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Abstract: The problem of network coding resource optimization with a known topological structure
is NP-hard. Traditional quantum genetic algorithms have the disadvantages of slow convergence
and difficulty in finding the optimal solution when dealing with this problem. To overcome these
disadvantages, this paper proposes an adaptive quantum genetic algorithm based on the cooperative
mutation of gene number and fitness (GNF-QGA). This GNF-QGA adopts the rotation angle adap-
tive adjustment mechanism. To avoid excessive illegal individuals, an illegal solution adjustment
mechanism is added to the GNF-QGA. A solid demonstration was provided that the proposed
algorithm has a fast convergence speed and good optimization capability when solving network
coding resource optimization problems.

Keywords: adaptive; quantum genetic algorithm; network coding resource optimization; quantum
variation

1. Introduction

In recent years, it has become a research hotspot in the industry to complete the
recovery of failures by combining the distributed recovery mechanism of the optical
network with optical multicase technology [1,2]. Optical multicast technology is a kind of
information transmission technology whereby an optical network transmits the sender’s
information to multiple receivers at the same time. A large number of optical cross-connect
devices are distributed in the optical transport network, which provides the possibility
for the application of optical layer multicast technology. By converting point-to-point
connections to point-to-multipoint connections, the logical structure of networks with a
simple physical topology can become more compact and complex. The application of
the optical tree connection in an optical transmission network can effectively enhance the
broadcast ability of the network.

In addition, optical multicast technology also has many potential advantages: (a) al-
though optical multicast requires a detailed understanding of the topology of the physical
layer, it can also establish a more efficient multicast tree to allocate resources effectively
and reasonably to improve utilization; (b) optical multicast cancels packet switching and
network storage and forwarding, reducing traffic transmission time; (c) optical multicast
can copy multicast packets through optical splitters; (d) optical multicast technology is
transparent to the data bit rate and code format, which can effectively reduce the difficulty
of node data processing and improve the transmission efficiency of the business. For busi-
ness requests in the optical multicast network, it is also necessary to find the appropriate
optical path in the optical network to transmit the business and allocate the corresponding
network resources for this group of point-to-multipoint optical paths.

In order to achieve a good recovery function, the most basic work of optical trans-
mission is to select network routing. An optical network is composed of multiple optical
channels that transmit different information. The establishment of optical channels requires
topology and resource information in optical networks, which means that routing selection
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is affected by multiple indicators such as the wavelength continuity of the optical network,
different wavelengths of the optical network, the lower bound of network congestion,
the network delay, the cost of routing establishment, and the average number of hops.
Therefore, many factors must be taken into account when selecting routing for an opti-
cal channel to reduce the overhead of network resources and optimize the utilization of
network resources.

When rerouting in optical networks, it is difficult to obtain the optimal solution
because the distributed recovery mechanism only uses the local information of the network.
The introduction of a shared protection link improves its performance to some extent. In
the distributed recovery mechanism, all nodes do not store the link usage and reserved
information; rather, each node can rely on the open shortest path routing protocol and
traffic engineering technology to obtain the wavelength resource usage of the working
path and the standby path. According to the information, the shared link satisfying the
conditions is determined, and the resources are configured in advance. On the other hand,
inspired by the coding and decoding idea of erasure codes, network coding technology
can be introduced into optical transmission networks to solve the link failure recovery
problem in the network [3,4]. When a limited link fails in the network, some services can
be recovered by encoding and decoding at the network coding node. Network coding
technology is particularly suitable for multicast networks. Through this coding multicast
mode, not only can we use small network resources to construct an approximate real-time
self-repair multicast communication network, but we can also obtain a high multicast
transmission rate.

Network multicast allows information to be transmitted from a single point to multiple
points. Compared with traditional unicast and broadcast methods, multicast greatly
improves transmission efficiency. The traditional routing uses the method of “storage-
forward” to transmit data, with which it is difficult to achieve the maximum network flow
in theory, and this causes a waste of bandwidth resources. Ahlswede et al. [5] first proposed
the basic principle of network coding in 2000. Network coding allows intermediate nodes
to combine the received information during information transmission and then pass the
result information to the next node. Network coding technology can effectively improve
network throughput [6], enhance network robustness [7], and increase the utilization of
wired and wireless networks [7–9], meaning that the multicast rate can reach the upper
limit of the maximum flow minimum cut theory [10,11].

In the past decade, network coding technology has rapidly developed into an impor-
tant research field in electrical engineering and computer science. It has a wide range of
applications, such as wireless networks, distributed file storage, and network security, but
the encoding operation also brings additional computational overhead [12,13]. Therefore,
it is very important to reduce the number of codings in the process of network information
transmission. The core purpose of network coding resource optimization is to minimize
coding overhead [14] and achieve multicast rate requirements under a given topology.

Han et al. [15] first proposed the quantum genetic algorithm to solve optimization
problems. The quantum genetic algorithm (QGA) combines quantum computation with
the genetic algorithm. Compared with the traditional genetic algorithm, the quantum
genetic algorithm uses qubit to encode, which can guarantee the diversity of populations
with a small population. Therefore, the quantum genetic algorithm can be used to solve
network coding resource optimization problems and has made great progress over the
traditional genetic algorithm. However, when the number of nodes increases, the quantum
genetic algorithm easily finds the optimal solution.

In this paper, on the basis of existing research, and considering the influence of
gene number on population variation, an adaptive quantum genetic algorithm (GNF-
QGA) based on gene number and fitness co-variation is proposed to solve the problem
of network coding resource optimization. The rotation angle step adjustment mechanism
based on the adaptive evolution mechanism is adopted, and the solution of excessive illegal
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solutions is proposed. The experimental data show that the proposed algorithm has a
better optimization ability in solving the network coding resource optimization problem.

2. Network Coding Resource Optimization

In multicast, there are many different information transmission methods in the same
topology when sending information from one source node to multiple destination nodes.
Different information transmission methods consume different resources, and each addi-
tional encoding operation will increase the corresponding processing cost. The optimization
problem of network coding resources aims to find a solution with the smallest number of
codings under the premise of meeting the maximum flow transmission requirements; that
is, finding a multicast tree with the fewest coding operations [16].

Seeing network communication as a single source node, each edge is a directed graph
of unit capacity expressed as (G, S, T, R), where G represents a directed graph, and S is
the source node. T = {t1, t2, ..., tn} is the destination node set and R is the multicast rate
that the network communication can reach. It has been proved that linear network coding
can meet the needs of the multicast networks [17,18], so this paper only studies simple
linear network coding. Nodes with more than one input edge and at least one output edge
may be coding points. When a node has more than one input edge and more than one
output edge, the coding of each output edge may be different. Figure 1 shows the example
of coding node [19]. Assuming that y1 = x1 + x2 and y2 = x2 + x3, node v needs to be
encoded twice. Therefore, the number of encoding edges rather than the number of nodes
should be recorded when calculating the optimal encoding method.

For the convenience of this research, we decompose the nodes with multiple-input
edges and multiple-output edges. Each input side is pointed to a single node (input node),
and each output side is projected from a single node (output node), and then a side pointing
to the output node is created sequentially from the input node. Figure 2 illustrates the
decomposition results of nodes in Figure 1.

Figure 1. Example of coding node.

Figure 2. Decomposition of nodes.
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Figure 2 shows that after node v is decomposed, node v4 and node v5 may be the
encoding points, and an encoding point will be encoded at most once (only one output
edge), so the number of encodings can be calculated according to the number of encoding
points. To use GNF-QGA to solve the network coding resource optimization problem, each
side can be set as a binary number, and it can be assumed that 1 represents the side with
data flow while 2 represents the side without data flow. Node v can be represented by a 6
bit binary number of gene coding in which the first three represent the three input edges
of v4 and the last three represent the three input edges of v5. Figure 3 shows that node v4
encodes data from node v1 and node v2, while node v5 directly forwards the data from
node v3 without a coding operation.

Figure 3. Gene interpretation.

Only nodes that may be coding points require gene coding, and the number of genes
Ngene is defined as (1), where Imm represents the number of input edges of the node while
Omm represents the number of output edges of the node. When the gene is determined,
the number of encodings can be calculated according to the expression pattern of the
gene—namely a multicast tree structure.

Ngene =

{
Imm ×Omm Imm ≥ 2∧Omm 6= 0
0 Imm < 2∨Omm = 0

(1)

3. Algorithm Description

The adaptive quantum genetic algorithm based on gene number and fitness coopera-
tive mutation includes the fitness evaluation mechanism, rotation angle adaptive adjust-
ment mechanism, the cooperative mutation mechanism based on gene number and fitness,
and illegal solution adjustment mechanism.

3.1. Fitness Cooperative Mutation Mechanism

In the fitness evaluation mechanism, the fitness function of chromosome Chi is shown
as (2), where Ci represents the number of coded edges in the multicast tree built on
chromosome Chi, and Cmax represents the number of coding edges in the multicast tree
constructed by chromosomes with all genes being 1. This represents the legal individual
when f lag = 1 and the illegal individual when f lag = 0. The maximum flow f low(S, ti)
from the source node to every destination node is calculated based on the Dinic algorithm,
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and the edge of the maximum flow is marked. If two or more incident edges of node vi
are marked, node vi is the encoding node. The number of encoding edges is added by one
based on node decomposition. Assuming the network coding multicast rate requirement
is MAX_FLOW, if there is a destination node ti such that f low(S, ti) < MAX_FLOW,
chromosome Chi is an illegal solution.

F(Chi) =

{
Cmax − Ci f lag = 1
0 f lag = 0

(2)

In the process of algorithm implementation, the topology map corresponding to
chromosome X is generated first, and then the topology map is used as an input. Secondly,
the Dinic algorithm is used to solve the maximum flow f low(S, t) of the source node S
to all other target nodes t ∈ T. If any f low(S, t) is smaller than the multicast rate R, it
indicates that the topology cannot meet this condition. For all target nodes t ∈ T, we use
the Dijkstra algorithm to solve path set P(s, t) = {P1(S, t), P2(S, t), . . . , Pn(S, t)}. For each
target node, the Dijkstra algorithm should be run R times, and it should be ensured that for
each path in the path set P(S, t), if i 6= j, Pi(S, t)∩ Pj(S, t) = ∅. A marked array can be used
to record the passing edges in each Dijkstra algorithm so that the repeated edges cannot be
walked in the next iteration of the algorithm. Path set P is all edges of the network coding
multicast tree. In this multicast tree, if all incident edges of a node are not less than 2, the
corresponding output edge of the node is the coding edge. We can specifically define two
sets for all potential encoding nodes in the Dijkstra algorithm, recording the edges emitted
from that point and the edges that enter it.

3.2. Rotation Angle Adaptive Adjustment Mechanism

The quantum genetic algorithm is an improved intelligent heuristic search method
combining quantum computing and the genetic algorithm. Its quantum-bit coding simu-
lates the characteristics that quantum states can be superimposed on multiple states, which
greatly increases the number of states represented by a single chromosome and greatly
expands the search space of the algorithm.

3.2.1. Quantum Computing

Quantum computation is a concept proposed by Richard Feynman, a theoretical
physicist, when he simulated the classical computer to realize quantum mechanical systems.
Since then, Deutsch proposed that quantum computers should follow the law of quantum
mechanics. The quantum state has the characteristics of interference, superposition, non-
replication, entanglement, and parallelism, which means that quantum computation can
greatly improve the operation efficiency of an algorithm; it is also the theoretical basis of
the quantum algorithm.

3.2.2. Quantum Coding

The core of the quantum genetic algorithm is qubit coding, and the qubit is the basic
information unit in quantum computing. A quantum bit represents the superposition of
two quantum ground states, known as the superimposition state, and it is shown as (3).

|ϕ〉 = α|0〉+ β|1〉 (3)

The quantum state has changed the traditional representation method of either zero
or one, where the probability amplitude of the quantum state is expressed by complex
numbers. |α|2 represents the probability that the quantum state ϕ will collapse to 0 after
observation while |β|2 represents the probability that the quantum state ϕ will collapse to 1
after observation. α and β need to meet the normalization condition shown as (4)

|α|2 + |β|2 = 1 (4)
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3.2.3. Quantum Rotation Gate

In the quantum genetic algorithm, the concept of the quantum rotation gate replaces
the selection, mutation, and crossover operations in traditional genetic algorithms to
complete the update operation of individuals in the population. The quantum state adjusts
its mutation probability through the quantum rotation gate so that the probability of
collapse to the global optimal solution in individual observation increases. It can be said
that the operation of the quantum rotation gate is the key to the convergence of the entire
quantum genetic algorithm. The quantum rotation gate is shown as (5).

U(θ) =

[
cos θ − sin θ
sin θ cos θ

]
(5)

The renewal process of quantum state through quantum rotation gate is shown as (6).
[

α′i
β′i

]
=

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

][
αi
βi

]
(6)

In Equation (6),
[
αi βi

]T represents the i-th quantum bit encoded by individual

chromosome while
[
α′i β′i

]T is the quantum bit that has been rotated and updated through
a quantum revolving gate. Furthermore, θi is the rotation angle, which is determined by the
rotation angle table shown in Table 1. xi represents the observation state of i-th chromosome
encoding of the individual. bi represents the i-th chromosome encoding of the optimal
individual in the population. ∆θ

j
i represents the rotation angle. S(αj

i , β
j
i) represents the

directions of the rotation angles whose values are determined by the conditions in Table 1.
The value of the rotation angle θi is S(αj

i , β
j
i) × ∆θ

j
i . This algorithm uses the rotation

angle adaptive adjustment mechanism, by which the rotation angle is modified adaptively
according to the individual fitness.

Table 1. Rotation angle look-up table.

xj
i bi

f (xj) ≥
f (Xt

best)
∆θ

j
i

S(α
j
i , β

j
i)

α
j
i , β

j
i > 0 α

j
i , β

j
i > 0 α

j
i = 0 β

j
i = 0

0 0 f alse θ
j
1 = 0 - - - -

0 0 true θ
j
2 = 0 - - - -

0 1 f alse θ
j
3 = θ j +1 −1 0 ±1

0 1 true θ
j
4 = θ j −1 +1 ±1 0

1 0 f alse θ
j
5 = θ j −1 +1 ±1 0

1 0 true θ
j
6 = θ j +1 −1 0 ±1

1 1 f alse θ
j
7 = 0 - - - -

1 1 true θ
j
8 = 0 - - - -

In Table 1, xj represents the j-th individual, and bi represents the i-th gene of the
current optimal individual Xt

best. f (x) represents the fitness of individual x. θj represents
the rotation angle step of the j-th individual, which is defined by Equation (7) [10].

θ j =

{ f j− fmin
fmax− fmin

(K2 − K1) + K1 fmax 6= fmin

K1 fmax = fmin
(7)

where K1 represents the minimum rotation angle step, K2 represents the maxmum rotation
angle step and K1 < K2.
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3.3. Cooperative Mutation Mechanism Based on Gene Number and Fitness

The rotation angle adaptive adjustment mechanism can allocate a reasonable rotation
angle step size according to the different fitness of individuals, reducing the optimization
time, but it easily leads to the decline of population diversity in the later period, and the
algorithm falls easily into a locally optimal solution. Based on self-adaptation, this paper
proposes a cooperative mutation mechanism based on gene number and fitness, which
increases the population diversity in the later stage of the algorithm and improves the
optimization ability of the algorithm. The mutation operation is realized by exchanging the
mutation bit probability amplitude according to mutation probability. For each individual,
the mutation probability vj is determined by the results of the gene number and fitness
calculation as shown in Equation (8)

vj =

{
K3

fmax− f j
fmax− fmin

(K4 − Ngene) fmax 6= fmin

K3(K4 − Ngene) fmax = fmin
(8)

where K3, K4 are coefficients of variation and K4 > Ngene.
It can be seen from Equation (8) that when the number of genes is constant, the

individuals with higher fitness are assigned a lower mutation probability, which can
protect their genes and improve the stability of the algorithm. On the contrary, individuals
with a small fitness are assigned a higher mutation probability, which can prompt them
to adjust their state more quickly and move closer to the optimal solution. When the
number of genes is large, the mutation probability is low, which can ensure the stability of
the algorithm and reduce the illegal individuals. Conversely, when the number of genes
is small, the mutation probability is high, which can accelerate the convergence of the
algorithm and improve the optimization speed.

3.4. Illegal Solution Adjustment Mechanism

In solving the optimization problem of network coding resources, excessive illegal
individuals will reduce the optimization efficiency of the algorithm. In order to further
improve the efficiency of the algorithm and reduce the number of illegal individuals, this
paper proposes the illegal solution adjustment mechanism. For the illegal solution, the
probability CP is equal to the optimal solution, as shown in Equation (9), where K5 is a
normal number less than 1.

CP =

{
0 f lag = 1
K5 f lag = 0

(9)

3.5. Algorithm Procedure

The flow of adaptive quantum genetic algorithm based on the cooperative mutation
mechanism of gene number and fitness is shown in Figure 4, where MAXGEN is the
maximum evolutional generation set by the algorithm.
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In order to verify the effectiveness of GNF-QGA, this paper compares it with the
traditional quantum genetic algorithm (QGA) and the quantum genetic algorithm based
on rotation angle adaptive adjustment mechanism (AM-QGA). The rotation angle step of
the AM-QGA is shown in Table 1 and the mutation probability is 0.1.

The hardware and software environment used in this experiment is: Intel(R)Core(TM)i5-
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4. Experimental Analysis

In order to verify the effectiveness of GNF-QGA, this paper compares it with the
traditional quantum genetic algorithm (QGA) and the quantum genetic algorithm based
on the rotation angle adaptive adjustment mechanism (AM-QGA). The rotation angle step
of the AM-QGA is shown in Table 1 and the mutation probability is 0.1.

The hardware and software environment used in this experiment is an Intel(R)
Core(TM) i5-7300 HQ CPU with 4 cores and running with 2.50 GHz, 8 G RAM, Win-
dows 10, CodeBlaocks 13.12, GCC 4.8.1. Each algorithm has a population size of 50 in the
experiment. The maximum number of iterations is set to 1000. The relevant parameter
settings for GNF-QGA are shown in Table 2.
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Table 2. Parameter settings for GNF-QGA.

Parameters Settings

Minimum rotation angle step K1 0.01π
Maximum rotation angle step K2 0.05π

Mutation coefficient K3 0.0016
Mutation coefficient K4 200

Illegal solution adjustment constant K5 0.1

The three test functions selected for the performance test of the algorithm in this paper
are as follows:

1. Unary function (shown in Equation (10)): This function is a simple, one-dimensional
multi-peak function. The range of independent variables in this paper is a, and the
maximum value of the function is around 3.805. The plot of this function is shown in
Figure 5.

F1 = xsin(10πx) + 2.0 (10)

Figure 5. Plot of test function F1.

2. Schaffer’s F6 function (shown in Equation (11)): This function has infinite local
maxima, of which only one (0, 0) is the global maximum and the maximum is 1. In
this paper, the range of independent variables is −10 < 2, y < 10. There is a circular
valley around the maximum peak of this function, and its value is 0.990283. It is easy
to stop at this local maximum point. The plot of this function is shown in Figure 6.

F2 = 0.5− sin2√x2 + y2 − 0.5
(1 + 0.001(x2 + y2))2 (11)
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Figure 6. Plot of test function F2.

3. De Jong function (Shekel’s foxholes, shown in Equation (12)): The range of indepen-
dent variables is −65.536 < xi < 65.536. The function has multiple local maximum
points, and it can be considered convergent when its function value is greater than 1.
The plot of this function is shown in Figure 7

F3 = 0.02 +
25

∑
j=1

1
j + ∑2

i=1
(
xi − aij

) (12)

where:
(aij)2×25 =( −32 −16 0 16 32 −32 −16 . . . 0 16 32
−32 −32 −32 −32 −32 −16 −16 . . . 32 32 32

)

Figure 7. Plot of test function F3.
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The parameters of the algorithm and function in the test are set as follows: the coding
accuracy for three test functions is 0.000001; the population size for the three algorithms’
solving function F1 is 40 and the number of iterations is 100; the population size for the
three algorithms’ solving function F2 and F3 is 100 and the number of iterations is 400.
In AM-QGA, K1 = 0.001π, K2 = 0.05π, and the initial mutation probability p = 0.2.
The comparison results of QGA, AM-QGA, and GNF-QGA are shown in Table 3, in
which the mean value means the mean value of the optimal solution obtained by three
algorithms running 1000 times independently. When solving F1, AM-QGA and GNF-QGA
run 1000 times independently can search the optimal solution, but QGA can not search the
optimal solution each time. When solving F2, the mean value obtained by GNF-QGA is the
highest, but the calculation time of GQA is the least. When solving F3, the calculation time
of AM-QGA is less than that of GNF-QGA, but the mean value obtained by AM-QGA is
the lowest, and the optimization effect of QGA is the worst. It can be seen that GNF-QGA
has the best optimization effect on the above three continuous functions, but the high
computational complexity leads to a long operation time.

Table 3. Test results and comparison of typical functions.

Functions Algorithm Mean Computation
Time

Optimum
Value

Mean
Value

F1

QGA 3.1094 3.8503 3.8491

AM-QGA 10.2969 3.8503 3.8503

GNF-QGA 11.7813 3.8503 3.8503

F2

QGA 2.1133 1.0000 0.9913

AM-QGA 8.0282 1.0000 0.9927

GNF-QGA 9.1375 1.0000 0.9987

F3

QGA 5.4628 1.0200 0.9121

AM-QGA 20.8914 1.0200 0.9362

GNF-QGA 22.7656 1.0200 0.9857

For the optimization problem of network coding resources, this paper selects five
networks with known topological structures. One of them is shown in Figure 8, in which
S represents the source node and t represents the destination node. Its code number is
1 based on the exhaustive method. The remaining four networks are from [20], known
as 3-copy, 7-copy, 15-copy, and 31-copy networks. Figure 9 explains the structure of the
n-copy network. Figure 9a is the initial network and Figure 9b is the three-copy network
made up of three initial networks. For the n-copy network, the source node is at the top
and the destination node is at the bottom. The network coding multicast rate requirement
selected in this paper is 2.

Figure 8. Plot of test function F2.
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(a)

(b)

Figure 9. Explanation of n-copy networks. (a) Initial network; (b) 3-copy network.

The parameters of four n-copy networks are shown in Table 4 including the number
of nodes, number of sides, number of destination nodes, number of potential coding nodes,
number of individual chromosome bits, maximum number of coding operations, and
number of all the possible coding operations.

Table 4. Parameters of networks.

Network 3-Copy 7-Copy 15-Copy 31-Copy

Number of nodes 19 43 91 187

Number of sides 30 70 150 310

Number of
destination nodes 4 8 16 32

Number of potential
coding nodes 7 19 43 91

Number of individual
chromosome bits 34 98 226 482

Maximum number of
coding operations 15 43 99 211

Number of all possible
coding operations 32,768 8.79 × 1012 6.33 × 1029 3.29 × 1063
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Table 5 shows the experimental results of the network coding problem. The mean
number of iterations (MNI) is the average number of evolutionary generations finding
the optimal solutions running 10 times. The MNIs of those that cannot find the optimal
solutions are calculated by the maximum number of iterations. The occurrence number
(ON) is the occurrence number of the optimal solutions in 10 runs, and the optimal solution
is the optimal solution found by the algorithm—not necessarily the theoretically optimal
solution.

Table 5. Experiment results.

Networks Algorithm MNI ON Optimal Solution

Figure 8
QGA 8.4 10 0

AM-QGA 6.3 10 0

GNF-QGA 4 10 0

3-copy
QGA 57.9 10 0

AM-QGA 38.2 10 0

GNF-QGA 28.3 10 0

7-copy
QGA 301.4 10 0

AM-QGA 6181.7 10 0

GNF-QGA 147 10 0

15-copy
QGA 807.5 5 0

AM-QGA 449.0 9 0

GNF-QGA 303.0 10 0

31-copy
QGA NG 0 3

AM-QGA 952.1 1 0

GNF-QGA 563.1 8 0

As can be seen from Table 5, the proposed GNF-QGA has the best performance,
with a faster convergence speed in solving simple networks. With the increase of network
complexity, the advantages of GNF-QGA are gradually highlighted. In the 15-copy network,
the search success rate of QGA and AM-QGA decreased, and GNF-QGA still maintained
a success rate of 100%. In the 31-copy network, QGA did not find the optimal solution,
AM-QGA found the optimal solution only once, and GNF-QGA found it 8 times. It can be
seen that GNF-QGA has a strong optimization ability. The GNF-QGA mutation mechanism
based on gene number and fitness can provide a more appropriate mutation probability
for the population and avoid the premature convergence of the algorithm into a locally
optimal solution. The illegal adjustment mechanism can reduce the proportion of illegal
individuals and accelerate the convergence speed of the algorithm. Therefore, it can quickly
find the optimal solution in the whole optimization process.

Figure 10 shows the relationship between the coding number and evolution genera-
tions in different algorithms solving 7-copy, 15-copy and 31-copy networks, from which
we can see that the coding number of GNF-QGA is less than those of two other algorithms.
Additionally, the coding number of GNF-QGA decreases the fastest, which indicates that its
convergence speed is better than others. In Figure 10b, the search speed of QGA decreases
significantly, and in Figure 10c, it is difficult for QGA and AM-QGA to find the optimal
solution after 600 generations, indicating that it easily falls into a local optimal solution. The
unique algorithm mechanism of GNF-QGA enables it to prevent premature convergence
and maintain good optimization ability.
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(a)

(b)

(c)

Figure 10. Comparison of evolution generations and coding numbers for different algorithms.
(a) 7-copy network; (b) 15-copy network; (c) 31-copy network.

From the above experimental results, it can be found that GNF-QGA has the fastest
convergence rate, especially in the early stage of the algorithm, and has the best global
search ability and anti-early maturity ability. The convergence performance of AM-QGA
is second only to GNF-QGA. The convergence performance and anti-local searchability
of the QGA algorithm are the worst. Because of the adaptive adjustment mechanism and
multi-operator co-evolution mechanism adopted by GNF-QGA, the search efficiency of the
algorithm is greatly improved, the algorithm does not easily fall into a local optimum, and
the performance is the best among the three algorithms. Because AM-QGA uses quantum
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bit coding, the population diversity is better than the genetic algorithm, so its algorithm
performance is better than the QGA algorithm. In addition, from Figure 10, it can be found
that QGA and AM-QGA algorithms cannot find the optimal solution after 500 generations
when calculating graphs with a large amount of data, indicating that the quantum genetic
algorithm very easily falls into the local optimum although it has a fast convergence
speed. The GNF-QGA algorithm has a strong global search ability in solving the resource
allocation network coding problem and can maintain the population diversity well in the
later stage of the algorithm, easily jumping out of the local optimal solution. It can be
concluded that the GNF-QGA algorithm with a multi-operator co-evolution mechanism
has better stability and better global convergence performance after fully considering the
distribution of population individuals and adjusting the mutation probability.

5. Conclusions

This paper proposes an adaptive quantum genetic algorithm based on the cooperative
mutation of gene number and fitness (GNF-QGA) and applies it to the optimization of
network coding resources. The fitness evaluation mechanism, rotation angle adaptive
adjustment mechanism, the cooperative mutation mechanism based on gene number and
fitness, and illegal solution adjustment mechanism are introduced in detail. The fitness
evaluation mechanism can provide individual fitness for the algorithm. The rotation
angle adaptive adjustment mechanism can dynamically allocate the rotation step length
according to the individual fitness. The cooperative mutation mechanism based on gene
number and fitness can provide a reasonable mutation probability and maintain population
diversity. The illegal solution adjustment mechanism can avoid excessive illegal individuals
and accelerate the convergence speed of the algorithm. Finally, GA, AM-QGA, and GNF-
QGA are experimentally compared and analyzed. The experimental results show that the
convergence speed and optimization ability of GNF-QGA proposed in this paper are higher
than those of the other two algorithms in solving the optimization problem of network
coding resources, showing strong comprehensive performance.
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