molecules such as phosphatidylinositol, inositol
phosphorylceramide, glycoproteins 63, glycoprotein 82, and glycoprotein 30 also assist
in parasite anchorage and internalization of both Leishmania and T. curzi parasites. Also,
these molecules facilitate the mobilization of intracellular calcium and the exocytosis of
lysosomes, leading to a cascade of signaling between the host and the parasite for cellular
invasion [110].

Folic acid and pteridines play a major role in Leishmania and T. curzi metabolic inter-
ventions [111]. Tetrahydrofolate is essential for purine, thymidylate, and pantothenate
biosynthesis. Also, it is required for RNA protein formation and is involved in various
signaling cascades [112]. Dihydrofolate reductase (DHFR) and Thymidine synthase (TS) act
as bifunctional enzymes as they are both connected to N- and C-terminals, respectively, and
separated by a linker peptide [113]. DHFR-TS helps protect dihydrofolate and drives cellu-
lar colocalization and parasite survival [114]. Pteridine reductase I (PTR-1) also plays a role
in the conversion of biopterin to tetrahydrobiopterin when DHFR-TS inhibitors are used.
PTR-I is activated when DHFR-TS is inhibited or malfunctioning and is responsible for
parasite survival and a proper survival environment for their growth [115]. Trypanothione
(TSH2) is a principal metabolite that protects Leishmania and T. curzi parasites from oxida-
tive stress and is responsible for parasite differentiation. The formation of TSH2 is mediated
by glutathionyl spermidine synthase (GSPS) and trypanothine synthase (TRYS). TSH2 is
involved in the reduction in host glutathione and decreases macrophage oxidative stress
during infection [116]. TSH2 is maintained at reduced levels as required by the parasites by
trypanothione reductase (TR) [117]. TR shares 67% similarities among Leishmania species
and 80% similarities among trypanosome species [118]. In Leishmania, TSH2 catalyzes
the hydroperoxide reduction with the assistance of two proteins, namely tryparedoxin
(TXN) and tryparedoxin-dependent peroxidase (TDPX). This reduces oxidative stress and
enhances parasite survival rates [119]. TSH2 also possesses the properties of xenobiotics
and endobiotic neutralization and enhances the reduction in ascorbate and iron–sulfur
complexes [120].

N-(2-amino2-hyroxymethyl) lysine, also called hypusine, is found in two eukaryotic
proteins, eukaryotic translation initiation factor (eIF)-5A1 and eIF5A2 [121]. eIF5A is re-
sponsible for cell cycle regulation, apoptosis, translation, elongation, and termination [122].
The post-translational modification leads to the binding of hypusine with lysine residues
of eIF5A proteins by the transfer of 4-aminobutyl moiety from spermidine to the lysine
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chain, which is aided by the enzymes deoxyhypusine synthase (DHPS) and deoxyhypusine
hydroxylase (DOHH), also known as hypusination [123]. Arginine serves as a precursor
for eIF5A, which is essential in hypusine synthesis [124] and determines Leishmania and
T. curzi infection rates. Arginine is translocated to parasites using amino acid permease
3 (AAP3) [125]. Arginine plays a role in the polyamine pathway. In Leishmania, the pro-
mastigotes accumulate arginine, utilize it in polyamine biosynthesis, and regulate arginine
transport under conditions of arginine deprivation [126].

3. Drug Discovery Strategies and Insights into Current Therapeutics
3.1. Approaches to Drug Development against Leishmaniasis and Chagas Disease

Drug discovery strategies for leishmaniasis and Chagas disease have evolved based on
various approaches, such as structural biology, genetic engineering, molecular modeling,
and high-content screening platforms [127,128]. Identification of functional molecular
targets is crucial to target-based drug discovery [129]. Subsequently, molecules are crafted
to disrupt specific targets crucial for parasite survival [16]. High-throughput, targeting-
based drug screening assays were developed based on target identification from T. cruzi
genome data [130]. In drug development, two different mechanisms are assumed for
compound identification such as target-based drug discovery (TDD) or phenotype-based
drug discovery (PDD) [16]. Identifying new drugs for inadequately treated medical con-
ditions relies on TDD [129]. However, PDD involves evaluating diverse chemicals in
contradiction to the pathogen’s phenotype in a biological system and animal model. For
example, benzothiophene analogs emerged as novel agents from a phenotypic screen
against GSK’s kinetoboxes [131,132]. However, the increased cost and high rates of failure
of traditional drug discovery and development approaches have provoked the community
to explore alternative approaches, such as computer-aided drug discovery which comprises
structure-based, ligand-based, and system-based approaches to drug discovery [133,134].

Structure-based drug discovery (SBDD) is the use of 3D structures of molecular targets
to increase ligand–receptor complementarity. It is mainly obtained by biophysical tech-
niques and used in research for the determination of pharmacological targets [135]. For
example, virtual screening approaches have recently been undertaken using imidazole–
pyridine as a reference structure [14]. In addition, the identification of oxidosqualene
cyclase as a novel molecular target in Leishmania could lead to promising programs to
discover new agents for leishmaniasis treatment [38]. Finally, the ligand-based drug design
(LBDD) approach also identifies key characteristics that contribute to biological activity
while improving or identifying new chemotypes [136–138].

3.2. Current Drugs for Leishmaniasis and Chagas Disease

The chemotherapy currently used for leishmaniasis and Chagas disease includes a
limited range of drugs that are used in combination or as monotherapy [55,139]. Currently,
there is no vaccine available to prevent leishmaniasis or Chagas disease. Treatment plans
vary depending on factors such as disease type, parasite species, and geographic location.
Each year, thousands of compounds are tested for leishmaniasis and Chagas disease drug
discovery. For the discovery of new treatment leads, high-throughput screening (HTS)
campaigns have been conducted [140]. To identify new drug candidates for diseases like
leishmaniasis and Chagas, the Drugs for Neglected Diseases Initiative (DNDi) is actively
incorporating natural compounds and synthetic compounds into its portfolio. Several
pharmaceutical companies collaborated with the DNDi in 2015 to launch the NTD Drug
Discovery Booster [141]. As part of its ongoing efforts, the DNDi is initiating the ‘Chagas
Hit-to-Lead’ project, which aims to identify promising leads in animal models of the disease,
as well as develop innovative approach to discover possible drugs for treatment [141,142].

The majority of the mechanisms of action of drugs used today to treat leishmania-
sis and Chagas disease are unknown. Further, many of them are ineffective, and their
overuse is associated with a variety of emerging resistance patterns, as well as severe
side effects [143,144]. Therefore, the development of novel drug discovery programs for
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anti-leishmanial and anti-trypanosomal compounds is essential [145,146]. The NTD Drug
Discovery Booster (DDB) was launched in 2015 to avoid early-stage commercial obstacles
between pharmaceutical participants, allowing the DNDi to search millions of unique
compounds and use computational methods to refine the search iteratively in the hunt for
new treatment leads [147]. Since its creation in 2015, the NTD-DDB has launched 45 itera-
tions around 22 seed compounds, with 13 hit series released, of which 6 have progressed
to in vivo proof-of-concept studies for Chagas disease, leishmaniasis, or both. Two com-
pounds from one hit series have demonstrated efficacy in a leishmaniasis infection model:
one was transitioned into lead optimization and is progressing to the pre-clinical stage. In
2017, more than 20 novel series were identified and are currently being processed [147].

3.2.1. Leishmaniasis

Sodium stibogluconate and meglumine antimoniate have been used extensively to
treat visceral, cutaneous, and mucocutaneous leishmaniasis for decades [148]. Yet, their
parenteral therapy is long, the drugs are toxic, and resistance is on the rise. Therefore, other
medications such as pentamidine, paromomycin, fluconazole, ketoconazole, miltefosine,
and amphotericin B have been repurposed (Figure 4) [149]. Additionally, it has been noted
that amphotericin B therapy does not result in a sterile cure and is linked to rising kala azar
leishmaniasis rates, as well as the emergence of resistant parasites in clinical settings [150].
Although repositioning efforts have shown promise in discovering new treatments for this
disease, the identification of novel therapeutic targets and the development of effective
leishmanicidal drugs should be prioritized [151].

Miltefosine: Miltefosine (hexadecyl-phosphocholine) is the “only oral drug” available
for leishmaniasis chemotherapy [152]. It is an amphipathic alkyl phosphocholine drug with
a polar phosphocholine group and a long alkyl chain. Originally used to treat breast cancer,
it has shown great promise as an anti-leishmanial agent since the 1980s, particularly in
antimonials-resistant cases [153]. Miltefosine works primarily by (a) changing the composi-
tion of plasma membranes by inhibiting phospholipid and alkyl lipid metabolism [154],
(b) causing programmed cell death by damaging mitochondria (depolarization) and ob-
structing cytochrome c oxidase [155], and (c) increasing nitric oxide synthetase 2 (iNOS2)
expression in host macrophages, which produces nitric oxide (NO), which is toxic to
parasite survival [154].

Amphotericin B: Also known as Amp B, this antifungal antibiotic exhibits a high
affinity for the fungal membrane ergosterol and a low affinity for the host membrane
cholesterol [156]. Amp B was identified in 1960 as a promising anti-leishmanial candidate
due to its groundbreaking in vitro activity [157]. Following resistance to antimonials in
India, Amp B became the first medication of choice to treat VL. By changing the membrane
fluidity and creating macropores and micropores that leak essential components into the
cells, it binds 24-substituted sterol (ergosterol) to the biosynthesis pathway and causes cell
death [10]. Other processes that prevent the parasite from surviving include auto-oxidation
and reactive oxygen species (ROS) [158].

Paromomycin: Paromomycin is an antibiotic isolated from Streptomyces rimosus and
has a broad range of clinical applicability. It is very helpful against many Gram-positive and
Gram-negative bacteria, as well as infections like giardiasis, amoebiasis, and cryptosporid-
iosis [159]. It is a member of the aminoglycoside class. Its qualities as an anti-leishmanial
agent were identified in the 1960s, and it has since been demonstrated to be a successful
treatment for both CL and VL [160]. As a result of binding to its 30S smaller subunit,
paromomycin hinders protein synthesis machinery. Consequently, the ribosome cannot be
recycled due to this binding, which further halts protein synthesis. The membrane potential
can also be disrupted by lipid metabolism and membrane fluidity changes [161].
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Pentamidine: Pentamidine has been used as a second-line treatment for VL, CL, and
DCL for over 40 years. Despite its reintroduction in the 1990s after clinical trials for New
World CL [162], pentamidine is barely used as an anti-leishmanial drug. Pentamidine’s
anti-leishmanial mechanisms of action remain unclear. However, they may affect the mito-
chondrial inner membrane potential, inhibit polyamine biosynthesis, and bind to minor
grooves in DNA. Clones of L. donovani and L. amazonensis that are resistant to pentamidine
exhibit increased efflux and reduced uptake by 18 and 75 folds, respectively [163]. Addi-
tional information suggests that pentamidine accumulation in the leishmania mitochondria
is significant. However, specific transporters for pentamidine uptake have been identified
and may play a role in resistance. In comparison to resistant cells, wild-type promastigotes
accumulate more pentamidine in the mitochondria [163,164].
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3.2.2. Chagas Disease

Nifurtimox (NFX) and Benznidazole (BZN) are the two main drugs used to treat
Chagas disease, and both were developed more than 50 years ago (Figure 5). The treatment
is lengthy (60–90 days) and ineffective for chronic patients, in addition to having a toxic
effect and the potential for evolving resistance [165–167]. Although the exact mechanism
underlying Benznidazole’s activity is unknown, it is activated by NADH-dependent try-
panosomal reductases and produces reductive metabolites that are thought to have several
negative consequences, including DNA damage and protein synthesis inhibition [168].
The FDA approved benznidazole for the treatment of Chagas disease in children aged 2
to 12 years old in 2017. It was the first medicine licensed in the United States for Chagas
disease. A new drug that is both safe and effective for Chagas disease’s acute and chronic
stages is required. However, several factors impediment the development of new candidate
drugs, including the lack of biomarkers for the two stages of the disease and for evaluating
treatment success, as well as the genetic diversity of T. cruzi strains [169,170].
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Nifurtimox and Benznidazole: Nifurtimox and benznidazole are the current drugs
used to treat Chagas disease. Benznidazole’s mechanism of action is a prodrug that is
metabolized by the parasite to form free radicals that cause oxidative damage to the
parasite’s macromolecules, ultimately leading to death. These free radicals are thought to
harm the parasite’s DNA, proteins, and lipids [171]. Nifurtimox’s mechanism of action is
unknown, but it is thought to be related to its metabolism via partial reduction to chemically
reactive radicals that produce oxygen radicals such as superoxide, hydroperoxide, and
hydroxyl. These radicals cause oxidative stress in the parasite, which ultimately leads to
death [172]. Table 2 describes the summarized mechanism of action.

Current treatments for leishmaniasis and Chagas disease have several problems. Most
of them have side effects, treatment failures, and relapses caused by drug resistance. These
anti-trypanosomal and anti-leishmanial medications also have drawbacks that exclude
their use in specific population cohorts or under specific conditions. For example, several
of them are teratogenic and inappropriate for pregnant women and newborns. Another
concern is the poor oral bioavailability of most of these drugs [173]. Chagas disease and
leishmaniasis treatments also differ depending on the endemic location. Table 2 summarizes
the WHO-recommended treatment regimens for major Chagas disease and leishmaniasis
endemic sites. Treatment alternatives are generally insufficient, and new medications are
desperately needed. Most drugs used to treat Chagas disease and leishmaniasis are on
the 19th edition of the WHO Model List of Essential Medicines, including pentavalent
antimonials (SbV), miltefosine, amphotericin B deoxycolate or formulated in liposomal
formulations, paromomycin, and pentamidine (Figures 4 and 5).
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Table 2. Current pharmacological treatments against Chagas disease and leishmaniasis.

Disease Drug Route Mechanism of Action Disadvantages Toxicity References

Leishmaniasis Miltefosine
Oral
5–100 mg/kg/day
for 28 days

An anti-apoptotic agent
targeting lipid metabolism,
mitochondria, and immune
function

Need allometric
administration in
children

Gastrointestinal
complications,
teratogenic

[174–176]

Leishmaniasis Paromomycin
Parenteral (im)
15 mg/kg/day
for 21 days

There is little knowledge
about this. Several studies
show that cationic
paromomycin binds
negatively charged
glycocalyxes and
lipophosphoglycans found
on the surfaces of
leishmania promastigotes, a
major component of
leishmania promastigotes

Poor results
against African
VL as
monotherapy

Pain in the
injection site,
hepatotoxicity

[177–179]

Leishmaniasis Pentamidine
Slow infusion (iv)
4 mg/kg monthly
for 12 months

Not known; drug entry
through
polyamine/arginine
transporters

Multiple adverse
effects

Insulin-
dependent
diabetes,
myocarditis,
nephrotoxicity

[180]

Leishmaniasis
SbV—
paromomycin
combination

Parenteral (im)
SbV 20 mg
/kg/day +
paromomycin for
17 days

Currently, there are two
models of Sb(V) activity: the
prodrug model of
conversion to toxic Sb(III)
and the intrinsic Sb(V)
activity based on complex
formation with
ribose/inhibition of type I
DNA topoisomerase.

Require
hospitalization

Problems
regarding SbV
administration

[174,181]

Leishmaniasis Amphotericine
B deoxycholate

Slow infusion (iv)
1 mg/kg/day for
30 days

Channel/pore formation on
interaction with membrane
sterol

Require
hospitalization Nephrotoxicity [182,183]

Leishmaniasis SbV—based
drugs

Parenteral (im)
20 mg/kg/day
for 28–30 days

Prodrug model conversion
of Sb(V) to toxic Sb(III) and
intrinsic Sb(V) activity: by
inhibiting type I DNA
topoisomerase/complex
formation with ribose

Drug resistance in
Bihar (India),
PKDL

Pain in the
injection site,
cardiotoxicity,
pancreatitis

[184,185]

Leishmaniasis AmBisome
Slow infusion (iv)
10 mg/kg single
dose

Channel/pore formation on
interaction with membrane
sterol

Costly, chemically
unstable

Fever during
infusion, back
pain,
nephrotoxicity

[186,187]

Chagas
disease

Benznidazole
(BZL)

Given for 60 days
on daily basis at
5–7 mg/kg, and
10 mg/kg for
adults and
children,
respectively

Inhibits the synthesis of
DNA, RNA, and proteins
within the T. cruzi parasite

Low solubility,
toxic, and several
side effects

Low
bioavailability
and drug
effectiveness,
chronic effects

[86,188–190]

Chagas
disease

Nifurtimox
(NFX)

8–10 mg/kg daily
in three divided
doses for adults,
and 15–20 mg/kg
daily in four
divided doses for
children during
60 to 90 days

Metabolism via partial
reduction to chemically
reactive radicals that cause
production of toxic reduced
products of oxygen

Toxic and have
side effect, causes
gastrointestinal,
maladies (nausea,
vomiting,
abdominal pain)
effects

Have higher
toxicity and
adverse effect
than BZL, and it
affects the
pancreases and
heart via
increasing of
oxidative stress

[191–193]

Abbreviations: im—intramuscular, iv—intravenous.
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The current drugs for leishmaniasis and Chagas disease treatment have limitations
and challenges. Drugs currently available to treat Chagas disease and leishmaniasis differ
in their mode of action, their efficacy, their cost, and their targets [194]. Paromomycin
(injectable, long treatment, region-dependent efficacy), miltefosine (cost, teratogenicity,
long treatment), and liposomal amphotericin B (cost, hospitalization, region-dependent
efficacy) are three examples of drugs. There are only a few validated drug targets known
against these parasitic diseases, and many drugs used to treat them have serious side effects
and limited efficacy [195]. A severe lack of drug targets that have been rigorously validated
genetically and chemically has hampered the development of better and safer drugs to
treat these diseases [196,197]. The mode of action of some drugs used to treat these diseases
is known [197]. Figure 6 depicts the mode of action, biochemical characterization, and
potency correlation of the current drugs reported in the literature to treat Chagas disease
and leishmaniasis.
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4. Novel Strategies for Leishmaniasis and Chagas Disease Treatments

There is an urgent need to discover and develop compounds effective against leish-
maniasis and Chagas disease, which demonstrate high bioactivity, low toxicity, and an
acceptable cost and administration profile [16,198]. In the past two decades, numerous
assays have been designed for use in screening programs targeting the various lifecycle
stages of Leishmania and Trypanosoma parasites. As soon as active compounds are developed
against the intracellular amastigote form of the parasite, they are tested in vivo, following
a pharmacokinetic and pharmacodynamic assessment [140]. Barriers to the development
of new drugs include the lack of well-characterized and validated targets, the absence of
diagnostic biomarkers resulting in diagnostic failures, the variety of parasite strains, issues
with the standardization of methodologies, such as various in vitro assays, different host
cell culture lines, and issues with the translation process [141]. Further, the treatment of
these deadly diseases is still challenging due to limited drug regimens, resistance, toxicities,
co-infection cases, and low investments in new drug discovery/development [199,200].
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Various strategies must be explored and implemented to combat these NTDs and overcome
conventional drugs’ drawbacks. The following section summarizes recent developments
and upcoming insights into traditional anti-trypanosomal and anti-leishmanial therapies.

4.1. Host-Directed Therapy (HDT)

Host-directed therapy (HDT) aims to achieve a clinical cure by manipulating the host
immune system rather than using drugs to treat the parasite [201]. HDT uses various
molecules (e.g., repurposed drugs, immuno-modulators, synthetic nucleic acids, cytokines,
cellular therapy, and micronutrients) that can boost the immune function of the host body or
control the inflammatory response. Both have a long-lasting healing effect and lower mor-
tality and morbidity [202]. A better understanding of the immune response to Leishmania
has revealed the crucial fact that infection depends on the successful downregulation of the
T-helper cell type 1 (Th1) immune response and the development of the Th2 responses [203].
Since the immune response profile in Chagas disease is similar to that in Leishmania [204],
host-directed therapies relevant to Leishmania might also benefit patients with Trypanosome
infection [204,205].

For example, simvastatin inhibits the pathway that produces cholesterol and causes
macrophages to mature their phagosomes, increasing parasite clearance [206]. Similarly,
lovastatin, which is chemically similar to simvastatin, is essential for lowering parasite
internalization and infectivity in the J774A.1 macrophage cell line due to cholesterol de-
pletion [207]. Eugenol (Syzygium aromaticum) and its derivatives have been hailed as
promising treatments for inducing immunostimulatory responses that benefit the host.
Eugenol derivatives inhibit leishmania promastigotes and amastigotes [208]. In conclusion,
immuno-modulatory compounds may prove valuable candidates for treating leishmaniasis
and Chagas disease. Some drugs/compounds identified through HDT are listed in Table 3.

Table 3. Drugs/compounds with anti-leishmanial effects identified through a host-directed therapy
nanotechnology approach.

Drug/
Compounds Disease Target

Organism Model Outcomes References

Imatinib CL L. amazonensis C57BL/6 mice A reduction in abrasion in mice and an
increase in phagocytosis [209]

AS101
(tellurium-based
compound)

VL L. donovani BALB/c mice

An increase in the production of ROS
and NO. Nuclear factor kappa B
(NF-κB) and mitogen-activated protein
kinase pathways are activated

[210]

Oleuropein VL L. donovani J774A.1 cell line
and BALB/c mice

Inflammatory response accompanied
by increased levels of
interferon-gamma (IFN-γ) and IL-12

[211,212]

Leptin VL L. donovani THP-1 cell line Increase NO production and promote
Th1 response to kill parasites [213]

Mahanine VL L. donovani J774A.1 cell line
and BALB/c mice

Inhibits the production of Th2
cytokines (IL10) while modulating Th1
cytokines

[214,215]

Simvastatin CL L. major BALB/c mice
The drug inhibits cholesterol
biosynthesis and reduces
promastigotes’ attachment to the host

[206]

Eugenol CL L. amazonensis BALB/c mice The Th1 immune response is triggered
by the release of IL-12 and IFN-γ [216,217]
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Table 3. Cont.

Drug/
Compounds Disease Target

Organism Model Outcomes References

Phospholipase A2 CL L. amazonensis BALB/c mice

The stimulation of NF-κB in
macrophages and tumor necrosis
factor-alpha (TNF-alpha) production
(increased Th1 immune response) and
NO production is also enhanced

[218]

Reproduced with permission from [203].

4.2. Multi-Drug or Combination Therapy

The primary goals of the combinational or multi-drug approach are to shorten the
treatment period, lower the relapse rate, reduce dosage, avoid fatal side effects, and combat
drug resistance problems [174]. HIV, malaria, and tuberculosis have all been successfully
treated using this approach [219,220]. Itraconazole, ezetimibe, and miltefosine were some
of the drugs used in a multi-drug therapy approach to evaluate anti-leishmanial efficacy
against the VL model of infection in BALB/c mice [203]. Due to its capacity to maximize
the efficacy of currently available medications while lowering dosage requirements and
treatment times, the combination therapy approach has recently seen significant use in the
treatment of leishmaniasis and Chagas disease. A wide range of trustworthy combinations
to treat leishmaniasis is possible. In the search for the most effective leishmaniasis treatment
regimen, novel drug combinations can now be further investigated.

4.3. Drug Repurposing

Drug repurposing (aka reprofiling, drug repositioning, or re-tasking) is an approach
that identifies novel applications for clinically approved drugs originally developed for an-
other medical treatment [221]. This method is associated with a shorter drug development
timeline and lower investment costs because the drugs have already undergone clinical
studies [222]. Numerous medications have been repurposed for leishmaniasis and have
shown promising results, such as Amp B, miltefosine, and azoles (fluconazole, itraconazole,
and posaconazole) [223]. Numerous antidepressants, including Ketanserin, imipramine,
clomipramine, nitroimipramine, sertraline, etc., have shown promising results when used
as repurposed anti-leishmanial medications [223,224]. A recent study using transmission
electron microscopy and metabolomics platforms identified the mechanism of sertraline’s
leishmanicidal effect on Leishmania parasites [225]. Some of the drugs/compounds identi-
fied through drug repurposing are presented in Table 4.

Table 4. Drugs/compounds with anti-leishmanial effects that were identified through drug repurposing.

Drug/Compounds Disease Target Organism Model Outcomes References

Sertraline VL L. infantum BALB/c mice

Reduced the parasite’s growth
significantly. In addition to
oxidative damage, essential
metabolic pathways were altered

[226,227]

Cladribine, Lamivudine,
Metformin,
Perphenazine,
Rifabutin, and Tenofovir

CL L. braziliensis and L.
panamensis U-937 cell line

According to in vitro studies,
rifabutin and perphenazine
inhibited parasites better than the
other drugs

[228]

Gold (I) triphenyl-
phosphine and triethyl-
phosphine based
complexes

CL L. amazonensis and
L. braziliensis BALB/c mice

It is reported that the IC50 for the
anti-leishmanial activity is 0.5–5.5
µM. ROS-mediated cell death is
caused by the inhibition of
trypanothione reductase activity

[229]
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Table 4. Cont.

Drug/Compounds Disease Target Organism Model Outcomes References

Triclosan CL L. amazonensis BALB/c mice

The parasite was inhibited in its
growth, as well as mitochondria
were damaged and membrane
permeability was reduced

[230]

Simeprevir VL L. donovani THP-1 cell line

ROS-mediated cell death
combined with leishmanicidal
properties against Promastigotes
and Amastigotes

[231]

Rapamycin CL L. major and L.
tropica BALB/c mice

Proliferation of the parasite was
markedly inhibited. A reduction
in parasite load in mice along
with the polarization of the
immune system towards Th1 was
observed

[232]

Nifuratel CL and
VL

L. major,
L. infantum, and
L. donovani

BALB/c mice
In a mouse model, both oral and
intralesional administration cured
cutaneous and visceral infections

[233]

Reproduced with permission from [203].

4.4. Promising Natural Products

The Drug Discovery Research Program and the Tropical Diseases Program of the
TDR (Tropical Disease Research) WHO intend to make plant pharmacology a priority.
An article with a complete list of plants and natural products that demonstrated anti-
leishmanial and anti-trypanosomal activities was published in 2015 [234]. Several studies
have been conducted since then that demonstrate the pursuit of novel products derived
from microbial or marine sources. For example, a glycoprotein isolated from the sponge
Pachymatisma johnstonii showed strong in vitro activity against L. donovani, L. braziliensis,
and L. Mexicana [235]. Essential oil’s anti-leishmanial activity has also been studied [236].
Advanced research has also evaluated additional potential substances isolated from natural
sources that showed anti-leishmanial and anti-trypanosomal activities [196].

Valli et al. report on Cytochalasine A-D-based compounds that are similar to benznida-
zole or miltefosine in treating intracellular T. cruzi and leishmania that are comparable to
the standard drugs of benznidazole and miltefosine [237]. Several recent studies concluded
that natural products have better or comparable potency to conventional drugs in treating
leishmaniasis and Chagas disease [238,239]. For example, Cortes et al. list natural products
extracted from Old World flora that are warranted for leishmanial treatments [240]. An-
other study demonstrated that natural products could serve as effective chemotherapeutic
agents against parasites by targeting mitochondrial homeostasis. The research revealed
that these natural compounds can induce parasite death by impacting their mitochon-
drial function [241]. In conclusion, natural products have a bright future in drug design
and research.

4.5. Nanotechnology

Drug delivery and drug design can use nanomedicine, a branch of science that deals
with particles at the nanoscale [242]. Low permeability, insolubility, painful injections, pro-
longed hospitalization, and unfavorable side effects are just a few of the limitations of the
conventional delivery system. In the search for the most effective leishmaniasis treatment,
researchers have also used nanoparticles (NPs). NPs are employed in drug delivery due to
their biocompatibility, improved drug solubility, on-target drug delivery to the target organ,
immuno-compatibility, and increased potential for a variety of administration routes [243].
Target-mediated drug delivery systems use metallic, inorganic, organic, and polymeric
nanomaterials, such as carbon nanotubes, dendrimers, liposomes, and micelles [244]. Since



Pharmaceutics 2024, 16, 227 20 of 41

phagocytic cells, particularly macrophages, are the target organs in leishmaniasis, liposomal
derivatives and polymeric NPs are used for drug delivery. Higher ROS production, an
increase in immuno-modulatory response, DNA damage, disruption of mitochondrial
membrane potential and electron transport chain, and inhibition of trypanothione reduc-
tase enzyme vital for the Leishmania parasite’s anti-oxidation process are just a few of the
mechanisms that NP-encapsulated drugs/molecules use to kill Leishmania parasites [245].
Although there are countless benefits, nanoscience’s use in practical life is limited. This is
because it can sometimes have a significant adverse effect on the body due to its biological
sensitivity [246]. Preparation and manipulation require specialized and engineered prod-
ucts, making it a cost-intensive task unsuitable for NTDs like leishmaniasis [247]. Some of
the drugs/compounds identified through nanotechnology are listed in Table 5.

Table 5. Drugs/compounds with anti-leishmanial effects identified through nanotechnology ap-
proach.

Drug/Compounds Disease Target Organism Model Outcomes References

Silver NPs containing
Fig and Olive extracts CL L. major BALB/c mice Reduction in skin lesions and

improved antioxidative capacity [248]

Nano-hydrogels loaded
with buparvaquone CL L. amazonensis BALB/c mice

Infected BALB/c mice showed a
significant decrease in parasitic
burden of 95%

[249]

Chitosan/CdO core
shell nanodots CL L. major THP-1 cell line

The compound inhibited
promastigotes proliferation and
induced Th1 immunity at IC50 0.6
µL/mL

[250]

Cyclodextrin NPs
containing Amp B and
paromomycin

VL L. donovani
J774A.1 cell line
and Swiss albino
mice

By inhibiting parasite growth
with an IC50 0.013 µg/mL, it
reduced the parasitic burden by
70–90%

[251]

Chitosan NPs containing
Amp B and
paromomycin

VL L. donovani J774A.1 cell line
NPs inhibit parasite growth better
than Amp B alone, and >90%
parasite clearance was reported

[252]

Nanotube appended
with Amp B VL L. donovani

J774A.1 cell line
and golden
hamster

Composite graphene–carbon
nanotubes significantly reduced
parasitic proliferation by >90%
when compared to AmB alone,
proving that it is a safe cure for
parasites

[253]

Guar gum NPs
containing and Amp B VL L. donovani Golden hamster

It inhibits parasites by 2–3 fold
compared to drug alone and
reduces parasitic burden by 95%

[254]

Reproduced with permission from [203].

4.6. Nano Vaccines

As a novel approach to vaccination, nanovaccines cause both humoral and cell-
mediated immune responses, providing better treatment for several diseases, including
leishmaniasis [255]. A chitosan nanoparticle-loaded recombinant superoxide dismutase
(SODB1) vaccine was developed in 2011 using the ionotropic gelation method and evalu-
ated on BALB/c mice. In both the single and triple doses of SODB1 nanoparticles, IgG2a
and IgG2a/IgG1 were significantly higher than in the other groups [256]. A second study
examined the efficacy of chimeric peptides containing HLA-restricted epitopes from three
immunogenic L. infantum proteins in poly (lactic coglycolic acid) acid nanoparticles with
or without monophosphoryl lipid A (MPLA) or surface modification. The nanovaccine
activated non-producing CD8+ T cells specific for peptides and induced dendritic cell
maturation [257]. Additional studies used synthetic peptide-based nanovaccines along
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with an MPLA adjuvant co-encapsulated in PLGA nanoparticles. The results demonstrated
a strong spleen lymphoproliferative response and high levels of IL-2, interferon gamma
(IFN-γ), and tumor necrosis factor α (TNF-α) versus low IL-4 and IL-10 secretion [258,259].
A 2019 study developed a process to prepare lipidic NPs loaded with plasmid pVAX1-NH36
for application as a leishmaniasis nanovaccine [236].

Developing novel therapeutics and substitutes for existing ones is one approach to
treating leishmaniasis and Chagas disease [195]. As a means of treating these illnesses,
researchers are creating innovative therapeutics and screening techniques to find new
compounds/chemical diversity [195,260]. We described above some of the new treatment
approaches for Chagas disease and leishmaniasis. As possible hits and leads, a large
variety of compounds from several families have been found; some are even undergoing
clinical testing [10]. Table 6 lists several candidate drugs that are being considered, in-
cluding inhibitors that affect the metabolism of thiols, sterols, glycolytic processes, folate,
and trypanothione.

Table 6. Lists of novel anti-leishmanial drugs that target specific biochemical pathways.

Drug Candidate Drug Target Mode of Action References

Artesunate
Quinine
Mefloquine

GAPDH Inhibits the parasites’ glycolytic
enzymes GAPDH [261,262]

Cycloguanil

DHFR
Inhibits DHFR [263–265]

Trimethoprim (TMP, 2)

ZINC57774418 (Z18)

ZINC69844431 (Z31)

ZINC71746025 (Z25)

D11596 (DB96) Inhibits DHFR activity [265]

2-(4-((2,4-
dichlorobenzyl)oxy)phenyl)-
1Hbenzo[d]imidazole

DHFR and PTR1

DHFR-TS/PTR1 inhibitors [266]
2-(4-((2,4-
dichlorobenzyl)oxy)phenyl)-
1Hbenzo[d]imidazole-1Hbenzo[d]oxazole

DHFR and PTR1

Trichloro[1,2-ethanediolato-O,O’]tellurate
(AS101) TR

Induces ROS-mediated apoptosis
by binding to TR cysteine residues [210]

β-sitosterol CCL Inhibit TR activity [267]

Hypericin Spermidine synthase ROS and spermidine reduction [268,269]

Reproduced with permission from [4].

5. Peptide Targeting for Leishmaniasis and Chagas Disease Therapies
5.1. Peptide Therapies

Peptides are short chains of amino acids that play critical roles in human physiology.
They were first used in medicine in the first half of the 20th century. Therapeutic peptides
are exceptional pharmaceutical tools with a molecular weight of 500–5000 Da [270]. As
technology advances, peptide drug discovery has become established. This includes
drug design, peptide drug discovery, peptide synthesis, structural modification, and the
association between these developments and peptide bioactivities [271,272]. Peptides have
unique intrinsic characteristics which are produced and modified through chemical and
biochemical methods associated with novel design and delivery strategies. Currently,
in addition to many preclinical studies, more than 170 peptides are actively in clinical
development [270,273] and sales total more than USD 70 billion [274]. Compared with
biologics, therapeutic peptides show less immunogenicity and have lower production
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costs [275,276]. Compared to small molecules, peptides typically demonstrate higher
potency and selectivity for their targets [277,278].

Therapeutic peptides have two basic limitations: low membrane permeability and
poor in vivo stability. Yet, peptides as drugs have many advantages including high potency,
high selectivity, and low toxicity. Thus, efforts using several models confirmed the effects
of several peptides on various parasites (Table 7) [272,279,280].

Table 7. Studies involving advanced peptides against leishmaniasis and Chagas disease.

Peptide Source Sequence IC50
µg/mL

Study
Model Reference

NK-2 Synthetic peptide KILRGVCKKIMRTFLRRISKDILTGKK - in vitro [281]

Temporizin-1 Synthetic peptide FLPLWLWLWLWLWKLK - in vitro [282]

Defensin-α1 Homo sapiens
(Human) ACYCRIPACIAGERRYGTCIYQGRLWAFCC - in vitro [283]

Phylloseptin 7 Phyllomedusa
nordestina (Frog) FLSLIPHAINAVSAIAKHF 0.34 in vitro [284]

DS 01 Phyllomedusa oreades
(Frog) GLWSTIKQKGKEAAIAAAKAAGQAALGAL - in vitro [285]

Melittin Apis mellifera (Bee) - 2.44 in vitro [286]

Polybia-CP Polybia paulista
(Wasp) ILGTILGLLSKL - in vitro [287]

Hmc 364–382 Penaeus monodon
(Shrimp) NVQYYGALHNTAHIVLGRQ 4.79 in vitro [287]

Reproduced with permission from [288].

5.2. Anti-Microbial Peptides

An anti-microbial peptide (AMP) is a small cationic molecule, amphipathic in structure,
which has a variety of activities against viruses, bacteria, fungi, and parasites [289,290].
AMPs are more effective than conventional antibiotics, with a low bactericidal concentration
and a quick ability to kill germs. They can even effectively combat bacteria strains resistant
to conventional antibiotics [291]. Furthermore, AMPs can also overcome drug resistance
in bacteria. Some of them have biological activities, such as anti-parasitic, anti-virus,
and anti-fungal properties [291,292]. Current research efforts are focused on developing
AMPs for therapeutic applications against NTDs, including leprosy, trachoma, African
trypanosomiasis, Chagas disease, and leishmaniasis [292,293]. AMPs are effective against
a variety of NTDs, including African trypanosomes, leishmaniasis, and Chagas disease.
Research into the development of new anti-microbial agents has been driven by the increase
in resistance to traditional antibiotics and emerging infectious diseases. Due to their direct
anti-microbial killing activity and significant role in innate immunity, AMPs represent a
promising alternative to existing antibiotics in the treatment and prevention of microbial
infections [292]. To date, more than 2000 AMPs have been discovered, and many exhibit
broad-spectrum anti-bacterial, anti-viral, and anti-parasitic activity [294]. Research on the
potential application of AMPs’ structural and natural analogs in the fight against NTDs is
ongoing [292].

The primary mechanism by Ih AIPs inhibit parasItic infection is by binding to and
rupturing the plasma membrane of the parasites [294,295]. Most of these peptides are
cationic–amphipathic, exhibiting two main mechanisms of action: direct lysis and mod-
ulating the immune system [289]. In addition to depolarizing membranes, disrupting
plasma membrane permeability, and causing programmed cell death, these peptides also
have major microbicidal effects. As a result, AMPs play a crucial role in the production of
cytokines which modulate immune responses in the host [296,297]. Researchers working on
parasites pay a lot of attention to AMPs, which are also called host-defense peptides [293].
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Murine cathelicidin or cathelin-derived AMP was evaluated against L. major infection.
Compared to control cells, J774A.1 cells expressed more cathelin-derived AMP in vitro.
Furthermore, cathelin-derived AMP expression was upregulated at dermal inoculation
sites in L. major-infected BALB/c mice, unlike the control group [203,297]. Additionally,
protein assays showed that cathelin-related AMP levels increased in infected macrophages
and mice models, suggesting that the immune response against L. major may be mediated
by cathelin-related AMPs. A study conducted by Zahedifard et al. evaluated the leishmani-
cidal potential of Brevinin 2R (belonging to the class of defensins) alone or in combination
with lauric acid against L. major parasites and found that mice treated with Brevinin 2R
exhibited decreased parasite load in the lymph nodes [203,298].

Since AMPs have excellent leishmanicidal and immunomodulatory properties, they
can serve as leads during drug discovery pipelines and vaccine design for leishmaniasis
and Chagas disease. In general, AMPs receive more attention due to different factors such
as antibiotic-resistant microorganisms [299]. While AMP mechanisms remain unclear, many
AMPs cause swelling in the promastigote membrane, which leads to loss of integrity and
substantial cell death [208]. The development of AMPs for therapeutic applications against
NTDs faces several challenges, such as natural AMP lability, susceptibility to protease,
pH changes, and potential toxicity [289,294]. The advantages of AMPs over conventional
antibiotics include a slower emergence of resistance, broad-spectrum activity, and efficacy
against drug-resistant Gram-positive organisms [291,300]. Despite these obstacles, AMPs
have demonstrated promise for treating drug-resistant bacteria and infectious diseases,
including non-therapeutic diseases like leishmaniasis and Chagas disease. Even though
there are challenges to overcome, there are potential advantages in treating NTDs and
AMPs represent a promising field for research and development.

5.2.1. Anti-Microbial Peptides against Chagas Disease and Leishmaniasis

K777, a vinyl sulfone cysteine protease inhibitor, is considered a highly powerful and
well-recognized cysteine peptidase inhibitor. It inhibits cruzain (aka Cruzipain), a key
protease required for T. cruzi survival. It has not promoted a parasitological cure but did
significantly reduce parasite-induced heart damage in vivo [301]. Over the past few years,
several AMPs have been evaluated for their effects on T. cruzi, and apidaecin, magainin II,
melittin, and cecropin A have been identified as potential candidates for Chagas disease as
they kill T. cruzi in low concentrations [302].

AMPs are an essential protection mechanism and part of vertebrates’ native immu-
nity. These peptides damage the protozoan’s cell membrane, affecting membrane integrity
and producing lethal pores [303]. Over 2,000 AMPs have been identified from a variety
of organisms, including bacteria, insects, plants, amphibians, birds, reptiles, and mam-
mals, including humans. Some of these AMPs demonstrate leishmanicidal activity, such
as halictine-2 from the poison of eusocial honey-bees [304]. Attacin, cecropin, and de-
fensins from lutzomyia longipalpis respond to Leishmania infection [305], and Dragomide
E., a linear lipopeptide isolated from the cyanobacteria Lyngbya majuscula, demonstrates
anti-leishmanial activity against L. donovani promastigotes. The LZ1 peptide, derived
from Snake cathelicidin, is an artificially designed and synthesized active polypeptide
demonstrating high anti-microbial activity. It inhibits ATP production in parasite-infected
erythrocytes [306]. Finally, Phylloseptin-1, a cationic peptide from the skin secretion of
Phyllomedusa azurea, demonstrates high anti-parasitic activity and prevents cross-resistance
because of its distinctive chemical structure [307].

The pharmaceutical industry recognizes that peptide-based drugs are a significant class
of therapeutic agents. Anti-protozoal therapeutics can be derived from insects, bacteria,
marine organisms, and amphibians [296]. In terms of parasite propagation, there are two
stages in which the parasites can be investigated: the diagnostic stage (amastigotes multiply
in cells) and the infectious stage (the promastigotes are injected into the blood) [157].
Currently, there are no specific details or clear evidence regarding the stages of clinical
trials of AMPs against leishmaniasis and Chagas disease. Additionally, the pipelines for
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drugs to treat Chagas disease, leishmaniasis of the skin, mucocutaneous leishmaniasis,
and PKDL are poor. New drugs are urgently needed to treat these diseases [308]. To
achieve the WHO road map for neglected tropical diseases, new drugs are needed for
leishmaniasis and Chagas disease [309]. In the case of tropical diseases, there are some
studies of clinical trials investigating anti-microbial activities against bacteria [310,311].
The next figure describes some of the AMPs that have been identified and their functions
against the different developmental forms of parasites (Figure 7) [303].
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Figure 7. Schematic representations of T. cruzi and Leishmania life cycle-associated anti-microbial
peptides (AMPs) against each specific developmental form of the parasite. The figure elaborates on
different AMPs acting on parasitic differentiation stages in both host and vector. This provides a
detailed view of the AMPs’ treatment regimen. BioRender.com (accessed on 25 September 2023) was
used to generate this Figure.

In general, several AMPs have shown promising activity against Chagas disease
and leishmaniasis. Oxaborole DNDI-6148 has been nominated as a potential candidate
for Chagas disease and is currently undergoing phase I clinical trials [139]. However,
there is little progress in the pipeline for Chagas disease treatment. Other reports indicate
that the acylated synthetic anti-microbial peptide Oct-CA (1-7)M (2-9) was used to treat
leishmaniasis in dogs, but it is unclear whether it is currently in clinical trials [289]. Overall,
several AMPs have demonstrated anti-trypanosomal and anti-leishmanial activity, and
they are promising candidates for clinical trials.

5.2.2. Structural Analysis of Selected Anti-Microbial Peptide Profiles against Leishmaniasis
and Chagas Disease

AMPs are significant and essential defense mechanisms and highly active against
various pathogens. AMPs are a component of the immune systems of vertebrates and
invertebrates [303]. Most natural AMPs are short (10 to 50 amino acids) and have positive
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net charges (+2 to +11), with a significant portion of hydrophobic residues [312]. Due to
their anti-parasitic properties, AMPs are used as pharmaceutical leads [313]. Positively
charged residues on the polar face and net charge become essential for both anti-microbial
and hemolytic activities [314–317]. Table 8 below summarizes the net charge and activities
of selected AMPs for leishmaniasis and Chagas disease.

Table 8. Structural analysis of selected peptide profiles for leishmaniasis and Chagas disease.

Species
(Diseases)

Peptide
Name Sources Sequences Study

Model
Net
Charge

Hydrophobicity
(kcal/mol) PI Length References

Leishmania DRS 01 Phyllomedusa
GLWSTIKQKGKEA
AIAAAKAAGQAAL
GAL

in vitro +3 +26.50 10.60 29 [318]

Leishmania Dermaseptin
4 Phyllomedusa

GLWSTIKQKGKEAA
IAAAKAAGKAAL
NAASEAL

in vitro +3 +33.32 10.43 33 [284]

Leishmania Dermaseptin
1 Nordestina GLWSTIKNVGKEAA

IAAGKAALGAL in vitro +2 +21.05 10.37 25 [284]

Leishmania p-Acl Agkistrodon
contortrix KKYKAYFKFKCKK in vitro +7 +23.14 10.45 13 [319]

Leishmania p-AclR7 Laticinctus RRYRAYFRFRCRR in vitro +7 +16.21 12.36 13 [319]

Leishmania Eumenitin-
R

Eumenes
rubrofemoratus LNLKGLIKKVASLLN in vitro +3 +12.28 10.89 15 [320]

Leishmania Dermaseptin-
01 Amphibian GLWSTIKNVGKEAA

IAAGKAALGAL - +2 +21.05 10.35 25 [321]

Leishmania Dermaseptin-
H3 Amphibian GLWSTIKNVGEAAIA

AGKAALGAL - +1 +18.25 9.95 24 [321]

Leishmania Melittin Insect GIGAVLKVLTTGLPA
LISWIKRKQQ - +4 +13.83 11.79 24 [322]

Leishmania Melittin Insect GIGAVLTTGLPALISW
IKRKRQQ - +4 +14.55 12.51 23 [322,323]

Leishmania Phylloseptin-
1 Amphibian FLSLIPHAINAVSA

IAKHN - +1 +12.09 9.93 19 [324]

Leishmania Bombinin
H Amphibian IIGPVLGLVGSAL

GGLLKKI - +2 +9.82 10.65 20 [325]

Leishmania LL-37 Cathelicidin
LLGDFFRKSKEKIGK
EFKRIVQRIKDFLRN
LVPRTES

in vitro +6 +41.03 11.15 37 [326]

Leishmania E6 Synthetic RRWRIVVIRVRR in vitro +6 +13.05 13.18 12 [326]

Leishmania cecropin-A
Hemolymph of the
giant silkworm
Hyalophora cecropia

KWKLFKKIEKVGQ
NIRDGIIKAGPAV
AWVGQATQIAK

in vitro +6 +33.11 10.94 37 [327]

Leishmania Cecropin-
D

Galleria mellonella
hemolymph

ENFFKEIERAGQRI
RDAIISAAPAVETL
AQAQKIIKGGD

in vitro 0 +42.64 7.07 39 [323]

Leishmania Eumenitin-
F LNLKGIFKKVASLLT in vitro +3 +11.22 10.89 15 [303]

Leishmania Eumenitin-
R LNLKGLIKKVASLLN in vitro +3 +12.28 10.89 15 [303]

Leishmania P1

Direct screening of a
linear hexa-peptide
library on L. major
metacyclic parasite

MASKPQR
in vitro
and
in vivo

+2 +13.71 11.53 7 [328]

Leishmania P2

Direct screening of a
linear hexa-peptide
library on L. major
metacyclic parasite

MAAKYN
in vitro
and
in vivo

+1 +11.17 9.58 6 [328]
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Table 8. Cont.

Species
(Diseases)

Peptide
Name Sources Sequences Study

Model
Net
Charge

Hydrophobicity
(kcal/mol) PI Length References

Leishmania P3

Direct screening of a
linear hexa-peptide
library on L. major
metacyclic parasite

MAHYSG
in vitro
and
in vivo

0 +10.96 7.63 6 [328]

Leishmania P4

Direct screening of a
linear hexa-peptide
library on L. major
metacyclic parasite

MYVIRG
in vitro
and
in vivo

+1 +7.90 9.68 6 [328]

Leishmania P5

Direct screening of a
linear hexa-peptide
library on L. major
metacyclic parasite

SLSWVC
in vitro
and
in vivo

0 +5.00 4.93 6 [328]

Leishmania P6

Direct screening of a
linear hexa-peptide
library on L. major
metacyclic parasite

QRKMAS
in vitro
and
in vivo

+2 +13.57 11.52 6 [328]

Chagas
disease

Mucin-associated
surface proteins
(MASP)

SLLSDAENPGGE
VFNDNK in vitro −3 +26.98 3.53 18 [328]

Chagas
disease

Mucin-associated
surface proteins
(MASP)

DAENPGGEVFNDN
KKGLSRV in vitro −1 +33.07 4.48 20 [328]

AMPs’ amino acid composition determines their charging properties and selective
actions [329,330]. The cationic charge in their structures has a strong correlation with
anti-microbial activity, and it is responsible for the initial electrostatic interaction between
peptides and the anionic microbial surface through electrostatic interactions. The hy-
drophobic residues enable the AMPs to further insert into the membrane bilayer [331].
Positive-charge peptides are usually highly alkali at the N-terminal ends and rich in basic
amino acids, while they are neutral hydrophobicity at their C-terminal ends [332]. Modifi-
cation of AMPs is intended to increase their stability and efficacy while decreasing their
cytotoxicity and untargeted side effects [333]. Peptides with higher net positive charges can
be considered anti-microbial potential inhibitors. On the other hand, the hydrophobicity
of those selected AMPs usually does not increase or decrease with net positive charges.
There is an optimum hydrophobicity window for high anti-microbial activity. The decrease
in anti-microbial activities at high peptide hydrophobicity can be explained by the strong
peptide self-association, which prevents the peptide from passing through the cell wall in
prokaryotic cells [334].

5.3. Protein–Protein Interactions as Drug Targets in Leishmaniasis and Chagas Disease

The human proteome contains approximately 30,000 proteins and significantly more
protein–protein interactions (PPIs) that play critical roles in biological processes. Their
dysregulation results in the onset and progression of a variety of diseases. PPIs thus
represent a treasure trove of disease-modifying drug targets [335]. However, targeting
these is difficult when converting drug-like small molecules into therapeutics. When
targeting PPIs, it is critical to strike a balance between the interacting proteins to elicit
a therapeutic effect while avoiding a significant adverse effect [336,337]. Researchers
have reported that PPIs as a drug discovery strategy target a variety of diseases [337].
However, there is limited information about PPIs for leishmaniasis and Chagas disease.
The proteins tryparedoxin peroxidase (PDB ID: 3TUE) [338], trypanothione reductase: (PDB
ID: 5EBK) [339], and pyruvate kinase (PDB ID: 3PP7) [340] have recently been identified
as structural macromolecules that play a variety of roles in the Leishmania parasite [4].
It is worth considering the importance of these proteins in the context of Leishmania, as
well as their potential implications for future research into the parasite’s metabolism and
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pathogenicity. Therefore, PPIs offer the potential for further research into drug discovery
for leishmaniasis and Chagas disease.

6. Conclusions and Future Directions

Leishmaniasis and Chagas disease are NTDs and global burdens. As a result of recur-
rent failures in leishmaniasis and Chagas disease diagnosis, chemotherapy is delayed and,
eventually, this results in death. Despite the efforts of many research groups, leishmaniasis
and Chagas disease remain without an effective solution. Challenges regarding leishmani-
asis and Chagas disease include accurate and timely disease diagnosis, which is crucial
in identifying asymptomatic patients and co-infected cases. However, recent diagnostic
procedures such as advanced molecular techniques, proteomics, and nano-diagnosis may
improve the prognosis of these diseases. Other key challenges are related to currently
available treatments, including drug resistance and toxicities. These may be overcome by
less traditional approaches, such as multi-drug and host-directed therapies, which have
yielded promising results in recent studies. In addition, clinical trials with innovative
treatment strategies should be performed to explore the impact of novel approaches on
improving treatment efficacy, decreasing side effects, and lowering treatment costs. The
review discusses the advancement of novel treatment strategies, featuring peptides as po-
tential therapeutics against NTDs. Since peptides have specific actions and reduced toxicity,
they are promising as new drug discovery targets and for development. It is evident that
these targeted compounds are becoming increasingly popular within the pharmaceutical
industry and hopefully they will greatly improve the health of many people suffering in
the world’s poorest countries.

Existing anti-parasitic drugs for leishmaniasis and Chagas disease, in use for decades,
are effective but pose significant concerns due to adverse effects and drug resistance. Drugs
like pentamidine and amphotericin can lead to hospitalization and face resistance issues.
High costs limit amphotericin’s accessibility. Miltefosine, that was originally developed as
an anti-cancer drug and later was found to be useful for leishmaniasis, may cause terato-
genicity and resistance. Chagas treatments, benznidazole and nifurtimox, exhibit adverse
effects. Combination therapy faces limitations due to resistance and toxicities. This has
prompted exploration of new strategies like host-directed therapy, nanovaccines, and natu-
ral extracts, showing promise with better stability and reduced toxicity. Vaccines against
these diseases prove effective. Peptide-based therapies, despite stability and permeability
challenges, offer low toxicity and resistance, making them potential candidates for leishma-
niasis and Chagas treatment, exhibiting high efficacy at the infection site. Overall, peptides,
vaccines, and novel approaches present alternatives with lower resistance, toxicity, and
higher efficacy against parasitic infections.

Author Contributions: M.Z., M.K.C.S., H.B. and N.Q. conceptualized and wrote the review and
prepared the tables and figures. All authors have read and agreed to the published version of the
manuscript.

Funding: This research was funded by the Israel Science Foundation (ISF)-CIHR-IDRC through a
research grant (no. 2993/22) awarded to N.Q.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data can be found within the article.

Acknowledgments: We thank those who were involved in the proofreading and editing of the
manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.



Pharmaceutics 2024, 16, 227 28 of 41

References
1. Stuart, K.; Brun, R.; Croft, S.; Fairlamb, A.; Gürtler, R.E.; McKerrow, J.; Reed, S.; Tarleton, R. Kinetoplastids: Related protozoan

pathogens, different diseases. J. Clin. Investig. 2008, 118, 1301–1310. [CrossRef] [PubMed]
2. Naula, C.; Parsons, M.; Mottram, J.C. Protein kinases as drug targets in trypanosomes and Leishmania. Biochim. Biophys. Acta

(BBA)-Proteins Proteom. 2005, 1754, 151–159. [CrossRef] [PubMed]
3. Abadías-Granado, I.; Diago, A.; Cerro, P.; Palma-Ruiz, A.; Gilaberte, Y. Cutaneous and mucocutaneous leishmaniasis. Actas

Dermo-Sifiliográficas 2021, 112, 601–618. [CrossRef]
4. Singh, R.; Kashif, M.; Srivastava, P.; Manna, P.P. Recent Advances in Chemotherapeutics for Leishmaniasis: Importance of the

Cellular Biochemistry of the Parasite and Its Molecular Interaction with the Host. Pathogens 2023, 12, 706. [CrossRef] [PubMed]
5. Assis, T.S.M.d.; Rosa, D.C.P.; Teixeira, E.d.M.; Cota, G.; Azeredo-da-Silva, A.L.F.; Werneck, G.; Rabello, A. The direct costs of

treating human visceral leishmaniasis in Brazil. Rev. Soc. Bras. Med. Trop. 2017, 50, 478–482. [CrossRef] [PubMed]
6. Lawrence, D.S.; Muthoga, C.; Meya, D.B.; Tugume, L.; Williams, D.; Rajasingham, R.; Boulware, D.R.; Mwandumba, H.C.; Moyo,

M.; Dziwani, E.N. Cost-effectiveness of single, high-dose, liposomal amphotericin regimen for HIV-associated cryptococcal
meningitis in five countries in sub-Saharan Africa: An economic analysis of the AMBITION-cm trial. Lancet Glob. Health 2022, 10,
e1845–e1854. [CrossRef] [PubMed]

7. Boettiger, D.C.; Lin, T.K. Cost-effectiveness of liposomal amphotericin B for HIV-associated cryptococcal meningitis. Lancet Glob.
Health 2022, 10, e1705–e1706. [CrossRef] [PubMed]

8. Alvar, J.; Arana, B.I. Appraisal of Leishmaniasis Chemotherapy, Current Status and Pipeline Strategies Chapter 1 Leishmaniasis,
Impact and Therapeutic Needs 3. Drug Discov. Leishmaniasis 2018, 10, 9781788010177-00001.

9. Rajao, M.A.; Furtado, C.; Alves, C.L.; Passos-Silva, D.G.; De Moura, M.B.; Schamber-Reis, B.L.; Kunrath-Lima, M.; Zuma, A.A.;
Vieira-da-Rocha, J.P.; Garcia, J.B.F. Unveiling benznidazole’s mechanism of action through overexpression of DNA repair proteins
in Trypanosoma cruzi. Environ. Mol. Mutagen. 2014, 55, 309–321. [CrossRef]

10. Sangshetti, J.N.; Khan, F.A.K.; Kulkarni, A.A.; Arote, R.; Patil, R.H. Antileishmanial drug discovery: Comprehensive review of
the last 10 years. RSC Adv. 2015, 5, 32376–32415. [CrossRef]

11. Chappuis, F.; Sundar, S.; Hailu, A.; Ghalib, H.; Rijal, S.; Peeling, R.W.; Alvar, J.; Boelaert, M. Visceral leishmaniasis: What are the
needs for diagnosis, treatment and control? Nat. Rev. Microbiol. 2007, 5, 873–882. [CrossRef]

12. Sundberg, S.A. High-throughput and ultra-high-throughput screening: Solution-and cell-based approaches. Curr. Opin. Biotechnol.
2000, 11, 47–53. [CrossRef]

13. Mayr, L.M.; Bojanic, D. Novel trends in high-throughput screening. Curr. Opin. Pharmacol. 2009, 9, 580–588. [CrossRef]
14. Akao, Y.; Canan, S.; Cao, Y.; Condroski, K.; Engkvist, O.; Itono, S.; Kaki, R.; Kimura, C.; Kogej, T.; Nagaoka, K. Collaborative

virtual screening to elaborate an imidazo [1, 2-a] pyridine hit series for visceral leishmaniasis. RSC Med. Chem. 2021, 12, 384–393.
[CrossRef] [PubMed]

15. Schaduangrat, N.; Lampa, S.; Simeon, S.; Gleeson, M.P.; Spjuth, O.; Nantasenamat, C. Towards reproducible computational drug
discovery. J. Cheminformatics 2020, 12, 9. [CrossRef] [PubMed]

16. Chatelain, E.; Ioset, J.-R. Phenotypic screening approaches for Chagas disease drug discovery. Expert. Opin. Drug Discov. 2018, 13,
141–153. [CrossRef] [PubMed]

17. Zahedifard, F.; Rafati, S. Prospects for antimicrobial peptide-based immunotherapy approaches in Leishmania control. Expert.
Rev. Anti-Infect. Ther. 2018, 16, 461–469. [CrossRef] [PubMed]

18. Rafferty, J.; Nagaraj, H.; McCloskey, A.P.; Huwaitat, R.; Porter, S.; Albadr, A.; Laverty, G. Peptide therapeutics and the pharmaceu-
tical industry: Barriers encountered translating from the laboratory to patients. Curr. Med. Chem. 2016, 23, 4231–4259. [CrossRef]
[PubMed]

19. Díaz-Garrido, P.; Cárdenas-Guerra, R.E.; Martínez, I.; Poggio, S.; Rodríguez-Hernández, K.; Rivera-Santiago, L.; Ortega-López, J.;
Sánchez-Esquivel, S.; Espinoza, B. Differential activity on trypanosomatid parasites of a novel recombinant defensin type 1 from
the insect Triatoma (Meccus) pallidipennis. Insect Biochem. Mol. Biol. 2021, 139, 103673. [CrossRef] [PubMed]

20. Dostálová, A.; Volf, P. Leishmania development in sand flies: Parasite-vector interactions overview. Parasites Vectors 2012, 5, 276.
[CrossRef]

21. Killick-Kendrick, R. The biology and control of phlebotomine sand flies. Clin. Dermatol. 1999, 17, 279–289. [CrossRef]
22. Teixeira, D.E.; Benchimol, M.; Rodrigues, J.C.; Crepaldi, P.H.; Pimenta, P.F.; de Souza, W. The cell biology of Leishmania: How to

teach using animations. PLoS Pathog. 2013, 9, e1003594. [CrossRef]
23. Sunter, J.; Gull, K. Shape, form, function and Leishmania pathogenicity: From textbook descriptions to biological understanding.

Open Biol. 2017, 7, 170165. [CrossRef]
24. Saada, E.A.; Kabututu, Z.P.; Lopez, M.; Shimogawa, M.M.; Langousis, G.; Oberholzer, M.; Riestra, A.; Jonsson, Z.O.; Wohlschlegel,

J.A.; Hill, K.L. Insect stage-specific receptor adenylate cyclases are localized to distinct subdomains of the Trypanosoma brucei
flagellar membrane. Eukaryot. Cell 2014, 13, 1064–1076. [CrossRef]

25. Secundino, N.; Eger-Mangrich, I.; Braga, E.; Santoro, M.; Pimenta, P. Lutzomyia longipalpis peritrophic matrix: Formation, structure,
and chemical composition. J. Med. Entomol. 2005, 42, 928–938. [CrossRef]

26. Rogers, M.E.; Chance, M.; Bates, P. The role of promastigote secretory gel in the origin and transmission of the infective stage of
Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology 2002, 124, 495–507. [CrossRef] [PubMed]

https://doi.org/10.1172/JCI33945
https://www.ncbi.nlm.nih.gov/pubmed/18382742
https://doi.org/10.1016/j.bbapap.2005.08.018
https://www.ncbi.nlm.nih.gov/pubmed/16198642
https://doi.org/10.1016/j.ad.2021.02.008
https://doi.org/10.3390/pathogens12050706
https://www.ncbi.nlm.nih.gov/pubmed/37242374
https://doi.org/10.1590/0037-8682-0133-2017
https://www.ncbi.nlm.nih.gov/pubmed/28954068
https://doi.org/10.1016/S2214-109X(22)00450-8
https://www.ncbi.nlm.nih.gov/pubmed/36400090
https://doi.org/10.1016/S2214-109X(22)00476-4
https://www.ncbi.nlm.nih.gov/pubmed/36400079
https://doi.org/10.1002/em.21839
https://doi.org/10.1039/C5RA02669E
https://doi.org/10.1038/nrmicro1748
https://doi.org/10.1016/S0958-1669(99)00051-8
https://doi.org/10.1016/j.coph.2009.08.004
https://doi.org/10.1039/D0MD00353K
https://www.ncbi.nlm.nih.gov/pubmed/34041487
https://doi.org/10.1186/s13321-020-0408-x
https://www.ncbi.nlm.nih.gov/pubmed/33430992
https://doi.org/10.1080/17460441.2018.1417380
https://www.ncbi.nlm.nih.gov/pubmed/29235363
https://doi.org/10.1080/14787210.2018.1483720
https://www.ncbi.nlm.nih.gov/pubmed/29889579
https://doi.org/10.2174/0929867323666160909155222
https://www.ncbi.nlm.nih.gov/pubmed/27633684
https://doi.org/10.1016/j.ibmb.2021.103673
https://www.ncbi.nlm.nih.gov/pubmed/34700021
https://doi.org/10.1186/1756-3305-5-276
https://doi.org/10.1016/S0738-081X(99)00046-2
https://doi.org/10.1371/journal.ppat.1003594
https://doi.org/10.1098/rsob.170165
https://doi.org/10.1128/EC.00019-14
https://doi.org/10.1093/jmedent/42.6.928
https://doi.org/10.1017/S0031182002001439
https://www.ncbi.nlm.nih.gov/pubmed/12049412


Pharmaceutics 2024, 16, 227 29 of 41

27. Gossage, S.M.; Rogers, M.E.; Bates, P.A. Two separate growth phases during the development of Leishmania in sand flies:
Implications for understanding the life cycle. Int. J. Parasitol. 2003, 33, 1027–1034. [CrossRef]

28. Bates, P.A. Revising Leishmania’s life cycle. Nat. Microbiol. 2018, 3, 529–530. [CrossRef] [PubMed]
29. Martín-Escolano, J.; Marín, C.; Rosales, M.J.; Tsaousis, A.D.; Medina-Carmona, E.; Martín-Escolano, R. An updated view of

the Trypanosoma cruzi life cycle: Intervention points for an effective treatment. ACS Infect. Dis. 2022, 8, 1107–1115. [CrossRef]
[PubMed]

30. Onyekwelu, K.C. Life Cycle of Trypanosoma cruzi in the Invertebrate and the Vertebrate Hosts. In Biology of Trypanosoma cruzi;
BoD—Books on Demand: Norderstedt, Germany, 2019; pp. 1–19.

31. Rodríguez-Bejarano, O.H.; Avendaño, C.; Patarroyo, M.A. Mechanisms associated with Trypanosoma cruzi host target cell adhesion,
recognition and internalization. Life 2021, 11, 534. [CrossRef]

32. Teixeira, D.E.; Benchimol, M.; Crepaldi, P.H.; de Souza, W. Interactive multimedia to teach the life cycle of Trypanosoma cruzi, the
causative agent of Chagas disease. PLoS Neglected Trop. Dis. 2012, 6, e1749. [CrossRef]

33. Andreoli, W.; Taniwaki, N.; Mortara, R. Survival of Trypanosoma cruzi metacyclic trypomastigotes within Coxiella burnetii vacuoles:
Differentiation and replication within an acidic milieu. Microbes Infect. 2006, 8, 172–182. [CrossRef]

34. Huotari, J.; Helenius, A. Endosome maturation. EMBO J. 2011, 30, 3481–3500. [CrossRef]
35. Alves, C.R.; Albuquerque-Cunha, J.M.; Mello, C.; Garcia, E.d.S.; Nogueira, N.; Bourguingnon, S.C.; De Souza, W.; Azambuja, P.;

Gonzalez, M.S. Trypanosoma cruzi: Attachment to perimicrovillar membrane glycoproteins of Rhodnius prolixus. Exp. Parasitol.
2007, 116, 44–52. [CrossRef] [PubMed]

36. Garcia, E.S.; Ratcliffe, N.A.; Whitten, M.M.; Gonzalez, M.S.; Azambuja, P. Exploring the role of insect host factors in the dynamics
of Trypanosoma cruzi–Rhodnius prolixus interactions. J. Insect Physiol. 2007, 53, 11–21. [CrossRef] [PubMed]

37. Mendoza-Roldan, J.A.; Votýpka, J.; Bandi, C.; Epis, S.; Modrý, D.; Tichá, L.; Volf, P.; Otranto, D. Leishmania tarentolae: A new
frontier in the epidemiology and control of the leishmaniases. Transbound. Emerg. Dis. 2022, 69, e1326–e1337. [CrossRef] [PubMed]

38. Ferreira, L.C.; Quintella, L.P.; Schubach, A.d.O.; Miranda, L.d.F.C.; Madeira, M.d.F.; Pimentel, M.I.F.; Vasconcellos, É.d.C.F.e.;
Lyra, M.R.; Oliveira, R.d.V.C.d.; Menezes, R.C. Comparison between Colorimetric In Situ Hybridization, Histopathology, and
Immunohistochemistry for the Diagnosis of New World Cutaneous Leishmaniasis in Human Skin Samples. Trop. Med. Infect. Dis.
2022, 7, 344. [CrossRef] [PubMed]

39. Hadermann, A.; Heeren, S.; Maes, I.; Dujardin, J.-C.; Domagalska, M.A.; Van den Broeck, F. Genome diversity of Leishmania
aethiopica. Front. Cell. Infect. Microbiol. 2023, 13, 406. [CrossRef] [PubMed]

40. Bezemer, J.M.; Freire-Paspuel, B.P.; Schallig, H.D.; de Vries, H.J.; Calvopiña, M. Leishmania species and clinical characteristics of
Pacific and Amazon cutaneous leishmaniasis in Ecuador and determinants of health-seeking delay: A cross-sectional study. BMC
Infect. Dis. 2023, 23, 395. [CrossRef] [PubMed]

41. Preativatanyou, K.; Chinwirunsirisup, K.; Phumee, A.; Khositharattanakool, P.; Sunantaraporn, S.; Depaquit, J.; Siriyasatien,
P. Species diversity of phlebotomine sand flies and sympatric occurrence of Leishmania (Mundinia) martiniquensis, Leishmania
(Leishmania) donovani complex, and Trypanosoma spp. in the visceral leishmaniasis focus of southern Thailand. Acta Trop. 2023,
244, 106949. [CrossRef] [PubMed]
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