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Abstract: We applied room-temperature photoluminescence (PL) spectroscopy for the compositional
engineering of a CH3NH3Pb(Cl,I)3 light harvester in an alloy-based perovskite solar cell. This
spectroscopic characterization determines the optimal Cl concentration where the power conversion
efficiency shows its maximum in a contactless and non-destructive manner. The PL quenching
ratio evaluated from the comparative PL studies between the films grown on glass/ZrO2 and
SnO2:F/TiO2 substrates exhibited its maximum at a Cl concentration of 10 mol%, which agrees with
the Cl concentration determined from the current–voltage measurement-based device performance.
We also discuss the possible reasons for the coincidence mentioned above regarding the charge
extraction effect induced by Cl incorporation.
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1. Introduction

Much attention has been recently paid to an inorganic–organic lead halide perovskite
CH3NH3PbI3 (MAPbI3) as a new class of light harvester in a solar cell [1,2]. These per-
ovskite materials demonstrate rapid progress in their performance as a solar cell, the
central part of which is owing to their material properties such as their direct nature in the
interband transition, high absorption coefficient, and high charge carrier mobility [3–5].
Furthermore, since their first discovery in 2009 [6], the power conversion efficiency (PCE)
is now around 25%, exceeding that of other emerging photovoltaic technologies such as
dye-sensitized solar cells and organic photovoltaics [7–9]. These properties and the pos-
sibility of flexible synthesis have made halide perovskites promising for next-generation
photovoltaics [10–13].

To enhance the PCEs of the device, many groups have proposed the mixing of halide
anions (X = Br, Cl) in the MAPbI3 structure [1,14,15]. Chloride ions have positive roles
in manufacturing high-quality perovskite films. For example, both diffusion lengths for
electrons and holes of mixed halides are larger than those of iodide [16,17].

Despite the enormous profits implemented by chloride addition, the question related
to an optimal ratio is still a topic that is under debate. Throughout this paper, one defines
the term ‘optimal ratio’ as the Cl concentration showing the highest PCE in the perovskite-
based MAPb(Cl,I)3. Although some research groups proposed that the optimal ratio
should be around 0.33 [18], a look through the literature has revealed that the optimal
ratio depends on the device preparation methods and growth conditions [11,19]. In other
words, the determination of the optimal ratio requires the preparation and characterization
of many devices with different Cl concentrations. This could indeed be time-consuming
because electrical contact processes are needed to evaluate the PCE.
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Among well-established optical techniques, photoluminescence spectroscopy (PLS)
is a non-contact characterization tool. This technique is suitable for materials intended
for optoelectronic applications. So far, there have been several reports on the PL proper-
ties of MAPb(Cl,I)3 films with charge extractors [17,19,20], attributing their observed PL
quenching to the charge extraction from the light harvester. Because it is well known that
charge extraction plays an essential role in PCE determination, we reached a conjecture
that this technique can be used as a contactless and non-destructive determination tool
for the optimal ratio. Furthermore, the PL measurement does not require electrical con-
tact on the samples, which expectedly enables rapid characterization by applying, e.g., a
composition-spread technique [21]. For the verification, we characterized and compared
PL properties and current–voltage (J–V) characteristics by preparing several MAPb(Cl,I)3
films whose Cl concentration ranges from 0 to 25 mol%.

After the introduction, the paper begins with a description of the methods for film
preparation, spectroscopic characterizations, electrical characterizations, and theoretical
calculations. It will then go on to the results and discussions related to the optical properties
of our prepared films concerning device performance from the viewpoint of compositional
engineering. Finally, we draw our conclusions.

2. Experimental and Calculation Procedures

We first deposited porous titanium oxide (mesoporous TiO2) on the blocking layer
(compact TiO2). The preparation methods consisted of spin coating (dip-casting) and
screen printing.

1. Mesoporous oxide and absolute ethanol were mixed in a weight ratio of 2:7.
2. We applied them using spin coating.
3. We fixed the substrate in a spin coat.
4. We drip-cast 0.2 mL of mesoporous oxide solution to spread throughout.

Then, we dried it at 125 ◦C. Furthermore, if the substrate does not have a porous layer,
the perovskite can be formed only on an extremely thin film, so that the porous layer is
necessary. Therefore, we focused on ZrO2 as an insulative porous material. In the case of
ZrO2 as well, we drip-cast it.

We adopted the two-step solution strategy, whose detailed prescriptions were given
elsewhere [12]. First, we created Pb(Cl,I)2 layers. Then, we dissolved powders of lead
iodide (PbI2) 1.3 M and lead chloride (PbCl2) in X mol% in a solvent composed of N,N-
dimethylformamide, and dimethyl sulfoxide in a ratio of 9:1. If the addition of PbCl2 was
required, we added it when mixing the iodide solution. We drip-cast it on SnO2:F (FTO)
substrate, and then it was annealed at 100 ◦C and cooled to room temperature. Next, we
dissolved methylammonium iodide in iso-propanol. We drip-cast it at 4000 rpm for 30 s
for film formation, followed by annealing and cooling to room temperature. We measured
the PL for MAPb(Cl,I)3 films grown on glass/ZrO2 and FTO/TiO2. For J–V characteristics,
we prepared a hole transport layer consisting of CuSCN as a top layer [22].

We used a monochromator and a charge-coupled device as a detecting unit and a
325 nm line from the HeCd laser as an excitation light source for the room-temperature PL
measurements [23,24].

We performed an ab initio calculation using the Green function method-based package
of Akai-KKR [25,26] to evaluate the electronic energy band structures and density of states
distributions on CH3NH3PbI3 and systems alloyed with CH3NH3PbCl3 [27]. KKR indicates
the initials of Korringa, Kohn, and Rostoker, who invented this method. The strength of the
KKR method is the ability to take a coherent potential approximation often used for alloy
systems into account [28,29]. We calculated them using a conventional unit cell whose
lattice constants are a = b = c = 5.68 nm. In addition, we used the Perdew–Burke–Ernzerhof
(PBE) functional, which belongs to generalized gradient approximation (GGA) functionals.



Photonics 2021, 8, 412 3 of 7

3. Results and Discussion

We evaluated the Cl concentration dependence of the PL spectra in MAPb(Cl,I)3 films
grown on (1) glass/ZrO2 and on (2) FTO/TiO2 [19,30,31]. The study of the first structures
was intended to quantify the number of photocarriers absorbed in the light harvesting
layer [32]. In this structure, ZrO2, an insulator, was used instead of TiO2 (a charge extractor)
as a scaffold [33,34]. As will be explained later in detail, by evaluating the PL’s intensity
ratio between the first and the second structures, hereafter, we aim to evaluate a quantity
related to the charge extraction efficiency and hence the PCE.

Figure 1a,b show the spectra and integrated intensities of the PL in the film grown on
glass/ZrO2, respectively, as a function of the Cl concentrations. The central photon energy
of the PL spectrum was about 1.61 to 1.59 eV for each Cl concentration [35]. The observed
energy is in good agreement with the reported bandgap energy of MAPbI3, ranging from
1.5 to 1.6 eV [36,37].
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Figure 1. Photoluminescence (PL) (a) spectra and (b) intensity of CH3NH3Pb(Cl,I)3 with different Cl concentrations on
glass/ZrO2.

The central photon energy did not shift even with chloride addition [13]. Chloride
addition tends to blueshift the bandgap energy because the bandgap energy of MAPbCl3
is significantly larger than that of MAPbI3 [37]. This observation is probably due to the
cancellation of the bandgap energy shift with the carrier localization effect. It is well
known that the bandgap fluctuation introduced by Cl incorporation induces the red-
shifting carrier localization [38]. As can be understood from Figure 1b, the integrated PL
intensity decreases as the Cl concentration increases, which is in good agreement with the
‘theoretical’ concentration dependence shown in Figure 2 [26]. Here, we plotted the density
of states spectrally integrated between the gap energy and 3.5 eV, which is considered to be
proportional to the number of photocarriers absorbed in the light harvesting layer.

Figure 3a,b show PL’s spectra and intensities, respectively, for the film grown on
FTO/TiO2 [39,40]. The PL is quenched, compared to the first samples’ cases shown in
Figure 1b. This result is probably due to photocarriers’ charge extraction from the light
harvesting layer into the electron transport layer [41]. Letting the integrated PL intensity
of the first and second structures be I1 and I2, we define an ‘efficiency’ term hereafter as
[(I1 − I2)/I1] to evaluate the effect induced by replacing ZrO2 with TiO2. We plot this quan-
tity as a function of the Cl concentration in Figure 3c. We notice an interesting concentration
dependence. The maximum efficiency found itself at 10 mol% of chlorine, which is in good
agreement with the PCE shown in Table 1 [42,43]. We measured the current–voltage (J–V)
curves in MAPb(Cl,I)3 devices and summarized their parameters, such as PCE in Table 1.
We can safely conclude that the ‘efficiency’ is intimately related to the charge extraction
efficiency. Our results indicate that PL spectroscopy could determine the optimal ratio by
evaluating the ‘efficiency’ because the charge extraction efficiency is known to be one of the
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principal components determining the PCE of solar cells. However, it is not good practice
to draw a conclusion by using only one characterization tool. For further justification, we
conducted a similar study with time-resolved differential absorption spectroscopy, which
showed an identical concentration dependence to the case of PL spectroscopy [44,45].
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Figure 3. PL (a) spectra, (b) intensity, and (c) intensity ratio (‘efficiency’) of CH3NH3Pb(Cl,I)3 with different Cl concentrations
on FTO/TiO2.

Table 1. Summary of device performance of CH3NH3Pb(Cl,I)3 solar cells with different Cl concentra-
tions obtained from photocurrent density–voltage (J–V) curves. The device parameters were from
the data obtained in a forward scanning direction. It is noted that the hysteresis in the J–V curve
is negligible.

Concentration Jsc Voc FF PCE

mol% mA/cm2 V %

0 6.8 0.81 0.56 7.7
2 8.3 0.87 0.60 9.7
10 20.7 0.92 0.62 12.0
25 9.6 0.90 0.60 10.6

Figure 4a,b are SEM images of CH3NH3PbI3 and CH3NH3Pb(Cl,I)3 with a Cl concen-
tration of 25 mol% [14,46]. The particle size of CH3NH3PbI3 of ca. 150 nm is significantly
different from that of CH3NH3Pb(Cl,I)3 (ca. 400 nm). A previous study insisted that
photocarriers’ localization length scale is comparable to the length scale of the particles’
sizes. Because photocarriers’ localization length likely influences the PCE of the device,
our observed change in the particles’ size may have some impact on the PCE. Further
studies are necessary to clarify this issue.
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4. Conclusions

The present research aimed to examine the usefulness of PL spectroscopy for the
compositional engineering of a MAPb(Cl,I)3 light harvester. The comparative investigation
of the Cl concentration dependence of PL intensities for the films on glass/ZrO2 and
FTO/TiO2 has shown its maximum at a Cl concentration of 10 mol%, which is in good
agreement with that determined from J–V measurements. This spectroscopy can determine
the optimal Cl ratio in a contactless manner, which will expectedly speed up the material
development cycle.
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