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Abstract: Background: The threat of antibiotic resistance of fungal pathogens and the high tox-
icity of the most effective drugs, polyene macrolides, force us to look for new ways to develop
innovative antifungal formulations. Objective: The aim of this study was to determine how the
sterol, phospholipid, and flavonoid composition of liposomal forms of polyene antibiotics, and in
particular, amphotericin B (AmB), affects their ability to increase the permeability of lipid bilayers
that mimic the membranes of mammalian and fungal cells. Methods: To monitor the membrane
permeability induced by various polyene-based lipid formulations, a calcein leakage assay and the
electrophysiological technique based on planar lipid bilayers were used. Key results: The replacement
of cholesterol with its biosynthetic precursor, 7-dehydrocholesterol, led to a decrease in the ability
of AmB-loaded liposomes to permeabilize lipid bilayers mimicking mammalian cell membranes.
The inclusion of plant flavonoid phloretin in AmB-loaded liposomes increased the ability of the
formulation to disengage a fluorescent marker from lipid vesicles mimicking the membranes of target
fungi. I–V characteristics of the fungal-like lipid bilayers treated with the AmB phytosomes were
symmetric, demonstrating the functioning of double-length AmB pores and assuming a decrease in
the antibiotic threshold concentration. Conclusions and Perspectives: The therapeutic window of
polyene lipid formulations might be expanded by varying their sterol composition. Polyene-loaded
phytosomes might be considered as the prototypes for innovative lipid antibiotic formulations.

Keywords: amphotericin B; liposomes; lipid bilayers; membranes; sterols; phytosomes

1. Introduction

The growth of invasive mycoses caused by Candida spp. (candidiasis) and Aspergillus
spp. (aspergillosis) has become a global problem in recent decades [1,2]. This group of
infections is associated with a high mortality in cancer and immunocompromised patients.
The rapid spread of drug resistance in fungi pathogens and the high toxicity of the most
effective antibiotics requires a search for new antifungal agents and the development of
innovative formulations of drugs.

Polyene macrolide antibiotics are the most efficient antifungal drugs currently used
to treat invasive mycoses. Until now, amphotericin B (AmB) remains the main drug for
the fight against invasive mycosis and is used in the treatment of leishmaniasis, inva-
sive aspergillosis, candidiasis, and cryptococcal meningitis. Different authors agree that
the antifungal effect of polyene macrolides and, in particular, AmB is determined by its
membrane activity, and the key factor is the presence of sterols in the membranes of
target cells. Despite many years of intensive research on the mechanisms of action of
polyene macrolides, their interactions with lipid membranes remain poorly understood.
The dominant concept is based on the formation of transmembrane pores by polyene
macrolides in the membranes of fungal cells [3–10]. The alternative hypothesis (so-called
sterol sponge model) is associated with the extraction of membrane sterols by polyenes
to form extramembranous aggregates [11–14]. The specificity of polyene macrolide action
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on various cells is determined by the membrane sterol composition. It is important that
mammalian and fungal cells differ in their sterol composition: the membranes of mam-
malian cells contain cholesterol (CHOL), while the fungal cell membranes are enriched with
ergosterol (ERG). The affinity of polyene macrolides to ERG is higher than to CHOL, but
the CHOL-containing mammalian cell membranes might be destroyed. This is the reason
for high toxicity of antibiotics. It is under debate as to what is the key factor underlying
polyene-sterol interactions: the stability of polyene-sterol complexes [15] or the differences
in physicochemical properties of the lipid microdomains enriched with different sterols [16].
It is believed that AmB is capable of inducing two types of pores depending on the way it
is added to lipid membranes. When AmB is introduced from one side of the membrane, it
causes the formation of single-length cation-selective channels at antibiotic concentrations
of one to two orders of magnitude higher than in the case of both-side addition of the
antibiotic and the formation of double-length anion-selective channels [3,7,17]. Such a
difference in threshold antibiotic concentrations can be the basis for the development of an
approach for increasing the effectiveness of action of polyene macrolides by potentiating a
transition from single-length to double-length polyene channels. Recently, using NMR and
molecular dynamic simulation, the structure of AmB double- and single-length channels in
ERG-containing membranes have been resolved, and alternative structures such as polyene-
and sterol-enriched sponges have been shown to be extremely unlikely [18].

The toxicity, especially nephropathy [19], is a serious limitation to the use of polyene
antibiotics in clinical practice [20,21]. Modern pharmaceutical approaches are aimed at
reducing the toxicity of polyene macrolides. One way is to increase polyene water solubility
by chemical modification [22–27]. Since the 1980s, lipid-associated forms of AmB have been
also developed to reduce side effects: Abelcet®, Amphotec®, and Ambisome® (liposomal
AmB) [28–32]. However, controversy over the clinical efficacy, the tolerability, and the
relatively high cost of treatment of the macrolide-based drug is still ongoing. Several
attempts to create innovative lipid formulations of polyene macrolides have been described
in the literature. The micellar composition of AmB was obtained upon the covalent attach-
ment of CHOL molecules to the main chain of AmB and maleic acid [33]. Such micellar
nanoparticles turned out to be water-soluble and stable in the presence of salts. Compared
to a standard drug, Fungizone® (AmB deoxycholate), this formulation showed equivalent
antifungal activity, improved circulation, and less toxicity. The ionic amphiphilic prepara-
tion of AmB, called Kalsome™10, was also developed [34]. These liposomal structures are
composed of an equimolar ratio of phosphatidylcholine and ERG with the addition of AmB
and is characterized by less nephrotoxicity than Fungizone®. Iman and coauthors showed
that the in vivo activity of DSHemsPC-AMB-Lip (AmB liposomal formulation enriched
with synthetic lipid, 1,2-distigmasterylhemisuccinoyl-sn-glycero-3-phosphocholine) was
comparable to that of Ambisome® and was characterized by less cost in production [35].
A detailed study of the interactions among polyene antibiotics and their lipid-associated
forms with model membranes should be carried out to identify the ways to further improve
the pharmacological properties of polyene-based lipid formulations.

Combining AmB with small natural molecules is another way to potentiate antibiotic
efficacy [36–40]. We previously showed that a number of amphiphilic compounds of plant
origin related to flavonoids, stilbenes, and alkaloids were able to enhance the pore-forming
activity of pure AmB and its close analog, nystatin, in ERG-containing lipid bilayers by
affecting polyene-sterol interactions or membrane elastic stress [6,7,41–43].

In this work, we assess the impact of the sterol and phospholipid composition of
AmB liposome formulations on their ability to increase the permeability of lipid bilayers
that mimic the membranes of mammalian and fungal cells. In the presented study, we
also make an attempt to enhance the activity of AmB by including plant flavonoids in
antibiotic-loaded liposomes.
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2. Materials and Methods
2.1. Materials

Synthetic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-
2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol) (POPG), 1,2-dipalmitoyl-sn-glycero-3-
phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), cholesterol
(CHOL), stigmasterol (STIGM), 7-dehydrocholesterol (7DCHOL), desmosterol (DESM), and
camposterol (CAMPO) were purchased from Avanti Polar Lipids (Avanti Polar Lipids, Inc.,
Alabaster, AL, USA). Amphotericin B (AmB), nystatin (NyS), ergosterol (ERG), phloretin,
biochanin A, genistein, quercetin, NaCl, KCl, NaOH, KOH, HEPES, EDTA, dimethylsul-
foxide (DMSO), triton X-100, calcein, sephadex G-50, ethanol, methanol, chloroform, and
hexadecane were obtained from Sigma-Aldrich Company Ltd. (Gillingham, UK). Figure 1
presents the chemical structures of the phospholipids, sterols, antibiotics, and polyphenols
used in this study.
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Figure 1. Chemical structures of phospholipids (A–D), sterols (E–J), antifungal polyene
macrolides (K,L), and flavonoids (M–P) used in this study.

2.2. The Production of the Polyene Lipid Formulations

To obtain the polyene-lipid formulations, the technique by [44] with modifications
was used. A lipid mixture containing phospholipid (pure POPC or equimolar mixture of
POPC and POPG, DPPC or DSPC) and sterol (CHOL, 7DCHOL, DESM, STIGM, CAMPO,
or ERG) at a phospholipid:sterol molar ratio of 67:33 mol.% was suspended in a mixture
of chloroform and methanol (67:33 vol.%). The total lipid concentration was equal to
275 µM. At this stage, antibiotics (AmB or NyS) and (or) flavonoids (phloretin, biochanin A,
genistein, or quercetin) were added to some samples until there was an equimolar ratio of
antibiotics, flavonoids, and lipids. The resulting solution was evaporated using a vacuum
rotary evaporator (Hei-VAP Advantage HB/G3B ML, Heidolph, Germany) at 50 ◦C for
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120 min. Further, the obtained film was hydrated by a buffer of 0.15 M KCl (10 mM HEPES,
1 mM EDTA, pH 7.4) and processed with an ultrasound for about 10 min. The list of the
tested liposome formulations is presented in Table 1.

Table 1. The composition of the tested liposome formulations.

Antibiotic-Free Liposomes Polyene-Loaded Liposomes Polyene-Loaded Phytosomes

POPC/CHOL POPC/CHOL/AmB (1) POPC/CHOL/AmB/phloretin (7)

POPC/DESM POPC/DESM/AmB (2) POPC/CHOL/AmB/biochaninA (8)

POPC/7DCHOL POPC/7DCHOL/AmB (3) POPC/CHOL/AmB/genistein (9)

POPC/CAMPO POPC/CAMPO/AmB (4) POPC/CHOL/AmB/quercetin (10)

POPC/STIGM POPC/STIGM/AmB (5) POPC/DESM/AmB/phloretin (11)

POPC/ERG POPC/ERG/AmB (6) POPC/7DCHOL/AmB/phloretin (12)

POPC/CHOL/phloretin POPC/POPG/CHOL/AmB POPC/CAMPO/AmB/phloretin (13)

POPC/CHOL/biochanin A POPC/DPPC/CHOL/AmB POPC/STIGM/AmB/phloretin (14)

POPC/CHOL/genistein POPC/DSPC/CHOL/AmB POPC/ERG/AmB/phloretin (15)

POPC/CHOL/quercetin POPC/CHOL/NyS (16) POPC/CHOL/NyS/phloretin (18)

POPC/DESM/phloretin POPC/ERG/NyS (17) POPC/DESM/NyS/phloretin (19)

POPC/7DCHOL/phloretin POPC/7DCHOL/NyS/phloretin (20)

POPC/CAMPO/phloretin POPC/ERG/NyS/phloretin (21)

POPC/STIGM/phloretin

POPC/ERG/phloretin

2.3. Antibiotic Concentration Assessement with Absorbance Spectroscopy

In order to build the absorbance spectra, the formulations containing AmB or NyS
were scanned from 250 to 450 nm with a 1 nm step using a spectrofluorimeter, Fluorat-
02-Panorama, produced by Lumex (Saint-Petersburg, Russia) at 25 ◦C. The AmB and Nys
levels in samples were determined via optical density using the appropriate extinction
coefficients in DMSO at 425 and 306 nm (related to the monomeric forms of polyenes),
respectively. The control formulations without antibiotics were scanned to take into account
the turbidity of the liposomal suspension. The concentrations of AmB and Nys in liposome
preparations did not practically depend on their phospholipid, sterol, or flavonoid content
and was equal to 20 ± 2 and 50 ± 3 µM, respectively.

2.4. Fluorimetry of Calcein Leakage from Large Unilamellar Lipid Vesicles

To monitor the membrane permeabilization induced by formulations 1–21, a fluores-
cent marker release from unilamellar lipid vesicles was performed. Liposomes mimicking
the target membranes were prepared from POPC/CHOL (67/33 mol.%) (mammalian-like)
and POPC/ERG (67/33 mol.%) (fungal-like) by extrusion using an Avanti Polar Lipid
mini-extruder (Avanti Polar Lipids, Inc., Alabaster, AL, USA), as described earlier in [22].
Lipid chloroform stock solution was dried under a gentle stream of nitrogen, and after, it
was hydrated using a 35 mM calcein solution (10 mM HEPES, pH 7.4). The suspension was
subjected to six cycles of freeze-thaw, and after, it was passed through a nuclepore polycar-
bonate membrane (with a pore size of 100 nm) 13–15 times. Gel filtration on the sephadex
G-50 column with calcein-free buffer (0.15 M NaCl, 1 mM EDTA, 10 mM HEPES, pH 7.4)
was performed to remove the fluorescent marker that was not entrapped in the liposomes.
The strong self-quenching of calcein at a millimolar concentration in lipid vesicles allowed
us to monitor the kinetics of its fluorescence in surrounding media due to the formulation-
induced marker leakage. All formulations were added to a liposome suspension up till the
antibiotic concentration was 2 µM. Figure 2A shows that a further increase in the dose of
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the POPC/CHOL/AmB formulation in the bathing solution was not accompanied by an
increase in the marker release from lipid vesicles. Figure 2B demonstrates that the effects
of antibiotic-free preparations (POPC/CHOL and POPC/CHOL/phloretin), at the same
volume concentration as antibiotic-loaded formulations in the bathing solution, on the
permeability of fungal-like liposomes for calcein were negligible.
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Figure 2. (A) Time dependence of calcein leakage from mammalian-like (black curve) and fungal-like
lipid vesicles (red curve) at the subsequent increase in the dose of POPC/CHOL/AmB formulation
in bathing solution. The moments of addition of the formulation into the liposomal suspension are in-
dicated by the arrows. The concentrations of the monomeric AmB in µM are shown above the arrows.
(B) Time dependence of calcein leakage from fungal-like liposomes at the addition of antibiotic-free
POPC/CHOL (blue curve) and POPC/CHOL/phloretin (olive curve) formulations. The addition
of the formulations until the same volume concentration as antibiotic-loaded formulations in the
bathing solution was carried out at the first moment.

The calcein fluorescence induced by the addition of different formulations was mea-
sured for at least 45 min using a spectrofluorimeter, Fluorat-02-Panorama (Lumex,
Saint-Petersburg, Russia), at the excitation and emission wavelengths of 490 and 520 nm,
respectively. At the end of each experiment, a detergent, triton X-100, was introduced into
the vesicle suspension until the concentration was 1 vol%, causing the disruption of all
liposomes and producing full calcein disengagement.

Liposome permeabilization caused by the addition of the tested formulations was
assessed based on the changes in the relative intensity of calcein fluorescence (IF, %) and
calculated using the following formula:

IF =
I − I0

Imax/0.9 − I0
· 100%

where I and I0 were the intensities of calcein fluorescence after and before the introduction
of the formulation, respectively, and Imax was the maximal calcein fluorescence of the
sample after the addition of triton X-100 and the lysis of all liposomes. The sample dilution
by triton X-100 was taken into account by correcting with a factor of 0.9.

The dependences of leakage on time IF(t) were fitted with one-exponential functions
with characteristic parameters: the maximal marker leakage from mammalian-like or
fungal-like lipid vesicles (IFCHOL or IFERG respectively) and the appropriate time constant
(t). The predicted therapeutic index (PTI) was calculated as a ratio of the formulation-
induced mean values of IFERG and IFCHOL.

2.5. Measurements of the Current-Voltage Characteristics of the Planar Lipid Bilayers Treated with
Polyene Formulations

The planar lipid bilayers without solvent lenses were prepared using a method by
Montal and Muller [45] on an aperture (with a diameter of 50 µm) in the Teflon film
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(10 µm thick) separating cis- and trans-chambers. The aperture was pretreated with hex-
adecane. Lipid bilayers were composed of POPC/CHOL (67/33 mol.%) (mammalian-like)
and POPC/ERG (67/33 mol.%) (fungal-like) and bathed in 2.0 M KCl (5 mM HEPES,
pH 7.4). After bilayer stabilization, the formulations 1–18 and 21 were introduced to the
cis-compartment in up to 2 µM of monomeric polyene. The antibiotic-free formulations of
POPC/sterol and POPC/sterol/polyphenol type were used as negative controls. To apply
the transmembrane voltage (V) and measure the transmembrane current (I), Ag/AgCl
electrodes with 1.5% agarose/2 M KCl bridges were used. Positive transmembrane voltage
refers to a more positive potential in the cis-side chamber than in the trans-side compart-
ment. The alteration in the formulation-induced transmembrane current was measured
at the voltage ramp from −200 to +200 mV per 5 s. Membrane conductance (G) was
determined using the ratio of the transmembrane current to the applied voltage.

Measurements of the transmembrane current were carried out using an Axopatch 200B
amplifier (Molecular Devices, LLC, Orleans Drive, Sunnyvale, CA, USA) in the voltage-
clamp mode. To digitize and analyze the signal, Digidata 1440A (Molecular Devices, LLC,
Orleans Drive, Sunnyvale, CA, USA), pClamp 10 (Molecular Devices, LLC, Orleans Drive,
Sunnyvale, CA, USA), and Origin 8.0 (OriginLab Corporation, Northampton, MA, USA)
were used. Data acquisition was performed with a sampling rate of 5 kHz and 100 Hz
low-pass filtering.

2.6. Statistical Analysis

Experiments were carried out in independent triplicates at least, and the values are
presented as mean ± standard error. The Mann–Whitney–Wilcoxon’s U-test was used to
compare the characteristics of membrane actions of different formulations with those of the
standard preparation (1) (*—p ≤ 0.05).

3. Results and Discussion
3.1. Modulation of Polyene-Sterol Interactions

Figure 3 demonstrates the dependence of the fluorescence marker leakage from the
lipid vesicles formed by the mixture of POPC and CHOL (mimicking the mammalian
membranes) (Figure 3A) or ERG (imitating fungal membranes) (Figure 3B) on the time
after addition of different AmB formulations containing CHOL (1), DESM (2), 7DCHOL (3),
CAMPO (4), STIGM (5), and ERG (6). The effect of the formulations 1–6 on the fungal-
like liposomes was larger than that on mammalian-like lipid vesicles (Figure 3). Table 2
summarizes the mean values of the maximum calcein leakage from mammalian-like and
fungal-like liposomes induced by the formulations 1–6. In the presence of formulations
1–6, the maximum release of the fluorescent marker from mammalian-like lipid vesicles
(IFCHOL) did not exceed 5% (Figure 3A, Table 2), and the CHOL-containing formulation
seemed to be the most effective. The efficacy of the formulations 1–6 in disengaging calcein
from fungal-like liposomes (IFERG) decreased in the following order: 3 ≥ 1 (IFERG is about
35–40%) > 2 (25%) > 4 ≈ 5 (15%) > 6 (about 10%) (Figure 3B, Table 2). The level of calcein
leakage from mammalian-like and fungal-like lipid vesicles can be used to predict the
toxicity and effectiveness of the formulation, respectively. Thus, the presented results
indicate that the toxicity might decrease in the series of 1 ≥ 3 ≥ 2 ≈ 4 ≈ 5 ≈ 6, while
the efficiency might decrease in the series 3 ≥ 1 > 2 > 5 > 4 ≈ 6. Table 2 also shows the
time constants characterizing the kinetics of calcein leakage from fungal-like liposomes
induced by formulations 1–6. Formulations 3, 4, and 6 caused slower marker release than
formulations 1, 2, and 5.
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Figure 3. Time dependence of calcein leakage (IF, %) from mammalian-like (A) and fungal-
like lipid vesicles (B) induced by different formulations: POPC/CHOL/AmB (1, black curves),
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first moment.

Table 2. The characteristics of the membrane activity of AmB formulations with different sterols.

Formulation
Mammalian-like Membranes Fungal-like Membranes

PTI
IFCHOL, % G+200/G−200 IFERG, % t, min G+200/G−200

POPC/CHOL/AmB (1) 4 ± 1 1.0 ± 0.1 34 ± 3 6 ± 1 13 ± 1 9 ± 3

POPC/DESM/AmB (2) 2 ± 1 * 1.0 ± 0.1 25 ± 2 * 4 ± 1 * 37 ± 2 * 13 ± 7

POPC/7DCHOL/AmB (3) 3 ± 1 * 7 ± 1 * 37 ± 7 18 ± 2 * 49 ± 3 * 12 ± 6

POPC/CAMPO/AmB (4) 2 ± 1 * 1.3 ± 0.2 14 ± 3 * 14 ± 1 * 11 ± 2 7 ± 5

POPC/STIGM/AmB (5) 2 ± 1 * 1.2 ± 0.3 15 ± 1 * 5 ± 1 10 ± 2 8 ± 4

POPC/ERG/AmB (6) 2 ± 1 * 14 ± 1 * 9 ± 3 * 18 ± 1 * 30 ± 3 * 5 ± 4

IFCHOL, IFERG—formulation-induced maximal leakage of calcein from unilamellar mammalian-like and fungal-
like lipid vesicles, respectively; G+200/G−200—the ratio of membrane conductance produced by one-side addition
of the formulations at the transmembrane voltage of +200 mV to conductance at −200 mV; t—the characteristic
parameter of the time dependences of marker leakage from fungal-like liposomes; PTI—predicted therapeutic
index. *—p ≤ 0.05 (Mann–Whitney–Wilcoxon’s test vs. standard formulation 1).

To compare the impact of different sterols, we introduced the predicted therapeutic
index (PTI), determined as a ratio of IFERG and IFCHOL (Table 2). PTI decreased in the
following order: 2 ≈ 3 ≥ 1 ≈ 4 ≈ 5 ≥ 6. Thus, both formulations enriched with 7DCHOL
and DESM were characterized by a promising PTI, but the efficacy of the DESM-containing
formulations in disengaging calcein from fungal-like liposomes (IFERG) was lower than that
of the 7DCHOL-containing preparation (Table 2). Comparing the structures of the tested
sterols (Figure 1E–K), we assumed that an additional double bond in the steroid core, but
not in the side chain of the sterol molecule (compared to CHOL), may provide a reduction
in the toxicity of the AmB lipid formulation without losing its effectiveness.

The replacement of half of the POPC content with DSPC or DPPC (with saturated
acyl chains of different lengths), and negatively charged POPG, did not practically affect
the ability of AmB liposomal formulation to disengage the marker from mammalian-like
and fungal-like lipid vesicles compared to the standard preparation 1: IFCHOL was equal to
2–4% while IFCHOL was about 30% independent of phospholipid composition. These data
indicate that the saturation of the phospholipid hydrocarbon tails and the length of their
tails, as well as the charge of the phospholipid head, have little effect on the affinity of the
polyene for the sterol and, consequently, on the toxicity and efficacy of the AmB liposomal
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form. Thus, varying the phospholipid component does not seem to be a promising way to
improve the pharmacological properties of lipid-associated forms of polyene macrolides.

Upon the addition of the polyene antibiotic on both sides of the membrane, two
half-pores, collected on opposite sides of the bilayer, associate via the formation of hy-
drogen bonds between the hydroxyl groups of polyene molecules and form a symmetric
double-length channel [3,5,7,46]. In the case of the one-side introduction of polyene, the
asymmetric half-structure forms a single-length channel localized on the side of the antibi-
otic addition [17,47,48]. So, the one-side addition of pure AmB into the solution bathing
mammalian-like and fungal-like model membranes led to the induction of single-length
AmB channels characterized by a strongly asymmetrical G/G0(V) curve (Figure 4A). Mean-
while, the two-side introduction of the nonliposomal antibiotic produced double-length
AmB channels with a symmetrical G/G0(V) curve (Figure 4B). It is important to note that
there is a difference in the order of magnitude in the threshold antibiotic concentrations
required to produce double-length and single-length channels in favor of the latter.
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(♢) and two-side (*) addition of AmB dissolved in DMSO to bilayer conductance at zero applied
voltage (G/G0). Membranes were made from POPC/CHOL (mammalian-like) (A) and POPC/ERG
(fungal-like) (B) and bathed in 2.0 M KCl (pH 7.4).

The influence of liposomal AmB formulations 1–6 on the ion permeability of planar
lipid bilayers mimicking mammalian and fungal membranes was studied. Figure 5A,B
demonstrate the voltage dependences of the ratio of membrane conductance induced by
the one-side addition of the formulations 1–6 into a solution bathing mammalian-like and
fungal-like lipid bilayers, respectively to the membrane conductance at a transmembrane
potential extrapolated to zero (G/G0). The G/G0(V) curves of mammalian-like lipid bilay-
ers treated with AmB formulations 6 and 3 had an asymmetrical shape, while the G/G0(V)
curves of mammalian-like model membranes modified by the formulations 1, 2, 4, 5 were
symmetrical (Figure 5A). The G/G0(V) curves of fungal-like lipid bilayers were asymmetri-
cal in the presence of all tested formulations (Figure 5B). The inserts on Figure 5A,B present
examples of the time dependences of the alterations in the formulation-induced current
through mammalian-like and fungal-like lipid bilayers at the voltage ramp from −200 to
+200 mV per 5 s. The asymmetric and symmetric G-V curves are related to the functioning
in the membranes of single-length and double-length AmB channels.
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Figure 5. The voltage dependence of the ratio of membrane conductance produced by one-side
addition of different AmB formulations to conductance at zero transmembrane voltage (G/G0):
POPC/CHOL/AmB (1, black curves), POPC/DESM/AmB (2, red curves), POPC/7DCHOL/AmB
(3, green curves), POPC/CAMPO/AmB (4, blue curves), POPC/STIGM/AmB (5, cyan curves), and
POPC/ERG/AmB (6, pink curves). Mammalian-like (A) and fungal-like model membranes (B) were
bathed in 2.0 M KCl (pH 7.4). Insets: The time dependence of the alteration in the transmembrane
current induced by formulation 1 at the voltage ramp from −200 to +200 mV per 5 s.

To characterize the asymmetry of the G-V curve, we calculated the ratio of the mem-
brane conductance produced by one-side addition of the formulation at transmembrane
voltage of +200 mV and −200 mV (G+200/G−200). Table 2 summarizes the values ob-
tained for formulations enriched with different sterols. This parameter was close to 1 for
mammalian-like lipid bilayers treated with formulations 1, 2, 4, and 5, and it was signifi-
cantly higher for mammalian-like membranes modified by formulations 3 (G+200/G−200
was about 7) and 6 (G+200/G−200 was about 14). Taking into account that the formation
of asymmetric channels occurs at concentrations at an order of magnitude higher than
symmetric ones, the symmetry of the G-V-characteristic might be related to higher activity
of AmB formulation. Thus, the data might indicate a lower toxicity of 7DHOL- and ERG-
enriched AmB formulations (3 and 6) compared to formulations containing other sterols
(1, 2, 4, and 5). Thus, the results of the electrophysiological assay were in good agreement
with the results of calcein leakage measurements and indicated that the 7DHOL-containing
preparation was the most promising in terms of reducing toxicity of AmB lipid formula-
tions. The replacement of cholesterol in AmB-loaded formulation with any other sterol did
not lead to symmetrization of the G-V characteristic of fungal-like lipid bilayers (Table 2).
This meant the need to search for an additional component that can symmetrize the G-V
curve of fungal-like membranes treated with the formulation. Therefore, we introduced
plant polyphenols to make AmB-loaded phytosomes.

3.2. Polyene-Loaded Phytosomes

According to our previously reported data, plant flavonoids, in particular phloretin,
were able to increase the ability of pure AmB to form ion channels in model lipid mem-
branes [6–8,43]. Biochanin A, genistein, and quercetin were shown to enhance the pore-
forming activity of another polyene macrolide antibiotic, nystatin (Nys), which differs from
AmB by only one double bond in the polyene chain (Figure 1L,M) [41,42].

Liposome formulations of plant flavonoids are used to overcome the low water sol-
ubility of phytochemicals [49–54]. We tried to adapt these delivery systems for polyene
antibiotic administration. So, we developed innovative formulations of antibiotics that also
contain flavonoids increasing the polyene pore-forming ability: polyene-loaded phytosomes.

Firstly, we tested the ability of AmB formulations containing POPC, CHOL, and differ-
ent flavonoids, phloretin (7), biochanin A (8), genistein (9), and quercetin (10), to disengage
calcein from mammalian-like and fungal-like lipid vesicles (Figure 6, Table 3). The maxi-
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mum release of fluorescent marker from mammalian-like liposomes (IFCHOL) induced by
AmB-loaded phytosomes 7–10 did not exceed 5% independently on the flavonoid type
(Table 3). Figure 6A shows the time dependence of calcein leakage from fungal-like lipid
vesicles after the addition of formulations 7–10. One can see that the efficiency expressed
in IFERG-values decreased in the following order: 7 (IFERG is about 45%) > 9 ≈ 8 (20%) >
10 (10%). Further, we tested AmB formulations enriched with phloretin and composed
of different sterols: DESM (11), 7DCHOL (12), CAMPO (13), STIGM (14), and ERG (15).
Figure 6B demonstrates the time dependence of marker leakage from fungal-like liposomes
induced by the addition of formulations 11–15. The efficacy of phloretin-enriched for-
mulations containing different sterols to disengage calcein from fungal-like lipid vesicles
decreased in the following order: 7 (45%) ≥ 11 ≈ 12 ≈ 13 (about 40%) > 14 ≈ 15 (25–30%)
(Figure 6B, Table 3).
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Figure 6. Time dependence of calcein leakage (IF, %) from fungal-like lipid vesicles at the addition of
(A) AmB-loaded phytosomes containing different flavonoids, POPC/CHOL/AmB/phloretin (7, dark
yellow curve), POPC/CHOL/AmB/biochanin A (8, navy curve), POPC/CHOL/AmB/genistein (9,
olive curve), and POPC/CHOL/AmB/quercetin (10, purple curve); (B) AmB-loaded phytosomes
with phloretin and composed of different sterols, POPC/DESM/AmB/phloretin (11, wine curve),
POPC/7DCHOL/AmB/phloretin (12, violet curve), POPC/CAMPO/AmB/phloretin (13, orange
curve), POPC/STIGM/AmB/phloretin (14, dark cyan curve), and POPC/ERG/AmB/phloretin (15,
dark grey curve). The formulations were added in bathing solution up to 2 µM of monomeric AmB
at the first moment.

Table 3 also shows the time constants describing IF(t)-dependencies. Formulations
containing phloretin and biochanin A produced slower marker release than formulations
with genistein and quercetin and without flavonoids. The replacement of CHOL with
DESM, 7DCHOL, CAMPO, and STIGM in the composition of AmB-loaded phytosomes
with phloretin was accompanied by a significant slowdown in marker leakage (Table 3).

The replacement of AmB with Nys was accompanied by a decrease in IFERG by 15%
and a dramatic slowdown in marker leakage independently on the sterol composition of
phytosomes (Table 3).

The G/G0(V) curves of fungal-like membranes treated with polyene formulations
containing phloretin and genistein were symmetrical, demonstrating the existence of
double-length AmB channels that might relate to a decrease in the threshold concentration
of the antibiotic and an increase in the efficiency of the formulation (Table 3, Figure 7A). Tak-
ing into account the PTI values and the magnitudes of AmB phytosome-induced currents
flowing through fungal-like lipid bilayers (Table 3), POPC/CHOL/AmB/phloretin (7),
POPC/DESM/AmB/phloretin (11), POPC/7DCHOL/AmB/phloretin (12), and POPC/
ERG/AmB/phloretin (15) seemed to be more promising formulations. The data indi-
cates that the introduction of phloretin into polyene liposome formulations might lead
to an increase in efficiency. Similar to AmB preparations, fungal-like membranes treated
with NyS-loaded phytosomes were characterized by symmetrical G/G0(V) curves, while
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fungal-like lipid bilayers in the presence of NyS-enriched liposomes without the flavonoid
had asymmetrical G/G0(V) curves (Figure 7B). Taking into account that the inclusion of
phloretin in NyS-loaded liposomes containing CHOL or ERG also led to about a 2-fold
increase in IFERG-values (IFERG produced by POPC/CHOL/NyS (16) and POPC/ERG/NyS
(17) was equal to 13-14%), we concluded that phytosomes might be considered as universal
delivery systems for the administration of various polyene macrolides.

Table 3. The characteristic parameters of the membrane activity of developed polyene-loaded
phytosomes.

Formulation IFCHOL, % IFERG, % t, min PTI
Fungal-like Membranes

G+200/G−200 I+200, µA

POPC/CHOL/AmB/phloretin (7) 4 ± 1 45 ± 5 * 15 ± 2 * 11 ± 4 1.1 ± 0.1 * 30 ± 3 *

POPC/CHOL/AmB/biochaninA (8) 3 ± 1 20 ± 2 * 14 ± 2 * 7 ± 3 4 ± 1 * –

POPC/CHOL/AmB/genistein (9) 2 ± 1 * 23 ± 3 * 5 ± 1 12 ± 3 1.0 ± 0.1 * –

POPC/CHOL/AmB/quercetin (10) 2 ± 1 * 10 ± 2 * 6 ± 1 5 ± 4 60 ± 7 * –

POPC/DESM/AmB/phloretin (11) 3 ± 1 * 42 ± 6 * 27 ± 2 * 14 ± 7 1.1 ± 0.1 * 25 ± 6 *

POPC/7DCHOL/AmB/phloretin (12) 4 ± 1 38 ± 2 23 ± 3 * 10 ± 3 1.1 ± 0.1 * 24 ± 2 *

POPC/CAMPO/AmB/phloretin (13) 5 ± 1 38 ± 3 21 ± 2 * 8 ± 2 1.1 ± 0.1 * 29 ± 8 *

POPC/STIGM/AmB/phloretin (14) 3 ± 1 * 27 ± 4 33 ± 4 * 9 ± 4 1.3 ± 0.1 * 10 ± 2 *

POPC/ERG/AmB/phloretin (15) 2 ± 1 * 26 ± 3 * 18 ± 3 * 13 ± 8 1.0 ± 0.1 * 27 ± 6 *

POPC/CHOL/NyS/phloretin (18) 2 ± 1 * 30 ± 6 36 ± 1 * 15 ± 10 1.1 ± 0.1 * 8 ± 2

POPC/DESM/NyS/phloretin (19) 2 ± 1 * 27 ± 5 35 ± 2 * 14 ± 9 – –

POPC/7DCHOL/NyS/phloretin (20) 2 ± 1 * 30 ± 4 36 ± 2 * 15 ± 10 – –

POPC/ERG/NyS/phloretin (21) 2 ± 1 * 30 ± 5 35 ± 1 * 15 ± 10 1.0 ± 0.1 * 12 ± 2 *

IFCHOL, IFERG—formulation-induced maximal leakage of calcein from unilamellar mammalian-like and fungal-
like lipid vesicles, respectively; G+200/G−200—the ratio of membrane conductance produced by one-side addition
of the formulations at a transmembrane voltage of +200 mV to conductance at −200 mV; t—the characteristic
parameter of the time dependences of marker leakage from fungal-like liposomes; PTI—predicted therapeutic
index; I+200—the current flowing through fungal-like membrane produced by one-side addition of the formulation
at transmembrane potential of +200 mV (I+200 induced by formulation 1 was equal to 3 ± 1 µA). *—p ≤ 0.05
(Mann–Whitney–Wilcoxon’s test vs. standard formulation 1).
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Figure 7. (A) The voltage dependence of the ratio of membrane conductance produced by one-
side addition of the different phytosomes to conductance at zero transmembrane voltage (G/G0):
POPC/CHOL/AmB/phloretin (7, dark yellow curve), POPC/DESM/AmB/phloretin (11, wine
curve), POPC/7DCHOL/AmB/phloretin (12, violet curve), POPC/CAMPO/AmB/phloretin (13, or-
ange curve), POPC/STIGM/AmB/phloretin (14, dark cyan curve), and POPC/ERG/AmB/phloretin
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(15, dark grey curve). Inset: The time dependence of the alteration in the transmembrane current
induced by formulation 7 at the voltage ramp from −200 to +200 mV per 5 s. (B) The voltage
dependence of the ratio of membrane conductance produced by one-side addition of different Nys
formulations to conductance at zero transmembrane voltage (G/G0): POPC/CHOL/NyS (16, dark
blue curve), POPC/ERG/NyS (17, olive curve), POPC/CHOL/NyS/phloretin (18, blue curve),
and POPC/ERG/NyS/phloretin (21, green curve). Fungal-like lipid bilayers were bathed in 2.0 M
KCl (pH 7.4).

4. Conclusions

1. The replacement of cholesterol with its biosynthetic precursor, 7-dehydrocholesterol,
led to a decrease in the ability of AmB-loaded liposomes to permeabilize lipid vesicles
mimicking mammalian cell membranes. The ability of the formulation to disengage
the fluorescence marker from vesicles imitating membranes of pathogenic fungi was
preserved at the level of cholesterol-containing AmB lipid formulation. These facts
might indicate the possibility of expanding the therapeutic window of polyene lipid
formulations by varying liposome sterol content.

2. The saturation of the phospholipid hydrocarbon tails and the length of their tails,
as well as the charge of the phospholipid head, had little effect on the membrane
permeabilization by AmB liposomal formulations.

3. It was found that polyene-loaded phytosomes with phloretin were characterized by a
greater ability to disengage calcein from lipid vesicles that mimic the membranes of
fungal cells compared to liposomal formulations that did not include phloretin. More-
over, lipid bilayers mimicking fungal membranes treated with phloretin-containing
polyene-loaded phytosomes demonstrated symmetrical I–V characteristics that indi-
cated the existence of double-length polyene channels and a possible decrease in the
antibiotic threshold concentration.

The results obtained using model lipid membranes that showed the possibility of
improving the pharmacological properties of liposomal formulations of polyene antibiotics
should be verified via a detailed study of the antifungal activity of new formulations on a
wide panel of human fungal pathogens.
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