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Abstract: We present a real-time realization of OCT-based elastographic mapping local strains and
distribution of the Young’s modulus in biological tissues, which is in high demand for biomedical
usage. The described variant exploits the principle of Compression Optical Coherence Elastography
(C-OCE) and uses processing of phase-sensitive OCT signals. The strain is estimated by finding local
axial gradients of interframe phase variations. Instead of the popular least-squares method for finding
these gradients, we use the vector approach, one of its advantages being increased computational
efficiency. Here, we present a modified, especially fast variant of this approach. In contrast to
conventional correlation-based methods and previously used phase-resolved methods, the described
method does not use any search operations or local calculations over a sliding window. Rather, it
obtains local strain maps (and then elasticity maps) using several transformations represented as
matrix operations applied to entire complex-valued OCT scans. We first elucidate the difference
of the proposed method from the previously used correlational and phase-resolved methods and
then describe the proposed method realization in a medical OCT device, in which for real-time
processing, a “typical” central processor (e.g., Intel Core i7-8850H) is sufficient. Representative
examples of on-flight obtained elastographic images are given. These results open prospects for
broad use of affordable OCT devices for high-resolution elastographic vitalization in numerous
biomedical applications, including the use in clinic.

Keywords: OCT; optical coherence elastography; compression elastography; strain visualization;
real-time imaging; vector method of strain mapping

1. Introduction

Optical Coherence Elastography (OCE) is one of the most actively developing exten-
sions of Optical Coherence Tomography. Various aspects OCE and the proposed approaches
to its realization (based on several variants of quasistatic and dynamic approaches) have
been discussed in recent years in several reviews [1–8]. These reviews indicate that break-
through results in OCE have been demonstrated mostly in the last 5–6 years, although the
studies on strain and elasticity imaging in OCT have been carried out over two decades.
They were triggered by J. Schmidt in the seminal paper [9], the latter in turn was stimulated
by the earlier initiated elastography-related studies in medical ultrasound [10].

By analogy with [10], in [9] it was proposed that the initial stage of OCE realization
should be the reconstruction of displacements of scatterers using comparison of structural
OCT scans. Then, using the reconstructed distribution of the displacements, their spatial
gradients should be found to estimate local strains in the tissue. The mechanically produced
local strains can then be related to the Young’s modulus of the tissue [10].

In the seminal works [9,10] and some other earlier OCE-related studies, such as [11,12],
it was supposed that the reconstruction of the displacements should be made using the
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correlation approach. This approach implies that a fairly small subset (processing window)
should be taken in the reference image. Then the cross-correlation coefficients should be
found for the reference subset (window) in the initial image and a similar-in-size window
in the deformed image. The cross-correlation should be maximized by moving the second
window over the deformed image. If the displacements of the scatterers are non-zero, the
so-estimated correlation coefficient reaches its maximum for non-coinciding positions of
the cross-correlated windows. The displacement of the window taken from the deformed
image corresponds to the displacement of the scatterers located near the center of the
reference window.

It should be taken into account that OCT images are pixelated, so that in a straight-
forward manner, the correlational search can be made only for the displacements of the
processing window by an integer number of pixels. Usually, such an accuracy is insufficient,
such that various possibilities to estimate displacements with a subpixel accuracy have
been considered in the literature. For example, using interpolation methods similar to those
used in mechanical engineering [13,14], or recalculation of pixelated patterns using the
shift theorem for Fourier transforms [15]. The general feature of all correlation-based ap-
proaches is that for finding the field of the local displacements, it is necessary to repeat the
correlation-based search for every initial position of the processing window in the reference
image. Furthermore, for every initial position, multiple calculations of the cross-correlation
should be performed to determine the final position of the processing window, in which
the correlation coefficients demonstrate the maximum value. These features, intrinsic to
correlation-based methods, make them rather computationally demanding.

An alternative approach to the elastographic estimation of local strains in OCT is
based on analysis of interframe phase variations [16], from which the axial displacements
can be reconstructed. Unlike the correlation-based techniques, a very important feature
of the phase-resolved approach is that determining of local interframe phase variations
(and, therefore, local displacements) does not require multiple calculations over a sliding
window. The sought local phase variations can be found by directly comparing the phases
of the corresponding pixels in the pixelated reference and deformed OCT images. In fact,
this comparison can be made by performing a single matrix operation with the entire
compared OCT scans. In principle, such phase-based determination of local displacements
has its own limitations/challenges. In particular, an important issue is the correct account-
ing for phase wrapping that occurs when the displacements have a supra-wavelength
scale. Nevertheless, the possibility to fairly easily obtain local phase-variations without
multiple search operations enables much faster estimation of the corresponding local axial
displacements. This advantage of the phase-based approach very strongly accelerates the
mapping of local displacements in comparison with the correlation-based searching.

The next step after mapping displacements proportional to the local phase variations
is finding axial gradients of the displacements to obtain genuine local strains. This step
requires the estimation of axial gradients of the initially determined interframe phase
variations. If any measurement noise/error was completely absent, then for finding these
gradients it could be sufficient to compare the phases of only two neighboring pixels on
the pixelated phase-variation map. However, in reality, because of various measurement
noises, such as noises of the receiving array of photodetectors and the “decorrelation
noise” [10] induced by the strain itself, such pair-wise comparison of pixels along the
vertical coordinate is unacceptably noisy. In this regard, for estimation of the phase-
variation gradient along the depth of OCT scans, it was proposed to use the least-square
method for estimating the local slope of the dependence of the interframe phase variation on
the axial coordinate [16]. This least-square-based estimate is performed with averaging over
some processing window (the latter may be either a sufficiently large 1D segment along a
single A-scan in the phase-variation map or a 2D-window on the B-scan of interframe phase
difference). The least-square estimations may additionally be supplemented with signal-
amplitude weighting to further improve the signal-to-noise (SNR) ratio in the reconstructed
local-strain map [16]. Such least-square estimation of the phase-variation slope within a
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sliding processing window (similarly to estimating gradients using displacements found by
the correlation method) also requires multiple operations for every position of the sliding
averaging window. However, due to the above-mentioned much faster estimation of local
vertical displacements using the OCT signal phase, the overall computational demand
is significantly reduced in comparison with the correlation-based method, so that even
real-time visualization becomes possible, albeit using GPU-computations [17].

More recently, an alternative approach to estimating local gradients of interframe
phase variations was proposed in [18,19]. This phase-based approach is called “vector”
because in this method OCT signals characterized by phase and amplitude are considered
as complex-valued quantities and treated as vectors in the complex plane. In comparison
with the least-square method of finding the phase-variation gradients the vector approach
may demonstrate better tolerance to measurement noises.

Another important advantage of this approach is the possibility of significantly enhanc-
ing the computational efficiency of finding local phase-variation gradients and, therefore,
local strains. For improving SNR, the vector approach also uses averaging over a chosen
area on the OCT scan. Certainly, this averaging may be realized using a sliding processing
window, which requires repeated local calculations for every position of this window.
However, unlike the other above-mentioned approaches the usage of a sliding window
is not indispensable for the vector approach. In this paper, we will demonstrate that all
stages of the vector approach can be realized in a matrix form that operates with the OCT
scan as a whole without the necessity to introduce a real sliding processing window. For
such a form, any subsequently performed local computations within a gradually moved
processing window are completely eliminated; nevertheless, the vector method allows
one to obtain genuine spatially resolved distributions of local strains over the OCE scan.
In such a matrix form the vector approach is especially computationally efficient, which
significantly simplifies real-time obtaining of elastographic maps of both local strains and
Young’s modulus.

In what follows, we explain in more detail the difference between the vector method
and previously used approaches. Then we describe the vector method in the modified
form that is especially computationally efficient. Its realization in a medical OCT scanner is
also described and representative examples of strain and tissue-elasticity maps obtained
on-flight using quite a “typical” CPU (such as Intel Core i7-8850H, Intel Corporation, Santa
Clara, CA, USA) without any GPU calculations are presented.

2. Materials and Methods
2.1. Materials That Can Be Characterized by the Discussed OCE Technique

Concerning the materials for which the discussed OCT-based elastographic technique
is operable, it is necessary to clearly distinguish the two destinations of OCE: (i) visual-
ization of local strains in the material; and (ii) visualization of elasticity of the material
using the compression principle. The visualization of strains has no special limitations in
terms of specific materials and origin of strains; the latter may be mechanically produced
deformations, thermally produced strains, osmotic strains, etc. (see examples in [8]). Con-
cerning characterization of elasticity using compression OCE, in which the mechanical
loading is combined with visualization of the resultant strains, the described technique is
operable for a broad class of sufficiently soft materials. These may be soft biological tissues
(e.g., cancerous ones [20], and even such tissues as cartilage) or soft plastics. Previously,
obtained strain and elasticity maps for such materials (as in review [8]) were obtained using
elastographic post-processing. In contrast, in this section we describe the modified fast
elastographic processing method and its realization enabling similar OCE imaging in real
time. For demonstration of operability of the new method we will present elastographic
images obtained for the dorsal-side skin of a volunteer’s hand.
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2.2. Basic OCT Setup Used to Realize the Elastographic Modality in Real Time

Since a broad practical application of such OCT devices is foreseen, an important
requirement to their design is to make them affordable for biomedical users. By this
reason, the use of fairly inexpensive solutions for the OCT setup itself, as well as for the
controlling computer system, is of key importance. In view of this, in what follows, we
consider the realization of the developed OCE technique for a fairly inexpensive OCT
device with “typical” parameters that are far from record values. This is a spectral-domain
medical OCT device designed and produced at the Institute of Applied Physics (Russian
Academy of Sciences, Nizhny Novgorod, Russia) with the central wavelength of 1.3 µm,
spectral width 90 nm, and a receiving array enabling 20 kHz rate of A-scan acquisition.
Due to the moderate intensity of the data flow, the signal transmission to the controlling
computer acquisition was organized without specialized high-speed devices using only the
standard USB interface (see more detail in [21]). The signal processing by the controlling
computer also did not require specialized GPU calculations and was performed by the
central processing unit (CPU) based on the developed procedures of multi-thread parallel
computations in the CPU itself as described in [22].

The above-mentioned requirements of the OCT hardware and controlling computer
impose rather strong limitations on the choice of the elastographic signal-processing
method with which real-time realization would be possible. To better elucidate the differ-
ences among the main approaches to the visualization of local displacements, strains and
elastic modulus in OCT elastography, we first briefly recall the conventional methods start-
ing from the correlational method initially proposed in OCT by Schmitt [9] by analogy with
the medical ultrasound [10]. Then we point out the challenges/limitations of its realization
in OCT and turn to the phase-resolved approach that has become the most widely used for
mapping axial strains the Young’s modulus in compression OCE. We start from its earlier
form [16], then formulate the basic idea of its vector form [18,19] and finally describe the
new fast variant of the vector approach to strain mapping in phase-resolved OCT.

2.3. Main Steps of the Correlation-Based Approach

In this section, we briefly recall the main steps of correlation-based speckle tracking.
The correlation method of determining local displacements that has been discussed in OCT
since the Schmitt’s paper [9] is based on maximization of the cross-correlation coefficient
that has the following form:

Cx,z(x′, z′) =
s

I1(x, z)I2(x− x′, z− z′)dxdz[s
I2
1 (x, z)dxdz

s
I2
2 (x− x′, z− z′)dxdz

]1/2 (1)

Here, the intensity distributions I1(x, z) and I2(x, z) relate to the compared reference
and deformed images (where the lateral and axial coordinates in the in-depth B-scans
are denoted as x and z, respectively). The integrals in the cross-correlation coefficient in
Equation (1) are found over a processing window S of the size m1 ×m2. In the reference
scan the window S is centered at the point (x, z). The corresponding fragment S′ of the
same size in the deformed image is centered at (x− x′, z− z′). The position of the center of
this window can be changed within a certain search region, to find coordinates (x′, z′), for
which the correlation coefficient Cx,z(x′, z′) reaches a maximum. It is important to point
out that for the intensity I1(z, x) in Equation (1) (and similarly for I2(x− x′, z− z′) in the
deformed image) the average value I0

1 =
s

I1(x, z)dxdz over the current position of the
processing window should be subtracted from the initial intensity, I1(z, x) = Iinit

1 (z, x)− I0
1 .

Consequently, the quantities I1(z, x) and I2(x− x′, z− z′) in Equation (1) have zero mean
values. For identical images (not subjected to deformation) and in the absence of any noises,
the correlation coefficient (1) reaches its maximum equal to unity for x′, z′ = 0. For a de-
formed image, the positions of scatterers are displaced and coefficient Cx,z(x′, z′) reaches a
maximum for certain coordinates (x′∗, z′∗). The latter coordinates define the displacement
vector for the new position of scatterers initially located within the reference window. This
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approach has analogies both in ultrasound elastography [10] and engineering applications
based on the analysis of photographic images [14]. As mentioned above, for pixelated OCT
scans, the processing window can be straightforwardly shifted only in discrete steps, so
that additional procedures are required for finding sub-pixel displacements (e.g., based on
some interpolation procedures [13] or using the shift theorem for Fourier transforms [15]).

The process of correlation-based reconstruction of local displacements is schematically
shown in Figure 1. It is important that displacements produced by tissue straining in
addition to approximately translational displacement of various groups of scatterers also
cause mutual displacement of scatterers, as well as affect the brightness of speckles due to
interference of mutually displaced sub-resolution scatterers (the so-called blinking/boiling
of OCT speckles). These effects, as well as measurement noises of the photo-detectors)
inevitably cause errors in the correlation-based estimation of the displacements. Also, the
result of the correlation search depends on the size of the processing window that produces
a smoothing effect and reduces the spatial resolution of the so-found “local” displacements
in comparison with the resolution of the initial structural OCT images. Such a correlation-
based approach to reconstruction of displacement fields in the deformed tissues was
demonstrated in OCT in several studies, for example, in the earlier works [11,12]. However,
the approximate reconstruction of displacements was not yet the complete realization of the
local strain reconstruction. The latter requires subsequent differentiation of the preliminary
reconstructed noisy displacement fields. The degrading effect of the noises can be reduced
by increasing the size of the processing window over which the gradients of displacements
are estimated, but the increased window size additionally reduces the spatial resolution
of the resultant maps of strain distribution (see a detailed discussion in [15]). The strain-
induced decorrelation can also be mitigated by using super-broadband OCT sources like
in [23]. Although after the earlier tests the correlation method has been used in some more
recent works, e.g., [24–31], nevertheless, in recent years, in the development of OCT-based
methods for strain and elasticity imaging, the main attention has shifted to phase-resolved
methods [8,16,32,33].
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Figure 1. Schematic elucidation of the correlational search of local displacements by finding the shift, for which the
cross-correlation between the fragments of the reference and deformed scans is maximal.

In the context of comparison with the phase-based approaches, it is important to
emphasize once again that the correlation-based reconstruction of local displacements
(and then strains) indispensably requires the application of sliding “local” processing
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windows. The correlation coefficient (1) should be estimated for every position (x, z) of
this window in the reference image and then the computation of this correlation should
be multiply repeated for various positions (x′, z′) of the corresponding window in the
deformed scan to maximize Cx,z(x′, z′). The subsequent estimation of the displacement
gradients also requires calculations over a sliding window. Certainly, such calculations
can be made independently for various parts of the entire OCT scan, which allows for
using parallel computations. However, for obtaining a spatially resolved image by such
correlation-based processing, it is impossible to represent such procedures in a matrix form,
in which the same operation(s) are applied to the pixelated OCT scan as a whole without
search operations and calculations over sliding windows.

2.4. Phase-Resolved Approach to Reconstructing Local Displacements without Local Calculations
over a Sliding Window

An important step in the realization of imaging of axial displacements and strains
in OCT for subsequent mapping of the elastic modulus was publication [16]. Although
the signal phase in OCT is sensitive almost exclusively to axial displacements (and, thus,
axial strains), those axial strains can be sufficient for estimating the shear modulus of the
visualized deformed tissues. This possibility is based on the idea formulated in [9,10]
that for biological tissues with the Poisson’s coefficient close to the “liquid” limiting value
0.5, the shear modulus G with a high accuracy is proportional to the Young’s modulus
E, G = E/3. Thus, if the tissue is allowed to freely expand laterally, it is the Young’s
modulus which determines the axial strains produced by applied axial stress. Bearing
in mind that the interframe phase variations are determined almost exclusively by axial
displacement of scatterers, the estimation of these interframe phase variations opens
a convenient possibility for estimating axial displacements and strains. Consequently,
when a nearly uniaxial mechanical stress is produced in the tissue in the vicinity of the
compressing OCT probe, this opens the possibility to visualize the spatial distribution of
the Young’s modulus (at least in the relative sense). Such an elastographic principle is called
compression OCE. In combination with the additional application of pre-calibrated layers
of a soft tissue-like material placed between the OCT probe and the tissue, quantification
of the Young’s modulus becomes possible [8,32,33].

Thus, for realization of compression OCE it was pointed out in [16] that mapping of
axial displacements and then strains can be based on observing interframe phase variations.
Actually, similar ideas about the possibility of phase-resolved detection of axial displace-
ments of scatterers in OCT have been proposed for angiographic purposes (visualization
of microcirculation) since the beginning of 2000s [34,35] and have even been discussed
in the context of simplified realizations of OCE [36,37]. The basic equation relating axial
displacement U and phase variation Φ = ϕ2 − ϕ1 of the OCT signal is well known:

U =
λ0Φ
4πn

(2)

Here, λ0 is the central optical wavelength of the OCT signal in vacuum, and n is the
refractive index of the tissue. In the following discussion instead of amplitude A and phase
ϕ of the OCT signal we will represent it via the complex-valued amplitude a:

a = A exp(iϕ) = A cos(ϕ) + iA sin(ϕ) (3)

A reference and deformed pixelated OCT scans then can be represented as complex-
valued matrices a1(m, j) = A1(m, j) exp[iϕ1(m, j)] and a2(m, j) = A2(m, j) exp[iϕ2(m, j)],
respectively. Next, the spatially resolved interframe phase variation Φ(m, j) = ϕ2(m, j)−
ϕ1(m, j) can be found using a single matrix operation applied to the entire reference and
deformed OCT scans:

Φ(m, j) = arg{a2 · a∗1} (4)



Photonics 2021, 8, 527 7 of 21

where the asterisk * denotes phase conjugation and the matrices are multiplied in the
element-by-element sense. According to Equation (2), the so-found interframe phase
variations Φ(m, j) immediately yield the field of local axial displacements U(m, j) =
λ0Φ(m, j)/(4πn).

We emphasize that in Equation (4), no sliding local operations were required to obtain
the field of the local displacements U(m, j) with the maximal spatial resolution. This is
an important advantage of the phase-resolved approach as schematically illustrated in
Figure 2.

Figure 2. Schematic of obtaining the interframe phase variations using element-by-element multiplication of the reference
and deformed complex-valued OCT scans a∗1(m, j) and a2(m, j). The individual arguments arg(a1(m, j)) and arg(a2(m, j))
are irregular functions due to random positions of scatterers. On the contrary, the phase difference Φ(m, j) = arg

{
a2 · a∗1

}
is deterministically related to the displacement field U(x, z) via Equation (2). However, only for sufficiently small sub-
wavelength displacement is relationship (2) is unambiguous, whereas for supra-wavelength displacements, the phase-
variation demonstrates wrapping as in the presented example (from a real experiment) with multiple “rainbow strips” on
the phase-variation color map.

As shown in Figure 2, an important limitation of this approach is related to the
fact of phase wrapping for displacements exceeding the half-wavelength scale. For such
displacements, Equation (4) gives the estimate of the displacements with an uncertainly
proportional to the entire number of λ/2, because the phase difference can be directly
measured only with an uncertainty proportional to the entire number of periods of 2π
rad. This uncertainly, however, is not critical in many cases. In particular, in realization of
compression OCE, when the tissue is deformed by the pressed OCT probe, the displacement
in the tissue bulk is increased gradually from zero values at the boundary of the OCT
probe window. This allows one to perform phase unwrapping to lift the phase-variation
ambiguity. Furthermore, in what follows, we will demonstrate that even the necessity of
unwrapping can be obviated when mapping the local strains.

2.5. Least-Square Reconstruction of Local Strains Based on the Preliminary Reconstructed
Interframe Phase Difference

After obtaining the initial map of interframe phase variations Φ(x, z) and displace-
ments U(x, z) based on Equations (2) and (4), it was proposed in [16] to find the local axial
strains ε = ∂U/∂z using the least-square method to estimate the slope ∂Φ/∂z ∝ ∂U/∂z
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within a certain processing window as illustrated in Figure 3. In the initial version pro-
posed in [16], such estimation was performed with averaging over a 1D segment of every
individual A-scan to improve the SNR. However, the slope can also be estimated with aver-
aging over a 2D rectangular window to obtain a reasonable compromise between the axial
and lateral resolution [18,19,38,39]. An additional way to improve SNR proposed in [16]
was the use of amplitude weighting when performing the least-square estimation of the
slope. The amplitude weighting allows one to reduce the contribution of small-amplitude
pixels that usually have the noisiest phases. A drawback of the least-square procedures
is that such a way of calculations requires phase unwrapping to eliminate ambiguities in
the displacement estimation; another drawback is the necessity to perform local calcula-
tions within a sliding processing window. The latter should be gradually moved to cover
all pixels in the entire OCT scan (which is somewhat similar to correlation processing),
such that repeated calculations increase the computational requirements. However, in
contrast to the correlation processing, for the phase-resolved approach, such use of sliding
windows is not mandatory and can be obviated in the vector method of finding local
phase-variation gradients.
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2.6. Vector Approach to Reconstruction of Local Strains in Phase-Sensitive OCE

The vector method proposed in [18,19] exploits the idea that the complex-valued
amplitudes of pixels in phase-sensitive OCT scans can be treated as vectors in the complex-
valued plane. Correspondingly, the pixel amplitude is represented by the absolute value of
the vector and phase corresponds to its direction. In principle, comparison of phases for the
considered pixels could be performed in the explicit form. However, in such a case it would
be necessary to count each of the compared phases from some identical initial value (that
can be chosen arbitrary). In this case, one should bear in mind the necessity of accurately
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considering the situations in which the compared phases for certain choices of the initial
value may occasionally get into neighboring 2π-intervals of phase periodicity. A simpler
way is enabled by obtaining the matrix a2 · a∗1 where element-by-element multiplication is
performed for the complex-conjugated vectors a2 and a∗1 . The matrix a2 · a∗1 contains the
information about the interframe phase difference. However, without explicit extraction
of individual phases one does not need to explicitly define any reference value for these
phases and does not need to control that the phases fall in the same interval of periodicity.
Still, using the matrix a2 · a∗1 , it is possible to find the vertical gradient of the interframe
phase variation without the necessity to express this phase variation explicitly.

To this end, in recent works [18,19], it has been proposed to apply the vector repre-
sentation not only for finding the interframe phase variations, but also for finding their
axial gradients without the necessity to explicitly single out the phase. To improve the
SNR, this vector estimation of the gradient can also be made with averaging over a certain
processing window as was discussed in [18,19]. This averaging in the vector approach may
be literally realized using local calculations within a sliding processing window by analogy
with the least-square method and other similar methods, for which local calculations are
indispensable. However, in what follows we will demonstrate that the reconstruction
of local strain distribution based on the vector approach can be realized in a matrix form,
operating with entire OCT scans without use of real sliding windows. We also emphasize that
the vector approach for finding local strains may be realized in a form that does not require
phase unwrapping even if the phase variation may exhibit multiple phase wrapping other
the vertical coordinate of the OCT scan (like in the examples of phase-variation maps
shown in Figures 2 and 3).

The vector principle of finding the vertical phase gradients can be schematically ex-
plained as shown in Figure 4. In this schematic, following the original description in [18,19],
the operations are represented in the conventional form with a sliding processing window.
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An exception is the first step shown in Figure 4a, which corresponds to the pixel-
by-pixel multiplication of the entire reference and deformed complex-conjugated OCT
scans to obtain a complex-valued matrix in which the pixels contain information about the
interframe phase variation Φ(m, j) = ϕ2(m, j)− ϕ1(m, j), yet without explicit use of this
phase variation:

a2(m, j)a∗1(m, j) ≡ b(m, j) = B(m, j) exp[i ·Φ(m, j)] (5)

The so-found complex-valued quantities b(m, j) (also represented as vectors in the
complex-valued plane) usually noticeably fluctuate due to strain-induced decorrelation
and other noises. To reduce this uncertainty and obtain a more regular array b(j), quantities
b(m, j) can be very conveniently averaged in the vector form over a certain averaging area.
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In Figure 4b, this averaging is illustrated for the averaging area in the form of a
horizontal segment of Nx pixels in length:

b(j) ≡ B(j) exp[i ·Φ(j)] = ∑Nx
m=1 b(m, j) =

∑Nx
m=1 A2(m, j)A1(m, j) exp{i · [ϕ2(m, j)− ϕ1(m, j)]}

(6)

Certainly, instead of averaging over a one-dimensional segment in Equation (6), av-
eraging can be performed over a rectangular window, which can additionally improve
the SNR of the resultant strain map. The graphical representation of such averaging cor-
responding to summation of individual vectors b(m, j) as illustrated in Figure 4b clearly
demonstrates that the strong phase errors are automatically suppressed in such an aver-
aging procedure, so that pixels with the strongest phase errors (~π rad.) do not affect the
direction (i.e., phase angle) of the resultant vector.

In addition to the vector averaging of the initial interframe phase difference shown in
Figure 4b, another even more important feature of this method is that the vector represen-
tation is extended to finding the axial phase-variation gradients instead of the least-square
of the vertical gradients used in [16]. The corresponding procedures in the vector form
are illustrated in Figure 4c,d. First, as shown in Figure 4c, the inter-pixel phase difference
is estimated for pixels separated in the vertical (axial) direction, with the vertical indices
j + k and j (in the simplest case k = 1, but if there is no phase wrapping on a scale of k > 1
pixels, a larger k > 1 may significantly improve the quality of the gradient estimation). In
such a way, the matrix

d(m, j) = b(m, j + k)b ∗ (m, j) (7)

containing information about the sought vertical phase-variation gradients can be obtained,
as illustrated in Figure 4c. Certainly, for k > 1, for estimating the phase gradient, the value
arg[d(m, j)]/k) should be taken instead of arg[d(m, j)].

To further improve the SNR in the estimated phase gradients, additional averaging of
the complex-valued vectors d(m, j) over some processing area (window) can be performed
as shown in Figure 4d. Then matrix d(m, j) of the complex-valued vectors, for which the
argument corresponds to the sought vertical gradients, can additionally be averaged over
the chosen area to obtain even better SNR of the reconstructed strains.

Here, an important remark can be made about the preliminary averaging of the
initially found phase-variation matrix b(m, j). In real situations, for deformed tissues, the
isophase lines corresponding to matrix b(m, j) may be pronouncedly non-horizontal (see
an experimental example of the phase-variation map in Figure 2). In more detail, such
a situation is illustrated in Figure 5, showing especially simulated elastographic B-scans
obtained for a deformed sample, in which strain-induced displacements are a superposed
with translational displacements. The reference and deformed OCT scans are simulated
using the model presented in [40]. This model can easily account for interframe motion
of scatterers and describes the OCT scan formation for the often-used weakly focused
illuminating beams with approximately depth-independent diameter. For such beams,
the lateral inhomogeneity of the OCT beam phase can be neglected without appreciable
worsening of the simulation quality, which was verified by comparison with a more
complex and computationally demanding model [41] in which the beam focusing was
rigorously accounted for. In the simulation, the following main parameters typical of
OCT were used: the beam diameter was 15 µm, the central wavelength (in the tissue) was
1 µm, the spectral width was 90 nm, the B-scan depth was 2 mm and the width 4 mm.
Initially, 65,000 scatterers with equal scattering strength were randomly distributed in the
reference scan. For imitating measurement noises, random complex-valued numbers with
a Gaussian distribution were added to every pixel of the structural scan, with the average
intensity equal to the average intensity of the noiseless structural B-scan (i.e., the noise was
rather strong, with SNR = 0 dB for the structural image).
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Figure 5. Illustration of the differences among various ways of vector averaging of complex-valued OCT data. Panel (a1) is
the raw (not averaged) interframe phase-variation map arg[b(m, j)] for the simulated reference and deformed B-scans. It is
obtained using the model [40] of OCT scan formations for the assumed strain distribution shown in panel (a4), where the
red curve represents the superposed translational vertical displacements. Panel (a2) is the phase-variation map obtained
after preliminary vector averaging of the complex-valued matrix b(m, j) over a fairly large area 8 × 8 pixels, for which the
region of inclined isophase lines becomes strongly degraded. (a3) is a similar phase-variation map after preliminary vector
averaging over a smaller area 3 × 3 pixels, for which on average the noise is moderately reduced, but the region of inclined
isophase lines is not strongly degraded unlike panel (a2). (b1) is very noisy strain map for the initial (unaveraged) phase-
variation map from panel (a1). (b2) is the reconstructed strain map for phase-variation map from panel (a2) demonstrating
much better quality in the region of horizontal isophase lines and strong degradation for inclined isophase lines. (b3) is the
strain map obtained for phase-variation map (a3) without subsequent averaging of matrix d(m, j) containing axial gradients.
(b4) is the strain map obtained using the preliminary averaged matrix b(m, j) from panel (a3) combined with the subsequent
averaging of matrix d(m, j) over an area 16 × 16 pixels.

To simulate the deformed complex-valued scan, the scatterers were displaced assum-
ing that the strain in the three layers is somewhat different as shown in Figure 5(a4). The
strain-induced displacements are superposed with pure translational displacements in
the right half of the scan, the magnitude of these displacements gradually increases as
schematically shown by the red curve in Figure 5(a4). These translational displacements
do not affect the axial strain and axial phase-variation gradients, but cause bending of
the isophase lines (see the interframe phase-variation maps in Figure 5(a1–a3). The raw
(unaveraged) pixel-to pixel phase-variation map in Figure 5(a1) looks rather noisy because
of the combined effect of “decorrelation noise” due to straining and the other superposed
measurement noises. The quality of the phase-variation map can be improved using the
vector averaging of matrix b(m, j) over a pre-chosen area. However, in regions of inclined
isophase lines the phase may vary fairly rapidly in the lateral directions, so that the pos-
itive effect of averaging of matrix b(m, j) (like in Equation (6)) can be obtained only for
sufficiently small areas with sizes ~several pixels.

This statement is clearly seen from the comparison of Figure 5(a1) showing the ini-
tially found map of pixel-to-pixel interframe phase variation with the averaged maps in
Figure 5a2,a3. Figure 5(a2) is obtained after vector averaging of matrix b(m, j) over an area
8 × 8 pixels. After such averaging the left half with horizontal isophase lines in Figure 5a2
looks much clearer, but the right-hand part with inclined isophase lines becomes strongly
degraded because the chosen averaging area is too large. Comparison of the reconstructed
strain maps in Figure 5(b1,b2) also shows the effect of such averaging in another form.
Namely, Figure 5(b1) is directly obtained from the phase-variation map Figure 5(a1) using
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the vector estimation of axial phase gradients via Equation (7) with parameter k = 5 for
the vertical separation of compared pixels. Thus, Figure 5(b1) demonstrates that without
any preliminary averaging the reconstructed strain is completely masked by noises. In
Figure 5(b2) obtained for the preliminary averaged phase-variation map Figure 5(a2), the
reconstructed strain becomes fairly well visible in the left-hand part of the scan where
the isophase lines are fairly horizontal. On the contrary, in the right-hand side, where the
isophase lines are pronouncedly inclined, the averaging does not give a positive effect
because the averaging area 8 × 8 pixels is too big. Next, Figure 5(a3) shows the phase-
variation map corresponding to averaging of vectors b(m, j) over a fairly small area 3 × 3
pixels, which results in a moderate improvement of the phase-variation map in comparison
with Figure 5(a)1 over the entire scan (including the region of inclined isophase lines). The
corresponding reconstructed strain in Figure 5(b3) is not completely masked in contrast to
Figure 5(b1), but is still rather noisy. To improve the quality of strain reconstruction over
the entire scan, after the preliminary small-area averaging of b(m, j), the next procedure
of averaging can be applied to complex-valued quantities d(m, j) containing information
about vertical phase gradients. When these gradients contained in matrix d(m, j) are suffi-
ciently uniform in the lateral direction, the averaging of d(m, j) can be made over much
larger areas than 3 × 3 pixels used for preliminary averaging of b(m, j). The secondary
averaging of vertical gradient can significantly improve the quality of the reconstructed
strain map as shown in Figure 5(b4), corresponding to the strain map obtained after the
preliminary small-area averaging of vector b(m, j) (for 3 × 3 pixels) and subsequent aver-
aging of d(m, j) over a larger area (16 × 16 pixels). The so-obtained strain map shown in
Figure 5(b4) with much better quality over the entire scan demonstrates high similarity
with strain distribution adopted in the simulations (Figure 5(a4)).

It should be emphasized once again that for the simulations shown in Figure 5, a
rather strong measurements noise with SNR = 0dB was imitated for the structural scans.
This example illustrates the above-made remark that the vector method of strain estimation
features very high tolerance to various noises, which is confirmed by the results of its
application in various groups (see, e.g., [42,43]). In the following section we discuss in
more detail the possibility to realize averaging in the vector approach without the use of
conventional sliding windows.

2.7. Realization of the Vector Approach to Reconstruction of Local Strains without the Necessity of
Local Calculations over a Sliding Window

As is clear from the above discussion, certainly the vector approach can be realized
by performing local calculations generically similar to the use of a sliding window in
the correlation-based approach or in the above-discussed least-square estimation of the
phase-variation gradients. In contrast to those approaches, for which the use of sliding
windows is indispensable, here we demonstrate that the vector approach makes it possible
to map the local strains without any sliding windows using matrix operations applied to
the entire OCT scans.

We recall that the first step of finding the matrix b(m, j) has already been represented in
a matrix form in Equation (5) as an element-by-element multiplication of the entire reference
and deformed matrices a∗1(m, j) and a2(m, j). The next step shown in Figure 4b is averaging
of the matrix b(m, j) over an area with sizes p× q pixels. The result equivalent to averaging
over a sliding window of p× q pixels can be obtained by performing summation of the
entire matrix b(m, j) with the same matrix b(m, j) shifted laterally in steps by 1, 2, . . . p
pixels. Similarly, the vertical averaging corresponds to summation of the laterally averaged
matrix with its replicas shifted vertically by 1, 2, . . . q pixels. These averaging procedures
are schematically illustrated in Figure 6.
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Figure 6. Schematically shown matrix realization of averaging over an area p× q pixels in size (for p = q = 3 in the figure)
using summation of the averaged matrix with its replicas that are step-wise shifted several times along one index (totally by
p pixels) and then along the other one (totally by q pixels), which is equivalent to averaging using a sliding window of p× q
pixels.

For the entire matrix with a size of M× N pixels (where M >> p and N >> q), this
matrix averaging requires the summations (M− p)× (N− q)× (p+ q) ∼ M×N× (p+ q) to
be performed. This should be compared with (M− p)× (N− q)× p× q ∼ M× N× p× q
summations using the sliding window. For example, even for moderate sizes p = q = 4,
the matrix form requires twice smaller number of operations; for p = q = 8 the reduction is
already four times, etc. Certainly, this is achieved due to the trade-off between the required
memory and number of operations, but for acceleration of computations, the reduction in the
number of operations often is of key importance.

The following remark relates to the step shown in Figure 4c corresponding to the vec-
tor estimation of the axial (vertical) gradient. This operation is given by Equation (7) and
corresponds to the element-by-element multiplication of matrix b(m, j) with its complex-
conjugated replica vertically shifted by k pixels. As mentioned in the discussion of Figure 4c,
even after preliminary averaging, the phases of neighboring pixels in the averaged matrix
b(m, j) may still be fairly noisy. Thus, the quality of the gradient estimation can be strongly
improved if instead of comparing the neighboring pixels b(m, j) and b(m, j+ 1) one chooses
a larger vertical separation, i.e., taking b(m, j + k) with k > 1. The origin of this improve-
ment in the phase-gradient estimation is clear: for vertically separated pixels, the estimated
phase difference between their phases initially growth proportionally to the separation
distance, whereas the level of masking phase fluctuations remains approximately the same.
Consequently, the SNR for the estimate phase gradient initially increases proportionally to
the separation parameter k.

Certainly, the chosen k should not be too large to avoid phase wrapping on the vertical
scale of k pixels. If the vertical strain is ε, then the absence of wrapping requires

ε · k · dz < λ/2 (8)

where dz is the vertical size of the pixel. The absence of wrapping, therefore, limits the
maximal allowable strain to the following value for a given k:

ε < λ/(2kdz) (9)
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Let us assume a typical vertical size of the pixel dz = 5 µm and the wavelength
λ = 1 µm (which is close to the wavelength in the tissue for often used OCT sources with
the central wavelength in vacuum ~1.3 µm). Then, for k = 1, condition (9) yields ε < 0.1.
For OCT, this is a huge strain that usually causes almost complete decorrelation of the
initial and reference OCT scans. For vertical separation an order of magnitude larger,
k = 10, the phase wrapping limits the strain to a smaller, but still rather high for OCT, value
of ε ∼ 0.01. In the presence of noises, the phase wrapping may occur for even somewhat
smaller strains, so that somewhat smaller vertical separation can be recommended, say
k = 5 for interframe strains ε < 0.005, which is quite acceptable in many applications.
For smaller strains, even larger separation can be used, so that the optimal k > 1 for a
particular situation can be chosen empirically to give a reasonable compromise between
the degradation of the strain-mapping quality for insufficiently large values of k (when the
sought gradient is masked by measurement noises) and too large values of k (for which the
quality again degrades because of phase wrapping for k pixels).

It should also be understood that the supra-pixel separation k > 1 corresponds to
averaging of strains over the vertical scale ∼ kdz, so that simultaneously with increasing
SNR for a larger k > 1, one reduces the vertical spatial resolution in comparison with the
resolution of initial structural images. In practice, the vertical separation about several
pixels may be a reasonable compromise between the improvement of SNR and decrease in
the vertical resolution of strain reconstruction.

2.8. Real-Time Realization of the Fast Vector Approach without GPU Calculations

In this section, we describe the main steps/principles of the real-time realization of the
above described fast variant of the vector approach in a multimodal OCT system, the main
parameters of the basic OCT unit are described at the beginning of Section 2.2. Please note
that earlier the elastographic modality for this device was based only on post-processing,
although the implemented principles of parallel calculations described in [22] already
made it possible to realize real-time angiographic imaging [44] using the same basic OCT
system. Such a real-time realization of the angiographic modality made it possible the use
of this system on patients [45]. The modified vector method of elastographic processing
described in the previous section opened the way to realize the elastographic modality
along with angiography in this OCT device.

We emphasize once again that the intended destination of this OCT device for a
broad practical usage dictated that it should be affordable and convenient for biomedical
users. Therefore, the utilization of fairly inexpensive solutions for the OCT setup itself,
as well as for the controlling computer system was of key importance. In view of the
above-mentioned requirements, the considered spectral-domain OCT system has flexibly
orientable probe based on the use of single-mode isotropic fiber optics with use of the
common path scheme. The spectral analysis of the interference signal is carried out using
a spectrometer enabling a sequence of spectral readings, for which the correction of non-
equidistance in the optical wavenumbers was performed using the optical-compensation
approach described in [46,47]. Such a method of non-equidistance compensation is very im-
portant for the discussed real-time multimodal OCT system, because it allows one to avoid
computationally demanding nonequidistant Fourier transform. This is in contrast to other
generally used methods like [48,49] that require sufficient additional computing power.

A desktop or mobile general-purpose personal computer can be used as the main
control and computing system. To connect the OCT system with a computer via the stan-
dard USB interface, a specially developed hardware/software package for data acquisition
and control of the OCT system is used [21]. Such a signal acquisition through USB port
is especially advantageous for creation of affordable multimodal medical OCT devices,
bearing in mind that OCE modality enables significantly improved diagnostic quality in
comparison to standard structural imaging, as described in recent work [50]. It should
be emphasized that the synthesis and real-time visualization of OCT images (2D B-scans)
comprise several sequential stages of non-trivial processing of the initial data consisting of
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a set of interference signal spectra that correspond to individual A-scans. These prelimi-
nary operations require significant computational expenses, so that to additionally realize
real-time elastographic processing, one may use only the residual computational power.

Namely, in the first stage, procedures are performed to suppress artifacts caused by
the non-identity of the radio-technical characteristics of the output channels that read the
signals of the array of photodetectors linear scanning sensor [51]. In the second stage,
transformations are performed to obtain a complex-valued analytical signal (equivalent to
Hilbert transform) with two quadratures enabled by specific modulation of optical paths
in the OCT setup, so that “mirror” artifacts and motion artifacts are suppressed using the
algorithm described in [52]. Furthermore, calculations are made to compensate for the
effect of material dispersion and non-uniformity of the spectral density of a broadband
source of the illuminating optical beam. The next stage of calculations is intended for
the final compensation of the residual nonequidistance of the recorded spectrum of the
interference signal by means of a special, computationally efficient realization of Fourier
transform for nonequidistant samples developed in [53].

An additional challenge in realization of this computational flow is that the processing
of an intense continuous data stream is carried out simultaneously with the continuous
data collection via the USB interface. Computing should be designed so that the CPU has
enough time to support continuous data transfer controlled by the USB device driver under
the control of a general-purpose operating system (such as Microsoft Windows). In the
case of using only the central processor for computations in real time, the crucial role plays
the method of multiple mutual synchronization of computational threads described in [22].
A separate computational thread realizes the procedures for the formation of a palette of
pseudo colors and the visualization of the current B-scans in the user application window.

3. Results

The above outlined procedures of the initial formation of complex-valued B-scans and
the developed variant of elastographic processing with increased computational efficiency
made it possible to implement real-time elastographic visualization using only the central
processor (such as Intel Core i7-8850H or AMD Ryzen 7 5800H) of the controlling computer
as in the above-mentioned OCE-based study [50]. The basic parameters of this OCT system
were indicated in Section 2.2. Figure 7 shows the graph demonstrating proportions among
the computational times corresponding to the described stages of the OCT image synthesis
and the elastographic visualization.

It is clear from Figure 7 that the proposed method of elastographic imaging was
realized in real time using about 17% of the total computation time for each B-scan. We
emphasize that the realization of the computationally efficient elastographic processing
described in Section 2.7 has not required any supplementary computational means (such
as multicore graphical cards or a more powerful central processor of the control computer.

As a result of the realized real-time elastographic processing, the following images
are visualized: (i) current structural B-scan, (ii) map of pixel-to-pixel phase difference with
the previous B-scan, (iii) map of reconstructed interframe strains, (iv) map of the Young’s
modulus. The Young’s modulus map is obtained via comparison of local strains in the
studied tissue and in the layer of reference material with precalibrated Young’s modulus
(such layers are made of translucent soft silicone). The principles of use of reference
silicone layers for quantification of the tissue elasticity in compression OCE were described
in ample detail in earlier publications [8,32,33].

An example of the thus-obtained structural and elastographic images is shown in
Figure 8 (the presented images are obtained for the skin at the dorsal side of the hand of
a volunteer). We emphasize that these maps of strain and Young’s modulus distribution
were obtained using only pair-wise comparison of scans that were processed on-flight
using built-in parameters. This real time elastographic imaging is intended to play only an
auxiliary role during the examination, because a series of scans can be saved and readily
reprocessed to obtain elastographic images with much better quality. Anyway, such on-



Photonics 2021, 8, 527 16 of 21

flight elastographic visualization is very helpful in the course of OCT examination. The
correspondence of the elastographic images and skin structure is already quite clear for the
presented example. A softer layer of epidermis is clearly seen between significantly stiffer
stratum corneum and derma.
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It can also be added that although the acquisition rate of the OCT system is rather
modest, the human brain is not able to directly perceive the elastographic images refreshed
in real time at a rate of 20 Hz, because their variability in the deformed tissue is much
faster than for the more robust structural images (see, e.g., [55] for a discussion of such
perception issues). In view of this, the speed of variability of interframe strain maps and
corresponding elasticity maps is artificially reduced by applying sliding time-averaging
over the last 10 frames.
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Figure 8. An example of the realized interface for real-time elastographic visualization (left-hand side). The images
correspond to visualization of skin at the dorsal side of palm of a volunteer. The skin is compressed by the output window
of the OCT probe through a reference layer of translucent soft silicone. The sketch in the right half demonstrates the
correspondence of the visualized regions with different strain and Young’s modulus in the elastographic images to the skin
structure (the freely distributed image of skin structure is taken from the repository [54]). The white-colored zones in the
elastographic images correspond to application of an intensity mask to exclude regions of too weak and noisy signal.

4. Discussion

The discussed elastographic imaging in OCT is generically similar to the elastographic
imaging performed by ultrasound medical scanners. However, significantly higher spatial
resolution of elastography based on OCT opens qualitatively new prospects for numerous
biomedical applications [1–8]. Probably the most well-known are applications related to
improved differentiation between cancerous and normal tissue, for which OCE enables
much higher contrast in comparison with structural (and even polarization-sensitive) OCT
images [50,56]. In this context, much attention is paid to the acceleration of OCE visual-
ization to enable intraoperative OCE examinations [57], as well as for application of OCE
imaging in laboratory experiments with animals. Owing to the fact that spatial resolution
of compression OCE corresponds to the scales of ~5–10 biological cells (~several tens of
micrometers) new prospects for OCE-based morphological segmentation of tumorous
tissues have been demonstrated for in vivo studies in [58]. The results of such OCE-based
segmentation using the differences in the Young’s modulus for various morphological
components of tumorous tissues demonstrate striking similarity with conventional mor-
phological segmentation of histological images. However, unlike invasive, time consuming
and laborious histological procedures, the OCE-based segmentation can be performed for
freshly excised tissue samples and even feasible in vivo.

For many practical applications of OCE (such as detection of tumor-norm boundary),
it is very desirable to obtain elastographic images with the same (or nearly the same) speed
as structural scans. Until recently such real time OCE imaging was either impossible or
required rather special computational facilities like in [17]. The elastographic visualization
in compression OCE became much faster when instead of correlational speckle tracking
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initially proposed in [9] the use of phase information was proposed in [16]. In the phase-
resolved approach, the necessity for search operations was eliminated, although the least-
square estimation of local phase-variation gradients proposed in [16] still required local
calculations over a sliding window.

The vector approach used here to estimate axial phase-variation gradients, in addition
to exceptional tolerance to various noises, enabled further acceleration of OCE imaging.
Namely, in contrast to various previously discussed methods of obtaining spatially resolved
information, in this paper we demonstrate that the vector method can be realized via
matrix operations applied to the entire OCE scans, which makes it possible to exclude
both search operations and multiply repeated local calculations over a sliding window.
From the previous sections, it is clear that the vector approach allows one to flexibly tune
the main parameters of elastographic processing (such as sizes of averaging areas and
scales over which the gradients are estimated). Depending on the characteristic strains,
forms of isophase lines, and level of noises, the best results may be obtained for quite
different parameters.

In this paper, we described the realization of real-time OCE visualization for an OCT
system with a moderate rate of A-scan acquisition (20 kHz), so that for all stages of the OCT
image formation including elastographic processing, the use of quite a “typical” central pro-
cessor was sufficient. In the case of faster OCT systems, elastographic visualization based
on the same principles certainly can be realized using GPU computations. For example,
for a laboratory system enabling 80,000 A-scans/s, we realized real-time OCE processing
using a middle-class video card (such as NVidia GTX, RTX). In this case, the required
matrix operations and Fourier transforms were performed using the corresponding CUDA
libraries. An example of a similar usage of GPU computations can be found in [59]. The
efficiency of such signal processing simultaneously with the data acquisition via the USB
3.0 interface was demonstrated in [21].

Overall, the achievements in the development of OCT-based methods of high-resolution
elastography have already demonstrated rich unprecedented possibilities of this new OCT
modality for a broad range of biomedical (and not only biomedical) applications. In this
context, the described computationally efficient vector approach that enabled possibility to
realize on-flight elastographic imaging using quite “typical” OCT means and middle-class
controlling computers are important for faster advancing of this very promising visualization
technique towards wide intraoperative use in clinic and routine usage in laboratory studies.
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