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Abstract: We investigate experimentally the local intensity control in the visible region of the su-
percontinuum (SC) generated from femtosecond laser filamentation in fused silica by using pulse
shaping technology. Based on the genetic algorithm, we show that a distinct spectral hump at any
preset wavelength can be formed in the blue-side extension. The local intensity control in the SC
could improve the abilities of the SC applications.
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1. Introduction

Since spectral broadening by focusing a high-power picosecond laser pulse into crys-
tals and glasses was discovered by Alfano and Shapiro, supercontinuum (SC) source
has attracted widespread attention due to the spectral range’s spectacular ability to span
from ultraviolet to mid-infrared [1,2]. The broadband SC source has found a variety of
applications, such as spectroscopy [3,4], fluorescence microscopy [5], optical coherence
tomography [6,7], and chemical sensing [8]. Therefore, SC generation has been extensively
investigated in various optical media under a wide variety of experimental conditions,
including liquid, gas, and solid [9]. In the past decade, along with the development of
photonic crystal and microstructured fibers, and highly nonlinear materials, the study of SC
generation in optical fiber has achieved remarkable progress [10–15]. The SC with different
broad spectra has been obtained. Diouf and colleagues obtained a super-flat coherent
mid-infrared SC spectrum by using a chalcogenide photonic crystal fiber [13]. Adamu et al.
reported the multi-octave SC spectrum spanning from deep ultraviolet (200 nm) to the
mid-infrared (4000 nm) generation in a gas-filled hollow-core antiresonant fiber [14]. Fur-
thermore, they demonstrated the mid-infrared SC with a spectrum spanning from 1.4 µm
to 13.3 µm by using an ultra-high numerical aperture chalcogenide step-index fiber [15].
Today, a series of optical fiber-based commercial SC sources have emerged [16]. Even so,
the generation of broadband SC with high brightness, high spatiotemporal coherence, and
good maneuverability, is still highly desired.

The SC generation from femtosecond laser filamentation has attracted great interest
due to its many advantages, including high pulse energy, high brightness, high spatiotem-
poral coherence, and so on [17]. In recent years, numerous studies have been performed
to optimize filamentation and SC, in order to achieve high-power, ultra-broadband, and
controllable SC spectrum. For example, in our previous work, we have generated a fila-
ment array in fused silica by using microlens array as the focal element and obtained a
high power density SC with mW/nm level in the visible range [18]. Lu et al. obtained
an intense femtosecond SC by placing several thin fused silica plates at or near the focus

Photonics 2021, 8, 339. https://doi.org/10.3390/photonics8080339 https://www.mdpi.com/journal/photonics

https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://doi.org/10.3390/photonics8080339
https://doi.org/10.3390/photonics8080339
https://doi.org/10.3390/photonics8080339
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/photonics8080339
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics8080339?type=check_update&version=1


Photonics 2021, 8, 339 2 of 8

of a high-power laser pulse. The generated SC covers from 450 nm to 980 nm with a
conversion efficiency as high as 54% [19]. Subsequently, He et al. improved the efficiency
to 85% by placing more plates (seven plates at Brewster’s angle), and further obtained
a few-cycle pulse with a pulse duration of 5.4 fs by using the chirped mirrors compres-
sion [20]. More recently, utilizing 1030 nm 170 fs pulses and a two-stage multiple-plate
arrangement, Lu et al. generated the SC spanning from 570 nm to 1300 nm and obtained
a 3.21 fs sub-single-cycle pulse after dispersion compensation [21]. Furthermore, in the
light of high power single-cycle pulse application, such as Zeptosecond-Exawatt physics,
Mourou et al. theoretically demonstrated a thin film compressor that has the potential to
compress a high energy pulse in a pulse as short as one optical cycle at 0.8 µm, producing
true ultrarelativistic λ3 pulses [22]. Farinella et al. experimentally demonstrated the focus-
ability of high-power laser pulses after self-phase modulation in thin films at transport
intensities (~1 TW/cm2) for petawatt laser systems [23,24]. Moreover, a multi-octave SC
with a wide wavelength coverage has been obtained via filamentation generation by the
near- and mid-infrared ultrashort-pulse laser in the range of anomalous group velocity
dispersion of wide bandgap dielectric media, such as YAG, sapphire, and fluoride crystal,
or in various types of glasses [17]. For example, an ultra-broadband SC with a range from
290 nm to 4.3 µm was generated in LiF crystal by the femtosecond laser pulses with a
central wavelength of 2.3 µm [25]. Therefore, the SC generated from femtosecond filamen-
tation provides an efficient broadband light source for a variety of applications, such as SC
cavity ring-down spectroscopy (SC-CRDS) [26,27], remote sensing [28], and generation of
few-cycle pulses [20–24,29].

On the other hand, the modulation of SC spectrum is beneficial to many applications.
To this end, several approaches have been proposed, especially to enhance the blue-side
spectral extension of the SC. For instance, by introducing a positive or negative chirp into
the femtosecond laser pulse, a strong and sharp spectral peak in the blue side of SC is
generated from the filamentation in birefringent crystal (e.g., calcite), and the spectral
peak is tunable by modulating the pulse chirp and energy [30]. Using an acousto-optic
programmable dispersive filter to introduce second- and third-order phase distortions
into the laser pulse, SC is obtained with controllable spectral bandwidth and shape [31].
More recently, Zhdanova et al. realized the broadening control in the visible region of the
SC by using the spatial beam shaping technique [32]. Additionally, by using the input
pulse with shaped phase and amplitude, the energy conversion efficiency is significantly
increased within the specified bandwidths of SC [33]. Thompson et al. experimentally and
theoretically demonstrated the intensity enhancement of the spectrum of femtosecond fila-
mentation in water by applying a phase modulation into a specified frequency range [34].
Recently, Chen et al. presented a systematical investigation on the laser polarization effect
on the SC generation from femtosecond laser filamentation in air. They found that the
circular polarization filamenting pulse is particularly favorable for the intensity enhance-
ment of the SC generation in the short wavelength range, and the linear polarization
pulse is favorable for the spectral broadening [35]. The above-mentioned methods have
achieved good results to control the characteristics of SC, such as the spectral range, the
cutoff wavelength, and the intensity. However, the controllable local spectral intensity
enhancement of the SC from filamentation has not yet been studied, to the best of our
knowledge. In this paper, we study the control of the SC spectrum in the fused silica by the
shaped femtosecond laser through feedback iteration optimization. The results show that
the spectral hump in the visible region of SC can be controlled and arbitrarily shifted.

2. Experiment Methods

Figure 1 shows the schematic of the experiment setup. The laser is generated from
a commercial Ti: Sapphire femtosecond laser system (Spitfire, Spectra-Physics) which
delivers pulses at a center wavelength of 800 nm with a duration of 45 fs, and a repeti-
tion rate of 1 kHz. The output spectral bandwidth is about 50 nm. The beam diameter
is reduced to ~7 mm via a telescope system. The pulse shaper design is similar to the
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report by Weiner [36], which consists of a 4f zero-dispersion pulse compressor and a
792 × 600 element pixel liquid crystal spatial light modulator (SLM, X10468-02, Hama-
matsu) placed in the Fourier plane of the 4f system, shown in the dotted box of Figure 1.
Here, a diffraction grating of 1200 lines/mm and a cylindrical lens with a focal length
of 300 mm are employed. The SLM can introduce phase modulation to the spectral com-
ponents from 750 nm to 850 nm, and achieve phase modulation up to 2π radians over
the readout wavelength range. Therefore, the pulse shaper has a spectral resolution of
~0.13 nm. The shaped laser pulse with different profiles can be obtained by applying
different phase masks to the SLM. Thereafter, the shaped laser pulses are focused by a
plano-convex lens L1 into a fused silica block to form the filament. In this experiment,
the input laser energy is ~6 µJ which is attenuated by a combination of neutral density
filters and beam splitters. The focusing length of the L1 is 250 mm, and the distance
between L1 and the front surface of the fused silica is 245 mm. The size of fused silica is
50 × 30 × 30 mm3. Based on the parameters of the shaping pulse, it can be estimated that
the peak intensity at the input of fused silica is ~4 × 1010 W/cm2. The SC generated from
filamentation in the fused silica is collected by a plano-convex lens L2 (f = 100 mm) into
an integrating sphere (IS) connected to a spectrometer (USB 4000, Ocean Optics Inc.). A
dichroic mirror (R > 98% @ ~350 nm–~670 nm) is put before the IS to block the fundamental
light, and the integration time of the spectrometer is 15 s.
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Figure 1. The schematic of the experimental setup. M: 800 nm high reflective mirror. G: grating. CL: 
cylindrical lens. SLM: spatial light modulator. L: plano-convex lens. FS: fused silica. DM: dichroic 
mirror. IS: integrating sphere. 

According to the experiment settings, we design a feedback control program based 
on the genetic algorithm (GA), in which the spectral intensity of SC is set to be the feed-
back signal of the GA. In the experiment, we set 50 phase arrays for each generation, and 
the phase arrays of the initial iteration are generated randomly. To reduce the search space 
of GA, every 8 consecutive pixels are combined in sets and assigned the same value of 
phase retardance, resulting in 99 effective pixels. For each iteration, the SC generation by 
the shaped laser pulse corresponding to each phase array is evaluated via the fitness value 
given by the GA. After that, the 50 compensation phase arrays are sequenced based on 
the evaluation results. The better 20 of them are selected and used to create the new 50 
phase arrays for the next generation by the methods of crossover and mutation. The pro-
gram will exit as soon as the fitness function is satisfied. 

Figure 1. The schematic of the experimental setup. M: 800 nm high reflective mirror. G: grating. CL:
cylindrical lens. SLM: spatial light modulator. L: plano-convex lens. FS: fused silica. DM: dichroic
mirror. IS: integrating sphere.

According to the experiment settings, we design a feedback control program based on
the genetic algorithm (GA), in which the spectral intensity of SC is set to be the feedback
signal of the GA. In the experiment, we set 50 phase arrays for each generation, and the
phase arrays of the initial iteration are generated randomly. To reduce the search space of
GA, every 8 consecutive pixels are combined in sets and assigned the same value of phase
retardance, resulting in 99 effective pixels. For each iteration, the SC generation by the
shaped laser pulse corresponding to each phase array is evaluated via the fitness value
given by the GA. After that, the 50 compensation phase arrays are sequenced based on the
evaluation results. The better 20 of them are selected and used to create the new 50 phase
arrays for the next generation by the methods of crossover and mutation. The program
will exit as soon as the fitness function is satisfied.

3. Results and Discussion

Using the experimental setups and the control programs, we study the control of the
SC spectrum generated from filamentation in fused silica by shaped femtosecond laser
pulses. To start with, we define the fitness function as the spectral intensity of 600 nm in
the SC. Through the feedback iteration optimization, the enhancement of spectral intensity
at 600 nm is realized. The SC spectra for different generations are shown in Figure 2. Note
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that since the dichroic mirror blocks the fundamental light, only the spectral region less
than 670 nm is left. Correspondingly, the phase masks for several typical generations are
shown in Figure 3. The mask is a grayscale image corresponding to the phase change from
0 to 2π on SLM. From Figure 2, we can find that the SC spectral intensity around 600 nm
is enhanced significantly with the increase in the generation number. Especially, in the
profile of SC, around 600 nm is changed dramatically. Since the 4th generation, an obvious
spectral hump appears near 600 nm. From the 9th generation, the intensity of the spectral
hump increases rapidly and reaches the maximum intensity at the 12th generation. The
intensity of the hump at 600 nm increases first and decreases due to the hump shift, and
then increases rapidly. Finally, the position of the hump is stabilized at 600 nm with a
small deviation, which indicates that the spectral hump at 600 nm is obtained through the
feedback pulse shaping control.
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sponding to Figure 2), respectively.

In order to clearly show the evolution of the spectral hump generated by the shaped
femtosecond pulses with the increase in the feedback iterations, the spectral intensity at
600 nm in each generation in Figure 2 is extracted and plotted in Figure 4a. We can see that
the spectral intensity at 600 nm increases slowly with the number of iterations initially, and
then decreases from the 5th generation and reaches the minimum after two generations.
Thereafter, the spectral intensity dramatically increases and soon reaches a maximum at
the 12th generation and is stabilized gradually. In the same way, we extract the position of
the spectral hump of the SC for each generation and plot it in Figure 4b. It should be noted
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that in the first three generations no obvious spectral hump appears in the SC spectrum
near the wavelength of 600 nm, so the spectral position of these three generations is not
shown in Figure 4b. From this figure, we can see that the hump position deviates from the
600 nm wavelength first and then approaches, which corresponds to the spectral intensity
fluctuation shown in Figure 4a. Eventually, the hump position is relatively stable at about
600 nm. As a result, we obtain a spectral hump in the blue-side of the SC by using shaped
laser pulses and realize the stabilization of the spectral position of the hump to a preset
wavelength of 600 nm.
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To illustrate the universality of the spectral hump modulation of SC generated from
shaped laser pulse filamentation through feedback iteration, we further investigate the
spectral control at other wavelengths by the same method. By changing the fitness function
to the spectral intensity of 510 nm, a similar evolution of SC to that shown in the Figure 2
is obtained. After two iterations, the spectral enhancement occurs at about 510 nm. With
the further increase in iteration, the spectral hump position oscillates around 510 nm, and
the intensity of the hump increases. After nine iterations, the spectral hump is stabilized
at 510 nm, and the hump intensity no longer changes significantly with the increase in
iteration. Further changing the fitness function of GA to the spectral intensity of other
wavelengths (560 nm and 655 nm, respectively), the formation of the spectral humps at the
preset spectral positions in the visible region of SC is realized. The four typical results of
the spectra hump modulation by the shaped femtosecond pulses are shown in Figure 5.
The hump positions are well stabilized at 510 nm, 560 nm, 600 nm, 655 nm, respectively.
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In Figure 6, we plot the temporal envelope of shaped femtosecond pulses used to
generate the SC shown in Figure 5. Because the pulse envelope can not be measured
directly under our present experimental condition, we calculate the temporal envelope of
shaped femtosecond pulses based on the spectrum of the initial laser pulse and the phase
introduced by SLM [37]. As can be seen from Figure 6, the pulse width reaches the order of
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picosecond after shaping, and the envelope becomes more complicated and is no longer a
Gaussian distribution.
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Figure 6. The shaped femtosecond pulses by the pulse shaper for filamentation and SC generation 
for the cases shown in Figure 5. 

The self-phase modulation (SPM) is regarded as the main mechanism causing the 
spectral broadening of the intense femtosecond laser pulse. Our previous studies revealed 
that the pulse shape plays a dominant role in the filamentation and SC generation due to 
the SPM and electron generation [38,39]. More complicated pulse shapes will induce 
steeper ascending and descending edges in the laser pulse, which can lead stronger blue-
side spectral extension [39]. In our experiment, the pulse is modulated to an extremely 
complicated pulse with many temporal peaks, as shown in Figure 6. These pulse peaks 
will induce a very strong SPM effect and very fast electron generation during the process 
of filamentation. As a consequence, the pulse spectrum will have a huge extension, espe-
cially to the blue-side. Therefore, it is understandable that the SC spectral intensity can be 
enhanced by using pulse shaping technology and feedback iteration. However, various 
nonlinear effects, including SPM, electron generation, self-steepening, high-order Kerr ef-
fect, and so on, are involved in the filamentation and SC generation, especially for the 
ultrashort pulses with modulated shapes, which deserves further study. 

4. Conclusions 
Based on the feedback optimal control, we experimentally study the spectral modu-

lation in the visible region of SC generated from the shaped laser pulse filamentation in 
fused silica and realize the intensity enhancement at selected wavelengths. The spectral 
hump in the visible region of SC can be formed at desired wavelength positions. The con-
trol of the spectral hump of the SC could improve the abilities of the SC applications where 
the spectral power of different spectral ranges needs to be flexibly enhanced. For example, 
in the SC-CRDS, for different absorbers, the light source should have high enough spectral 
power at different wavelength bandwidths [27]. 
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Figure 6. The shaped femtosecond pulses by the pulse shaper for filamentation and SC generation
for the cases shown in Figure 5.

The self-phase modulation (SPM) is regarded as the main mechanism causing the
spectral broadening of the intense femtosecond laser pulse. Our previous studies revealed
that the pulse shape plays a dominant role in the filamentation and SC generation due
to the SPM and electron generation [38,39]. More complicated pulse shapes will induce
steeper ascending and descending edges in the laser pulse, which can lead stronger blue-
side spectral extension [39]. In our experiment, the pulse is modulated to an extremely
complicated pulse with many temporal peaks, as shown in Figure 6. These pulse peaks
will induce a very strong SPM effect and very fast electron generation during the process of
filamentation. As a consequence, the pulse spectrum will have a huge extension, especially
to the blue-side. Therefore, it is understandable that the SC spectral intensity can be
enhanced by using pulse shaping technology and feedback iteration. However, various
nonlinear effects, including SPM, electron generation, self-steepening, high-order Kerr
effect, and so on, are involved in the filamentation and SC generation, especially for the
ultrashort pulses with modulated shapes, which deserves further study.

4. Conclusions

Based on the feedback optimal control, we experimentally study the spectral modula-
tion in the visible region of SC generated from the shaped laser pulse filamentation in fused
silica and realize the intensity enhancement at selected wavelengths. The spectral hump
in the visible region of SC can be formed at desired wavelength positions. The control of
the spectral hump of the SC could improve the abilities of the SC applications where the
spectral power of different spectral ranges needs to be flexibly enhanced. For example, in
the SC-CRDS, for different absorbers, the light source should have high enough spectral
power at different wavelength bandwidths [27].
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