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Abstract: We showed that the nonlinear Mach–Zehnder interferometer may be used not only for
enhancing temporal contrast, as proposed earlier, but also for increasing pulse power due to efficient
pulse compression. The interferometer introduces into the output pulse a nonlinear phase equal to
π/2. This allows increasing laser power by a factor of 1.5 only by means of a chirped mirror. Use of an
additional nonlinear plate leads to a multi-fold power increase retaining the contrast enhancement.

Keywords: nonlinear Mach–Zehnder interferometer; post compression; femtosecond laser pulse
contrast; self phase modulation

1. Introduction

High temporal contrast has an important role in experiments on studying the behavior
of matter in extreme light fields. Temporal contrast is the ratio of the intensity at the peak of
the pulse to the intensity on its pedestal. The pedestal appears, as a rule, due to amplified
spontaneous emission in laser amplifiers of CPA lasers (chirped pulse amplification) [1], or
due to amplified parametric emission in OPCPA lasers (optical parametric chirped pulse
amplification) [2]. The most popular techniques for contrast enhancement are plasma
mirrors [3], harmonic generation [4], and cross-polarized wave (XPW) generation [5]. XPW
is based on cubic nonlinearity. Recently, several new ideas have been proposed for contrast
enhancement, by means of a nonlinear phase induced by cubic nonlinearity: spectral
filtering [6,7], spatial filtering [8], a nonlinear polarization interferometer [9], as well as
a nonlinear Mach–Zehnder interferometer with symmetric arms [10]. In the latter case,
the phase difference without non-linearity ∆ϕL equals π, and the radiation of the pedestal
does not pass to the dark port (see Figure 1a). On the contrary, the main pulse acquires a
nonlinear phase B (B-integral) in one channel, and a zero nonlinear phase in another one. If
B is nonzero, then the dark port does not become completely dark. If ∆B = π, then the dark
port becomes a light port, and the major part of the main pulse comes through this port. As
a result, the contrast will be infinitely high if ∆ϕ = π. In practice, the contrast enhancement
is determined by the inaccuracy of meeting the condition ∆ϕ = π.

Due to self-phase modulation (SPM) in a nonlinear medium, and subsequent reflection
from the chirped mirror (CM), the pulse may be compressed, and hence the peak power
increases. The method is called TFC (thin film compression) [11], CafCA (compression
after compressor approach) [12], or post-compression [13]. For pulses with energy of tens
of Joules [14–16], the multiple compression of femtosecond laser pulses was demonstrated
with almost no energy loss; for more details, see the review [17].

In this paper, we show that a nonlinear Mach–Zehnder interferometer may be used not
only for contrast enhancement, but also for multi-fold pulse compression simultaneously.
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CM. For example, an input pulse of 50 fs may be shortened to 38 fs [10], which is a tiny 
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Figure 1. Optical schemes with nonlinear Mach–Zehnder interferometer (a) and without interferometer (b).

2. Nonlinear Mach–Zehnder Interferometer for Enhancement of Contrast and
Pulse Compression

For the Mach–Zehnder interferometer (see Figure 1a), the expressions for intensities I1
and I2 at the outputs of the arms (ports) have the form [10]

I1(t) = {1− 2(1− R)R + 2(1− R)R cos[∆ϕ+ 2(1− R)B(t)]}Io(t). (1)

I2 (t) = {2(1− R)R + 2(1− R)R cos[∆ϕ+ 2(1− R)B(t)]}Io(t). (2)

Here, I0 is the intensity at the interferometer input (I0 = I1 + I2); ∆ϕ is the linear
phase difference acquired by the pulses during propagation along the interferometer arms;
B(t) = (2π/λ)Io(t)n2L is the nonlinear phase (B-integral) accumulated in both beam splitters;
L is length of the beam path in the beam splitters; λ is the wavelength; n2 is the nonlinear
refractive index; and R is the reflectivity of the beam splitters.

Under the conditions ∆ϕ = π and R = 0.5, the value of I1 in Equation (1) may be exactly
zero in the absence of a nonlinear phase (B = 0). On the other hand, at high intensity, the
nonlinear phase is accumulated, and the intensity I1 takes on a maximal value, provided
that B = π, ∆ϕ = π and R = 0.5. As a result, the pulse emerging at this port has a higher
contrast. Moreover, the pulse duration shortened after reflection from the CM. For example,
an input pulse of 50 fs may be shortened to 38 fs [10], which is a tiny compression factor.

The first way to increase the compression factor is to use a CM to remove the chirp
from the pulse. It is easy to show that the output pulse I1 accumulates a nonlinear phase
Bout = π/2 because output pulse accumulates nonlinear phase Bout = (B1 + B2)/2. Where,
B1 and B2 is nonlinear phases in the interferometer arms 1 and 2, respectively. Since B1 = π
and B2 = 0, therefore Bout = π/2. As shown below, this acquired nonlinear phase leads to
compression to about 25 fs, which is still a modest value, because of a small value of Bout.
The second way is to introduce an additional nonlinear phase Badd by adding an additional
nonlinear plate before the CM (see Figure 1a). Thus, the total value of the B-integral is
BΣ = π/2 + Badd. We will study the efficiency of pulse compression in this case. As a
reference, we will use compression without interferometer (without contrast enhancement)
with the B-integral equal to BΣ (Figure 1b). The reference case is obviously more robust
and practical, but it does not provide any impact on the pedestal.

Contrast enhancement is purely linear physics, but pulse compression is nonlinear, so
numerical calculation is needed. We performed a detailed numerical study and comparison
of compression efficiency with (Figure 1a) and without (Figure 1b) interferometer.

3. Numerical Model

Pulse propagation in a nonlinear plate is described by the nonlinear Schrödinger
Equation (3) [18]

i
∂A
∂‡
− α

∂2 A
∂τ2 + β|A|2 A + iγ

∂

∂τ

(
|A|2 A

)
= 0 (3)
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where A is the normalized amplitude of the E-field, τ is the normalized time, and the
coefficients α, β and γ are defined as

α =
1
2

∂2k
∂ ω2 (ω0), β =

n2 ω0

c
, γ =

2n2

c
where ω0 is the central frequency of the pulse.

We used Equation (3) for the numerical modeling of pulse propagation, both in the
interferometer’s beam splitters, and in thin plates. Equation (3) is solved numerically
by the split step Fourier method (SSFM). This method is widely used for solving the
problem of pulse propagation in a nonlinear dispersive medium. The main advantage of
this method is the use of the fast Fourier transform (FFT) algorithm, which makes it faster
than the finite difference methods. Therefore, we have developed a MATLAB algorithm
to implement the numerical FFT algorithm. To demonstrate the compression of the pulse
as a function of BΣ, we scanned the thickness of the nonlinear media, keeping the other
parameters constant: input intensity 1 TW/cm2, input pulse duration (FWHM) 50 fs and
30 fs, and wavelength 910 nm. We chose material parameters of fused silica as the most
popular material: nonlinear refractive index n2 = 2.75 × 10−16 cm2/W and group velocity
dispersion α = 280 fs2/cm.

SPM leads to spectral broadening; the pulse becomes positively chirped. Thus, the
pulse may be compressed by reflection on the CM with negative dispersion (Figure 1).
We restrict the consideration to the case in which the CM introduced a purely quadratic
spectral phase, i.e., group velocity dispersion only. Such a type of CMs cannot compress
the pulse to a Fourier transform limit, but they are usually commercially available. In this
case, the CM is embedded in the model using Equation (4)

Acompressed(t) = F
[

e
−iα(ω−ω0)

2

2 F−1
(

Achirped(t, z)
)]

(4)

where Acompressed is the amplitude after compression (after reflection from the CM) and
Achirped is the amplitude of the field incident on the CM, F and F−1 are the direct and
inverse Fourier transforms, respectively. The parameter α is the group velocity dispersion
parameter of the CM.

Using Equations (3) and (4), we found the output pulses both for the setup with
(Figure 1a) and without interferometer (Figure 1b).

4. Results and Discussion

The primary effect of SPM is spectral broadening. So, first of all, we compare the
spectral bandwidth before the CM. Then, we should choose the CM dispersion αopt. It
may be chosen to minimize the compressed pulse duration or to maximize peak power.
However, we prefer the last case, because increasing the pulse power is a primary goal for
most applications. Furthermore, we study pulse shortening and power enhancement.

4.1. Spectral Broadening

The results of calculations are shown in Figure 2. The pulse in the scheme with
interferometer has a wider spectral bandwidth than that without interferometer, even
though BΣ is the same. This phenomenon is explained as follows. At the interferometer
output (Figure 1a), the beam is a sum of two beams: one with B = 0 and the other with B = π.
The spectrum of the first beam is not broadened at all, while the spectrum of the second
one is broadened much stronger than the spectrum of the single beam with BΣ = π/2 in the
reference case (Figure 1b). In other words, due to the nonlinear nature of SPM, the spectral
broadening with interferometer is higher than in the case without the interferometer, even
if BΣ = π/2 in both cases (see Figure 2a,c). An additional nonlinear plate increases BΣ up to
5, but keeps this difference (Figure 2b,d).
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Figure 2. Spectrum of the initial pulse, compressed pulse in the scheme with interferometer (Figure 1a), and compressed
pulse in the scheme without interferometer (Figure 1b) for 50 fs (a,b) and 30 fs (c,d) input pulses at BΣ = π/2 (a,c) and BΣ = 5
(b,d). Horizontal axes are normalized to the input pulse bandwidth.

The spectra for 50 fs and 30 fs input pulses are very similar (note that the horizontal
axes are normalized to the input pulse bandwidths 8.82 × 1012 Hz and 1.47 × 1013 Hz
for 50 fs and 30 fs, respectively). The small difference between 50 fs and 30 fs at BΣ = 5
is due to the fact that the bandwidth for 30 fs input pulse becomes comparable to the
optical frequency.

4.2. Optimal Chirped Mirror Dispersion αopt

As mentioned above, we defined the optimal CM dispersion αopt as a dispersion
which maximizes compressed pulse peak power. When CM dispersion is not exactly equal
to αopt, the compressed pulse power is smaller. We calculated αopt as a function of BΣ. The
results are shown in Figure 3, from which it is seen that correcting the quadratic spectral
phase component for higher values of the B-integral necessitates a lower (in modulus)
chirped mirror dispersion αopt. Moreover, it is clear from Figure 3 that αopt is smaller
in the case with interferometer than without it. The smaller value of αopt provides a
practical advantage, because the fabrication of CM with a higher dispersion is a more
serious challenge. It is worth noticing that, at a high value of B-integral, αopt is almost
independent of BΣ. Hence, the same CM may be used for a B-integral in a wide range of
values, eliminating the impact of instability of the laser parameters.
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4.3. Pulse Compression

The results are shown in Figure 4. The compressed pulse in the scheme with in-
terferometer is even shorter than in the scheme without interferometer. It is explained
by the wider spectrum (see Figure 2). For instance, at BΣ = 5, for 50 fs input pulse, the
compressed pulse duration decreased to about 14 fs in the scheme without interferometer,
and to about 12 fs with interferometer; for the 30 fs input pulse, the compressed pulse
duration decreased to about 9 fs in the case without interferometer, and to about 7 fs in the
scheme with interferometer.

In addition, the intensity in the compressed pulse wings is lower in the case with
interferometer because the interferometer remains closed for the input pulse tails, and the
chirp in the tails differs greatly from the linear chirp. So, removing the tails from the input
pulse causes the compressed pulse to be closer to the Fourier transform limited one (cf. the
green and red curves in Figure 4). Thus, from the pulse compression viewpoint, the case
with interferometer (Figure 1a) is more preferable than the reference case (Figure 1b).

4.4. Peak Power Increase

From the viewpoint of peak power, the case with interferometer (Figure 1a) strongly
differs from the reference case (Figure 1b). The latter is energy lossless, while the first
one is not. Energy is lost because the dark port of the interferometer becomes perfectly
light only at B = π, i.e., only at t = 0, i.e., for the central part of the pulse. For t 6= 0, the
interferometer transmission is below 100% by virtue of B 6= π. For the pulse periphery,
B << π and the pulse do not pass through the interferometer at all. The energy transmission
of the interferometer for a Gaussian pulse with B (t = 0) = π is 76% for any pulse duration.
This inevitable disadvantage reduces the power of compressed pulses. Nevertheless, as
seen from Figure 4, the peak power is almost the same for both cases. Figure 5 shows that
this is true for any value of B-integral. In spite of 24% energy loss in the interferometer,
the superiority of the case without interferometer is below 10%. This is explained by more
efficient pulse compression in the case with the interferometer.
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5. Conclusions

Numerical modeling confirmed that the nonlinear Mach–Zehnder interferometer may
be used not only to enhance the temporal contrast, but also to increase the pulse power
due to efficient pulse compression. The pulse shortens due to self-phase modulation and a
chirped mirror. Self-phase modulation occurs during propagation, both in the interferome-
ter beam splitters, and in an additional nonlinear plate. We showed that pulse compression
in the scheme with interferometer is either the same or even better than the standard
compression in the scheme without interferometer and without contrast improvement.
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