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Abstract: The tremendous development of both optical wireless communications (OWC) and im-
plantable medical devices (IMDs) has recently enabled the establishment of transdermal optical
wireless (TOW) links that utilize light waves to transfer information inside the living body to the
outside world and conversely. Indeed, numerous emerging medical applications such as cortical
recording and telemetry with cochlear implants require extremely high data rates along with low
power consumption that only this new technology could accommodate. Thus, in this paper, a typical
TOW link is investigated in terms of outage capacity which is a critical performance metric that has
so far not been evaluated for such wireless systems in the open technical literature. More precisely,
an outage capacity analysis is performed considering both skin-induced attenuation and stochastic
spatial jitter, i.e., pointing error effects. Analytical expressions and results for the outage capacity
are derived for a variety of skin channel conditions along with varying stochastic pointing errors
which demonstrate the feasibility of this cross-field cooperation. Lastly, the corresponding simulation
outcomes further validate our suggestions.

Keywords: optical wireless communications (OWC); transdermal optical wireless (TOW) links;
implantable medical devices (IMDs); outage capacity; pointing errors

1. Introduction

TOW links are rapidly gaining popularity as a very promising alternative to conven-
tional transdermal radiofrequency (RF) wireless links, which are commonly used todayfor
varying medical applications [1–3]. Transdermal RF has been shown to support data rates of
some Mbps up to 24 Mbps, consuming at the same time at least 30 mW [4]. However, many
emerging medical applications such as recording neural signals from in-body devices and
actuating these devices from out-of-body signals to guide a prosthesis, require even higher
capacities to emulate similar performance to that of human organs, such as the cochlea,
along with lower power consumption [5–10]. Another representative example ofthe need
forhigher-speed bidirectional transdermal communication than RF is when neural signals
are recorded, sampled, processed, and used to actuate artificial limbs for rehabilitation
human affected by paralysis resulting from stroke, head injury, spinal cord injury, and
other neurological disorders. This process can relieve pain, improve neurological disorder,
or even regain functionality of damaged limbs [11]. Additionally, in comparison with the
achievable data rates via transcutaneous RF, even higher-speed transdermal wireless links
may be needed for such brain–machine interface applications [12–15]. In fact, 50 Mbps
would be required when 100 channels are simultaneously recorded [1].

As is the case with the wider free-air optical wireless communication systems [16–18],
according to TOW modality, the data aretransmitted via a very-high-frequency light carrier
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and, therefore, with an extremely high data rate which can meet the above growing
capacity and energy consumption demands [19]. Nevertheless, owing to the different
channel properties of human skin in comparison with atmospheric channels, the utilized
wavelength window for TOW is between 600 nm and 1300 nm, while typical TOW link
lengths are limited up to a few millimeters due to skin-induced attenuation and transdermal
pathloss [20–23]. Another but equally significant advantage of TOW versus RF transdermal
modality is that the former ensures that there is no interference with existing RF networks
or electronic equipment, while the latter suffers from electromagnetic interference (EMI)
and multipath fading within a highly regulated spectrum [24–26].

In view of the above, TOW links have attracted particular research interest in the last
few years. The feasibility of establishing TOW links has been experimentally validated by
different research organizations around the world [2,5,12,13,27–33]. In short, the feasibility
of establishing modulated retroreflective and direct TOW links was demonstrated in [5,30],
while, in [33], a bidirectional TOW link system for artificial hearts was employed. In [28],
a 75 Mbps invitro TOW link was presented, while the potential of establishing in-vivo
TOW links was verified in [29] by achieving data rates up to 100 Mbps with 2.1 mW of
electrical power consumption. Moreover, the feasibility of establishing a bidirectional
TOW link for brain–machine interface was validated in [12,13]. Nevertheless, what all
these papers have in common is that pointing errors, which refer to unavoidable, random
misalignments between transmitter and receiver terminals and may result in significant
TOW performance degradation, were either neglected or considered as a deterministic
effect. The concept of the stochastic nature of pointing errors was first modeled and
reported in [34] and thenin [9,35]. Even more recently, the stochastic impact of pointing
errors was reported in [3,10,19,24,36–40]. In these papers, considering the joint impact of
transdermal pathloss and stochastic pointing errors, the TOW performance was evaluated
in terms of outage probability, average signal-to-noise ratio (SNR), average ergodic capacity,
average bit error rate (ABER), or average symbol error probability (ASEP) for various TOW
system realizations.

Another critical performance metric, especially for high-speed communication systems
is the outage capacity, which denotes the maximum data transmission rate of reliable
communications under a specific outage probability [41,42]. However, to the best of our
knowledge, although outage capacity has been extensively utilized for the wider free air
communication systems [16,41–45], it has not yet been reported in the TOW technical
literature. Motivated by the above, in the current contribution, the outage capacity for
typical TOW link configurations is estimated, in the presence of skin-induced attenuation
and stochastic pointing errors. Under these circumstances, analytical outage capacity
expressions are derived with their corresponding results verifying the accuracy of our
proposed analysis over a wide average electrical SNR range.

2. System and Channel Model

The TOW under investigation mainly consists of three fundamental parts: the out-
of-body transmitter unit, the skin propagation medium which acts as the communication
channel, and the in-body receiver unit. The external transmitter emits via a laser source the
information-bearing light carrier which is modulated with on off keying (OOK) modulation
format. After traversingthe propagation medium, the internal unit collects the light signal
via an appropriate photodiode, and then the received signal is demodulated in order to
provide the appropriate stimulations, after being processed by the internal digital signal
processing unit and the stimulation unit. Under these circumstances, the received signal is
expressed as follows [35]:

y = ηhx + n, (1)

where η represents the photo-current conversion ratio at the receiver side, h is the skin
channel state, x stands for the modulated binary transmitted signal, and n denotes the
additive noise described as a zero mean complex Gaussian process with variance σ2 [36].
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The channel state is expressed asfollows [10]:

h = hlhp, (2)

where hl represents the deterministic channel coefficient owing to transdermal propagation
loss, and hp is the stochastic process that describes the misalignment-induced geometric
spread at the receiver aperture due to pointing errors [35].

The deterministic pathloss parameter of Equation (2) is given as follows [34]:

hl = exp
[
−1

2
α(λ)δ

]
, (3)

where δ is the dermal thickness of the skin channel which practically translates into the
transdermal link length, and α(λ) is the corresponding attenuation coefficient which
depends strongly on the utilized optical wavelength, λ. Indeed, within the wavelength
region between 400 nm and 1800 nm, the latter coefficient is expressed asfollows [9]:

α(λ) =
8

∑
i=1

ai exp

[
−
(

λ− bi
ci

)2
]

, (4)

where wavelength values are expressed in nm, and the remainingparameter values are
obtained as described below [24,35].

In fact, for TOW links, we focus on their operation at wavelengths between 600 nm
and 1300 nm, since, within this wavelength region, known as the medical or tissue optical
window, the photon absorption that stems mainly from water content or hemoglobin and
melanin can be minimized [3,23]. Optical signals with smaller or larger wavelengths are
practically inappropriate for the establishment of TOW links due to this extremely strong
skin-induced photon absorption.

In addition to the selected optical wavelength, the value of the skin attenuation
coefficient depends heavily on the optical properties of the skin and can be obtained
numerically from experimental results [20]. On the basis of these values and by employing
the trust region method, the latter expression along with its parameter values described in
Table 1 can be obtained. It is notable that the accuracy of the latter expression was estimated
to be higher than 99.7% by using the coefficient of determination (R-squared), which is the
square of the correlation between the response values and the predicted response values
and can be expressed as the ratio of the sum of squares of the regression and the total sum
of squares [9].

Table 1. The ai, bi, and ci parameter values.

i ai bi ci

1 10 0.35 0.065
2 4.5 0.42 0.25
3 13.48 −1.5 50.12
4 14.7 1442 49.35
5 7.435 1499 75.88
6 48 3322 1033
7 594.1 −183 285.9
8 11.47 −618.5 1054

Additionally, the random variable that describes stochastic pointing errors obtains the
following probability density function (PDF) [16,39,43]:

fhp

(
hp
)
= ψ2 A−ψ2

0 hψ2−1
p , 0 ≤ hp ≤ A0, (5)
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where ψ = weq/2σ is proportional to the amount of pointing error strength with weq
denoting the equivalent beam radius in the detector aperture and σ representing the spatial
jitter, i.e., the pointing error displacement. Specifically, larger ψ parameter values imply
stronger pointing errors and, thus, more severe misalignment-induced fading. Indeed,
increased ψ values practically refer to smaller spatial jitter values, which means that the
beam footprint overlaps the detector aperture to a greater extent, thus describing smaller
amounts of pointing mismatch. Consequently, when ψ→ ∞ or practically when ψ obtains
very large values, pointing errors can be considered as a negligible effect. Furthermore

weq =

[√
πerf(v)w2

δ
2vexp(−v2)

]1/2
, where erf(.) stands for the error function, (Equation (8.250.1)

in [46]), and v =
√

πρ√
2wδ

, where ρ represents the radius of the circular receiver aperture and

A0 = erf2(v) isthe fraction of the collected power at ρ = 0 [16,24]. Additionally, wδ, which
represents the corresponding beam waist on the receiver plane at a propagating transdermal
distance δ along with a transmitter divergence angle θ, is obtained as follows [10,38]:

wδ = δ tan(θ/2). (6)

By using Equations (2) and (5), the PDF of the random variable hcan be obtained
asfollows [16,19]:

fh(h) = ψ2 A−ψ2

0 h−ψ2

l hψ2−1, 0 ≤ h ≤ A0hl . (7)

Moreover, by using Equations (2) and (3), the instantaneous electrical SNR,
γ = η2h2PsN−1

0 , is expressed asfollows:

γ = η2h2
l h2

pPsN−1
0 = η2h2

p exp[−α(λ)δ]PsN−1
0 , (8)

where Ps and N0 represent the signal and noise optical power spectral density (PSD),
respectively [34].

Consequently, the average electrical SNR, µ, is obtained asfollows [35]:

µ =
(ηE[h])2Ps

N0
=

η2ψ2 A2
0Ps exp[−α(λ)δ]

(ψ2 + 2)N0
, (9)

where E[.] denotes expectation.
Next, by using Equations (7) and (8), along with applying the standard technique of

transforming random variables fγ(γ) =
fh(h)
|∂γ/ ∂h|

∣∣∣∣∣ h =
√

γ

η2Ps N−1
0

[47], the PDF of random

variable γ is obtained asfollows:

fγ(γ) =
ψ2

2
A−ψ2

0 h−ψ2

l

(
η2N−1

0 PS

)−ψ2
2

γ
ψ2−2

2 , 0 ≤ γ ≤ A2
0h2

l η2N−1
0 PS. (10)

By substituting Equation (9) into Equation (10), we get

fγ(γ) =
ψ2

2

(
ψ2

ψ2 + 2

) ψ2
2

µ
−ψ2

2 γ
ψ2−2

2 , 0 ≤ γ ≤ A2
0h2

l η2N−1
0 PS. (11)

3. Outage Capacity

A very critical performance metric for each OWC system is its outage capacity, Cout,
which stands for the capacity guaranteed for a percentage rate of (1− r) of the channel
realizations [44,45].

Pr[C < Cout] = r, (12)
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where Pr[.] denotes probability, and C represents the instantaneous channel capacity which
is obtained as follows [43]:

C = B log2(1 + γ) =
1

ln 2
B ln(1 + γ), (13)

where B is the channel’s bandwidth.
It is appropriate to clarify here the differences between outage probability, outage

capacity, and capacity metrics. Capacity denotes the achievable maximum data rate just
only for a specific moment, while the outage capacity represents the capacity guaranteed
for a specific probability of the channel realizations. Additionally, the outage probability
represents the probability that the instantaneous SNR at the receiver side falls below a spe-
cific SNR threshold that corresponds to the receiver’s sensitivity, while the outage capacity
could represent the capacity guaranteed for a specific outage probability. Moreover, higher
outage probability values correspond to a degraded outage performance for the system,
while higher outage capacity values correspond to an upgraded outage performance for
the system [36,44]. Indeed, considering Equation (12), the outage capacity refers to the
minimum capacity which is required for a specificpercentage rate of channel realizations,
while outage probability refers to the required instantaneous SNR threshold.

Since, in a real wireless channel, the instantaneous electrical SNR, γ, is a random
variable, it becomes evident from Equation (13) that C is also a random variable. Therefore,
the probability of Equation (12) is evaluated asfollows [42,45]:

r =
Cout∫
0

fC(C) dC, (14)

where fC(C) is the PDF of the random variable C.
Using Equations (11) and (13), along with standard technique of transforming random

variables, fC(C) =
fγ(γ)
|∂C/∂γ|

∣∣∣∣∣ γ = 2
C
B − 1

[47], the latter PDF is obtained asfollows:

fC(C) =
ψ2 ln 2

2B

(
ψ2

ψ2 + 2

) ψ2
2

µ
−ψ2

2 2C/B
(

2C/B − 1
) ψ2−2

2 . (15)

Thus, by substituting Equation (15) into Equation (14), we get

r =
ψ2 ln 2

2B

(
ψ2

ψ2 + 2

) ψ2
2

µ
−ψ2

2

Cout∫
0

2C/B
(

2C/B − 1
) ψ2−2

2 dC. (16)

In order to calculate the integral of Equation (16), we set u =
√

2C/B − 1, du =
2C/B ln 2

2B
√

2C/B−1
dC. Thus, the above integral is calculated as

√
2Cout/B−1∫

0

uψ2−2u(2B/ln 2) du =
2B

ψ2 ln 2

(√
2Cout/B − 1

)ψ2

. (17)

Therefore, by substituting Equation (17) into Equation (16), we obtain

r =
(

ψ2

ψ2 + 2

) ψ2
2

µ
−ψ2

2

(√
2Cout/B − 1

)ψ2

, (18)
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which can also be expressed by substituting Equation (9) into Equation (18) asfollows:

Cout/B = log2

10
2

ψ2 log [r( ψ2

ψ2+2
)
− ψ2

2
(

η2ψ2 A2
0Ps exp [−α(λ)δ]

(ψ2+2)N0
)

ψ2
2
]
+ 1

. (19)

The derived analytical expressions in Equations (18) and (19) reveal that, in addition
to the available bandwidth, the outage capacity for TOW links depends strongly on the
pointing error’s strength, average electrical SNR at the receiver’s side, skin-induced atten-
uation, and specific link characteristics such as skin channel thickness, power and noise
spectral densities, and operational wavelength.

4. Analytical Results

In this section, analytical results are graphically depicted that arise from the derived
analytical expressions in Equations (18) and (19). Their validity is further verified by ap-
propriate simulations. The diameter of the receiver’s aperture, ρ, wasset to 0.5 mm, while
the operational wavelength, λ, wasfixed at 1100 nm, which can drastically address skin-
induced attenuation due to photon absorption, as reported in [9]. Moreover, although the
probability r could take numerous values, the values 0.01 and 0.1 werehere utilized, which
are very common for any OWC link [42]. Furthermore, η = 0.8, θ = 20◦, Ps = 1 µW/MHz,

and N0 =
(

1.3 pA/
√

Hz
)2

[48]. Regarding pointing mismatch, varying weak to strong
pointing error effects wereevaluated for two different typical transdermal link lengths,
i.e., (δ, σ / ρ, ψ) = (4 mm, 1.1, 2.4), (δ, σ / ρ, ψ) = (4 mm, 1.5, 1.76), (δ, σ / ρ, ψ) =
(4 mm, 2.0, 1.32), (δ, σ / ρ, ψ) = (4 mm, 2.3, 1.15), (δ, σ / ρ, ψ) = (5 mm, 1.1, 2.98),
(δ, σ / ρ, ψ) = (5 mm, 1.5, 2.19), (δ, σ / ρ, ψ) = (5 mm, 2.0, 1.64), and (δ, σ / ρ, ψ) =
(5 mm, 2.3, 1.43). Note that ψ values are getting smaller as σ/ρ values are getting larger,
especially for smaller δ values, i.e., pointing errors are getting stronger as spatial jit-
ter increases, as expected, especially for shorter transdermal link lengths, according to
Equation (6). Indeed, the latter is valid assuming fixed θ and ρ parameter values as
mentioned above. Under these conditions, different typical TOW link configurations were-
investigated by means of outage capacity over a wide average SNR range, from 0 dB to
30 dB.

Figure 1 illustrates the outage capacity dependence on the average electrical SNR
evolution for a typical TOW link length of 5 mm with different values of normalized jitter
standard deviation, provided that r = 0.1. We observe that higher jitter values lead to
lower ψ parameter values and, thus, to stronger pointing error effects. In fact, as pointing
errors effects are getting stronger, significantly lower outage capacity values are depicted,
especially for lower average electrical SNR values.

Figure 2 depicts the corresponding analytical results tothose of Figure 1 but with
r = 0.01, i.e., with a smaller value of the probability r. Consequently, although similar
qualitative results wereobtained for the outage capacity in both cases, the decrease inthe
probability value mentioned above broughtabout smaller corresponding outage capacity
values. Therefore, the performance comparison between these two figures highlights the
outage capacity degradation due to lower r values. This behavior is in good agreement
with what happens in the wider OWC field, much less for the same probability values [42].
Additionally, the impact of pointing errors is depicted to become even more severe by
decreasing this probability value, especially for lower average electrical SNR values.
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Figure 1. Outage capacity versus average electrical SNR for δ = 5 mm and r = 0.1 under the presence
of varying, weak to strong stochastic pointing errors.

Figure 2. Outage capacity versus average electrical SNR for δ = 5 mm and r = 0.01 under the
presence of varying, weak to strong stochastic pointing errors.

Figure 3 presents the corresponding analytical results tothose of Figure 2 but through a
shorter transdermal link, i.e., a smaller value of parameter δ. As expected from Equation (6),
shorter transdermal link distances led to larger beam waist values for a specific initial
divergence angle, which resulted, in turn, in a larger amount of pointing mismatch. In-
deed, for the same normalized jitter standard deviation values, we now obtained smaller
corresponding ψ parameter values due to the shorter transdermal propagation distance.
This translated into more important outage capacity performance degradations due to the
presence of stronger pointing errors, especially for lower average electrical SNR values.
In this context, Figure 3 highlights the dependence of stochastic pointing error effects
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on transdermal link length, in terms of TOW outage capacity. Note that this behavior is
consistent with what happens with other critical TOW outage performance metrics, such
as the outage probability and the average bit error rate [35,37]. It should be noted, however,
that, for longer TOW distances, i.e., above some additional millimeters, the impact of skin-
induced attenuation dominates the impact of pointing errors. Thus, after some transdermal
propagation distance, the corresponding outage performance will be degraded due to the
total transdermal pathloss, despite the increase inbeam waist.

Figure 3. Outage capacity versus average electrical SNR for δ = 4 mm and r = 0.01 under the
presence of varying, weak to strong stochastic pointing errors.

5. Discussion and Conclusions

In this work, we first investigated the outage capacity for the performance of TOW
links with slow-fading skinchannels along with the presence of varying stochastic spatial
jitter. In this respect, an outage capacity analysis was performed, while novel analytical
expressions were derived for this crucial performance metric which incorporate the most
significant parameters and effects that play a key role in TOW performance and availability.
Their analytical results which were validated by proper simulations reveal that the achiev-
able TOW outage capacity largely depends on the average electrical SNR at the receiver’s
side, as well as on stochastic pointing errors’ strength, along with transdermal propagating
distance for the information-bearing light which penetrates into the skin channel. In this
context, the feasibility of establishing high-speed TOW links was demonstrated for typical
transdermal link lengths, even in very harsh pointing mismatch conditions. Toward the
development of future higher-speed TOW links of enhanced robustness, the analysis pro-
posed can be added to the engineer’s quiver as a useful tool for the design of such effective
transdermal wireless systems.

In view of the above, the key contribution of this work was to develop a theoretical
framework for the outage capacity estimation of typical TOW links quantifying the impact
for weak to strong stochastic pointing errors.It should be noted, however, that, for a real
human skin channel, human body temperature, in addition to other specific skin and
tissue particularities, should be taken into consideration. Nevertheless, the performance
comparison ofour findings in TOW area withcorresponding outage capacity results in
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traditional free-air communication systems evaluated in [42,43] reveal the feasibility of our
findings and suggestions.
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