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Abstract: We demonstrate high sensitivity fiber refractive index (RI) sensor based on asymmetric
supermode interferences in tapered four core fiber (TFCF). To make TFCF-based RI sensors, the
whitelight was launched into any one of the cores to define the excitation orientation and is called a
vertex-core excitation scheme. When the four-core fiber (FCF) was gradually tapered, the four cores
gathered closer and closer. Originally, the power coupling occurred between its two neighboring cores
first and these three cores are grouped to produce supermodes. Subsequently, the fourth diagonal
core enters the evanescent field overlapping region to excite asymmetric supermodes interferences.
The output spectral responses of the two cores next to the excitation core are mutually in phase
whereas the spectral responses of the diagonal core are in phase and out of phase to that of the
excitation core at the shorter and longer wavelengths, respectively. Due to the lowest limitation of the
available refractive index of liquids, the best sensitivity can be achieved when the tapered diameter is
10 µm and the best RI sensitivity S is 3249 nm/RIU over the indices ranging from 1.41–1.42. This is
several times higher than that at other RI ranges due to the asymmetric supermodes.

Keywords: multicore fiber; supermode interference; tapered fiber; asymmetric mode; refractive
index sensor

1. Introduction

In-line fiber interferometric sensors are featured with high accuracy, high bandwidth,
high signal capacity, high environmental stability, in situ and real-time monitoring for mea-
suring various kinds of physical, chemical, and biological measurands [1–5]. To satisfy the
giant demands of the bandwidth for telecommunications or sensing purposes, many differ-
ent kinds of active and passive multicore fibers (MCF) have been extensively investigated
over the past few years to enlarge the signal capacity based on space division multiplex-
ing [6–11]. In addition, the MCF can also provide multi-parameter sensing [12–14] or
high power lasing based on coherent beam combination [15–17], ascribing to the multicore
structures. However, most of the MCFs are very different from the traditional singlemode
fibers (SMF), not only in the physical core distributions but also in their fundamental optical
properties. For example, the MCFs are incompatible with the standard SMF in their core
sizes, the numerical apertures (NA), and the core configurations. Therefore, the fan-in/fan-
out couplers are always required to conquer the power/signal transmission issues for
linking up the MCF and SMF. Besides, the evanescent power coupling may occur when
the MCF is heavily bent [18]. Moreover, it is noted that the supermodes are excited to give
rise to interferences when the MCF is substantially tapered [19–22]. With this interesting
phenomenon, it brings new physical findings and applications for MCF. Except for the
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excited supermodes, the split evanescent field distribution as well as the evanescent optical
trapping force have also been observed in the tapered seven core MCF [23]. In contrast to
the large amount of the literature related to the seven core MCF, there have been only a
few works reported using FCF for curvature, strain, temperature, pressure, and RI sensing
applications [24–28]. Among them, the RI sensing is important to realize the refractive
indices of the liquids under tests for the applications in food security, medical care, indus-
trial and environmental monitoring [29–31]. However, for those RI sensors using FCF, the
laser lights were launched into the center of FCF, namely the central silica area surrounded
by the four cores, and then tapered [32]. This structure can be treated as a segment of
TFCF sandwiched between two multimode fibers. Because there is no clearly defined core
boundary for the launching lights right after the splicing point between the FCF and SMF.
One more important issue, the excited modes are overall concentrically symmetric. On
the other hand, if the lights are launched into one of four cores in the FCF, the optical
characteristics of the fiber sensors are very different from the above-mentioned excitation
method from the silica center. However, these sensors using FCFs were not tapered to
excite the supermodes to investigate the interferences.

In contrast, in this work, the fiber RI sensing using TFCF via the vertex-core excitation
scheme, shown in Figure 1a, was demonstrated. Though many different kinds of fiber
sensors using MCF or special fibers have been reported [14,26,32–38], the excited modes
are generally axially concentric and the sensitivity is therefore limited. On the contrary,
the asymmetric modes are distributed very differently from the symmetric modes due to
their wider field distributions. This implies that the interaction between the asymmetric
modes and the external materials under tests can be substantially enhanced to improve
the sensitivity. However, there have been several kinds of well-known methods to excite
the asymmetric modes like core misalignment transversely or the asymmetric cladding
structures or asymmetric RI profile along the radial direction. Basically, these methods
are expensive due to the special physical designs or not reproducible due to accurate
alignment needed. Straightforwardly, the asymmetric modes in the TFCF can be easily
achieved by launching the lights into one of the cores. Due to the strong power coupling
among the grouped cores in the TFCF, the excited supermodes are intrinsically asymmetric.
The advantages of this excitation method are fulfilled in a commercially available FCF
without the labor-intensive and time-consuming alignment works. Moreover, the excited
asymmetric supermodes can be precisely and easily controlled by fine tuning the tapered
diameter through the mature fiber tapering technique. By carefully controlling the tapered
diameter, the desired asymmetric supermodes as well as the spectral responses can be
available. For RI sensing in this work, the D and the uniformed tapered length L are 10 µm,
shown in Figure 1b, and 2.1 mm, respectively. The S was measured to be 535 nm/RIU,
884 nm/RIU, and 3249 nm/RIU over the index’s intervals over 1.334–1.342, 1.37–1.38,
and 1.41–1.42, respectively. The best S is 3249 nm/RIU and the corresponding extinction
ratio is about 13 dB. The achieved S is significantly improved, compared with other RI
sensors using FCF, ascribing to the asymmetric supermodes via the vertex-core excitation
scheme. This has not yet been investigated and reported to our knowledge. Clearly, the
most important advantages of this RI sensor is the ability to investigate the influence of
the asymmetric supermodes in the TFCF on the enhancement of S due to the vertex-core
excitation scheme. The achieved S is much higher than the S of all kinds of RI sensors using
FCFs [26,32–36]. Moreover, it is also superior to most of the RI sensors using other kinds of
special fibers [14,37,38]. This asymmetric supermode interference based on the vertex-core
excitation scheme was found to be helpful in improving the S and exploring the underlying
physics for developing TFCF interferometric sensors. It is also highly promising for fiber
sensors with multi-parameters monitoring simultaneously.
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Figure 1. (a) Designation of the four cores ①, ②, ③, ④ in the TFCF interferometer in which c#1 
represents the excitation core. (b) Microphotograph of the TFCF with D = 10 μm under a 1000× CCD 
microscope. 

2. Fabrication, Experimental Set-Up, and Working Principle 
In fabrication, a FCF (Chiral Photonics: SM-4C1500) with the 4 Ge-doped cores ar-

ranged in a square shape, shown in Figure 1a. Typically, the NA for each core is 0.157 and 
the core diameter is 8 μm. The shortest distances between two neighboring cores and the 
diagonal cores are 50 μm and 74 μm, respectively. The insertion loss and crosstalk for the 
individual 4 cores are ranging over 1.1~1.7 dB and −46.8~−55 dB, respectively, due to weak 
power coupling. In order to combine or to separate the four core channels to individually 
link up to the SMF, the fan-in/fan-out couplers, made from the same FCF, are essential 
components. However, a small core misalignment between the fan-in/fan-out couplers 
and the FCF due to core dislocations from different batches of the manufactured FCF may 
occur to excite some unwanted higher order modes to give rise to noises in spectral re-
sponses. To make the TFCF RI sensors, a segment of the uncoated FCF was fixed on the 
fiber taper station, shown in Figure 2a. The FCF was heated using hydrogen flame and 
then elongated to thin down the D. During tapering, the boundary of the 4 Ge-doped cores 
gradually becomes blurred under a 1000× CCD microscope, as can be seen from Figure 
2b–e with D = 37, 35.5, 33, 24 μm, respectively, due to the Ge ions diffusion. In addition, 
the mode field distributions for different cores gradually expand to overlap with each 
other. The SLD lights were launched into the core c#1 and an optical spectrum analyzer 
(OSA) was used to individually monitor and record the spectral responses at the output 
ends of cores for the power coupling c#1-#4. When D is less than 30 μm, the direct-
through, namely from the input core c#1 to output core c#1, spectral responses start to 
vary, which reflects that the supermodes based on the tri-core structure were excited to 
produce interferences. The extinction ratios (ER) of the spectral responses increase with a 
decreasing D. Moreover, the excited supermodes based on the tri-core structure also rap-
idly transit to the quadruple-core structure with decreasing D. The corresponding cross-
coupled, namely from the input core c#1 to output core c#2/3/4, spectral responses were 
also recorded by an OSA. To make RI sensors, the liquids with different indices were pre-
pared using DI water and glycerin at different mixing ratios. The indices of the liquid 
samples were measured by an Abbe refractometer working at the nD wavelength (589.3 
nm). From all of the output spectra, the direct-through type were found to be the most 
sensitive route to the external index variations since the mode field of the excited asym-
metric supermodes is mainly distributed surrounding the excitation core, as can be ob-
served in Figure 2g–i, especially when the ambient index is close to the effective index of 
TFCF. 

Figure 1. (a) Designation of the four cores 1©, 2©, 3©, 4© in the TFCF interferometer in which
c#1 represents the excitation core. (b) Microphotograph of the TFCF with D = 10 µm under a
1000× CCD microscope.

2. Fabrication, Experimental Set-Up and Working Principle

In fabrication, a FCF (Chiral Photonics: SM-4C1500) with the 4 Ge-doped cores ar-
ranged in a square shape, shown in Figure 1a. Typically, the NA for each core is 0.157 and
the core diameter is 8 µm. The shortest distances between two neighboring cores and the
diagonal cores are 50 µm and 74 µm, respectively. The insertion loss and crosstalk for the
individual 4 cores are ranging over 1.1~1.7 dB and−46.8~−55 dB, respectively, due to weak
power coupling. In order to combine or to separate the four core channels to individually
link up to the SMF, the fan-in/fan-out couplers, made from the same FCF, are essential
components. However, a small core misalignment between the fan-in/fan-out couplers and
the FCF due to core dislocations from different batches of the manufactured FCF may occur
to excite some unwanted higher order modes to give rise to noises in spectral responses.
To make the TFCF RI sensors, a segment of the uncoated FCF was fixed on the fiber taper
station, shown in Figure 2a. The FCF was heated using hydrogen flame and then elongated
to thin down the D. During tapering, the boundary of the 4 Ge-doped cores gradually
becomes blurred under a 1000× CCD microscope, as can be seen from Figure 2b–e with
D = 37, 35.5, 33, 24 µm, respectively, due to the Ge ions diffusion. In addition, the mode
field distributions for different cores gradually expand to overlap with each other. The SLD
lights were launched into the core c#1 and an optical spectrum analyzer (OSA) was used
to individually monitor and record the spectral responses at the output ends of cores for
the power coupling c#1-#4. When D is less than 30 µm, the direct-through, namely from
the input core c#1 to output core c#1, spectral responses start to vary, which reflects that
the supermodes based on the tri-core structure were excited to produce interferences. The
extinction ratios (ER) of the spectral responses increase with a decreasing D. Moreover, the
excited supermodes based on the tri-core structure also rapidly transit to the quadruple-
core structure with decreasing D. The corresponding cross-coupled, namely from the input
core c#1 to output core c#2/3/4, spectral responses were also recorded by an OSA. To make
RI sensors, the liquids with different indices were prepared using DI water and glycerin
at different mixing ratios. The indices of the liquid samples were measured by an Abbe
refractometer working at the nD wavelength (589.3 nm). From all of the output spectra,
the direct-through type were found to be the most sensitive route to the external index
variations since the mode field of the excited asymmetric supermodes is mainly distributed
surrounding the excitation core, as can be observed in Figure 2g–i, especially when the
ambient index is close to the effective index of TFCF.
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Figure 2. (a) Experimental set-up for fabricating TFCF RI sensors based on the vertex-core excitation 
scheme. Cross-sectional views of the microphotographs of the TFCF when (b) D = 37 μm, (c) D = 
35.5 μm, (d) D = 33 μm and (e) D = 24 μm under a 1000× CCD microscope. (f) Vertex-core excitation 
scheme (D = 37 μm). Far-field mode patterns of the excited supermodes for the (g) tri-core structure 
(D = 35.5 μm), (h) quadruple-core structure (D = 33 μm) and (i) quadruple-core structure (D = 24 
μm). 

The working principle for the excited supermodes in the MCF with different core 
configurations has been extensively studied [26,32–36]. Due to the vertex-core excitation, 
the laser lights are well-confined to propagate in the core right after the splicing point. 
When FCF was gradually tapered, the four cores gathered closer and the evanescent fields 
of the excitation core, c#1, increasingly overlap with the two neighboring cores, c#2 and 
c#3, first, shown in Figure 2f, and then came along with the supermodes, shown in Figure 
2g, based on this three-core structure, c#1-#3. With continuous tapering, the fourth core, 
#4, at the diagonal position with respect to the excitation core gradually enters the evanes-
cent fields overlapping region to excite new supermodes, Figure 2h,i, based on the four-
core structure, c#1-#4. Figure 2f–i were the far field mode patterns using whitelight span-
ning 1250–1650 nm from superluminescent diodes (SLD) under a 1000× CCD microscope. 
Partial guiding lights from SLDs near the 1310 nm wavelengths can be observed by the 
CCD microscope [23]. From the three-core to four-core structure, the excited supermodes 
are highly determined by the tapered diameter D of the TFCF and are intrinsically asym-
metric due to the vertex-core excitation scheme. Consequently, the output interference 
fringes will be in phase when the output spectral responses are individually measured 
from the two cores, c#2 and c#3, next to the excitation core, after using a fan-out coupler. 
Due to the supermode interferences, the output spectral characteristics for the excitation 
core become highly wavelength dependent. However, the output spectral responses from 
core c#2 and c#3 are very different from the c#1. Ambiguously, the output spectral re-
sponses from the diagonal core c#4 are somehow in phase and out of phase relative to the 

Figure 2. (a) Experimental set-up for fabricating TFCF RI sensors based on the vertex-core exci-
tation scheme. Cross-sectional views of the microphotographs of the TFCF when (b) D = 37 µm,
(c) D = 35.5 µm, (d) D = 33 µm and (e) D = 24 µm under a 1000× CCD microscope. (f) Vertex-core
excitation scheme (D = 37 µm). Far-field mode patterns of the excited supermodes for the (g) tri-core
structure (D = 35.5 µm), (h) quadruple-core structure (D = 33 µm) and (i) quadruple-core structure
(D = 24 µm).

The working principle for the excited supermodes in the MCF with different core
configurations has been extensively studied [26,32–36]. Due to the vertex-core excitation,
the laser lights are well-confined to propagate in the core right after the splicing point.
When FCF was gradually tapered, the four cores gathered closer and the evanescent fields
of the excitation core, c#1, increasingly overlap with the two neighboring cores, c#2 and c#3,
first, shown in Figure 2f, and then came along with the supermodes, shown in Figure 2g,
based on this three-core structure, c#1-#3. With continuous tapering, the fourth core, #4, at
the diagonal position with respect to the excitation core gradually enters the evanescent
fields overlapping region to excite new supermodes, Figure 2h,i, based on the four-core
structure, c#1-#4. Figure 2f–i were the far field mode patterns using whitelight spanning
1250–1650 nm from superluminescent diodes (SLD) under a 1000× CCD microscope. Partial
guiding lights from SLDs near the 1310 nm wavelengths can be observed by the CCD
microscope [23]. From the three-core to four-core structure, the excited supermodes are
highly determined by the tapered diameter D of the TFCF and are intrinsically asymmetric
due to the vertex-core excitation scheme. Consequently, the output interference fringes
will be in phase when the output spectral responses are individually measured from the
two cores, c#2 and c#3, next to the excitation core, after using a fan-out coupler. Due to
the supermode interferences, the output spectral characteristics for the excitation core
become highly wavelength dependent. However, the output spectral responses from core
c#2 and c#3 are very different from the c#1. Ambiguously, the output spectral responses
from the diagonal core c#4 are somehow in phase and out of phase relative to the spectral
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characteristics from the core c#1 at the shorter wavelength and longer wavelength side of
the 1450 nm, respectively.

In this work, the evanescent power overlapping was experimentally observed to begin
when D is approaching 30 µm where the supermodes are produced based on a tri-core
structure, namely the grouped cores c#1-#3. However, it is found that when D = 26 µm, the
diagonal core, c#4, the supermodes at the wavelengths longer than 1450 nm are initially
generated. The details about the supermodes evolutions will be further discussed later
in this work. In accordance with the couple mode theory for the strong coupling MCF,
the supermodes are excited when the distance between cores is small enough to start
the effective evanescent power coupling. The superposed electric-field intensity for the
interferences can be expressed as follows:

I =
n

∑
i=1

Ii + 2
n−1

∑
i=1

n

∑
j=i+1

√
Ii Ijcos

[
2π
(
ni − nj

)
l/λ

]
(1)

the Ii and Ij are the intensity of the ith and jth supermodes, the ni and nj are the effective
index for ith and jth supermodes, l is the length of MCF, and λ is the operating wavelength.

The OPD between two supermodes is defined as

φ = (2m + 1)π (2)

and the wavelengths for the interference peaks can be expressed as:

λm =
2∆ne f f l

2m + 1
(3)

the ∆ne f f is the effective index difference between the cores and m is the order of interfer-
ences. From Formula (3), the FSR can be written as:

FSR = ∆λm = |λm − λm−1| =
4∆ne f f l

(2m + 1)(2m− 1)
≈ λ2

m
∆ne f f l

(4)

Thus, from Formula (4), it is known that the FSR increases with a decreasing l or ∆ne f f

whereas the FSR decreases with a decreasing λ [39]. These formulas can help explain the
working principles for RI sensors.

3. Measurements and Discussions

In measurement, four TFCF samples, A1, A2, A3, A4 with the D of 26 µm, 15 µm,
13 µm, and 10 µm, respectively, were prepared to investigate their spectral characteristics.
The optical resolution (RES) of OSA was set at 0.05 nm or 0.5 nm, contingent upon the
spectral spanning range. To investigate the spectral responses for the power coupling ports
between input/output cores, denoted as c#-#, the power coupling condition from input
core 1 to output core 1, namely c#1-#1, is called the direct-through state. On the other hand,
the conditions from input core 1 to output core 2/3/4, namely c#1-#2/3/4, are defined as
the cross-coupled states. The spectral responses of the samples A1, A2, A3, A4 with the
states of c#1-#1 in air can be found in Figure 3a. From which, the normalized transmission
loss was observed with oscillating power variations at the very beginning tapering stage
at D = 26 µm. When D continuously decreases, the spectral curves come along with more
and more oscillations and the free spectral range (FSR) decreases accordingly. In Figure 3b,
the spectral responses of the sample A1 with its all power coupling states c#1-#1/2/3/4
in air were recorded and shown there. Explicitly, it is very interesting to note that the
oscillating spectral curves for c#1-#2 and c#1-#3 are highly similar to each other since core
#2 and #3 are neighboring cores with the same distance with respect to the excitation core
#1. On the contrary, the spectral curve for c#1-#4 is somehow in phase and out of phase
relative to the shorter and longer wavelength side of 1450 nm of c#1-#1. In fact, D = 30 µm
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was experimentally found to be close to the critical point to start the excitation of the
supermodes. Thus, for D = 26 µm, the core c#1,2,3 are grouped together to produce the
tri-core-based supermodes first, whereas the evanescent power overlapping only occurs
at the longer wavelengths for core c#4 to generate the quadruple-core-based supermodes.
This is the reason why the oscillating spectral curve for c#1-#4 is partially in phase to
that of c#1-#1. However, this phenomenon disappears rapidly soon after D increasingly
decreases. The spectral curves for all power coupling start when D = 15 µm, 13 µm, and
10 µm are respectively shown in Figure 3c–e. As predicted, along with the decreasing D,
the FSR decreases. The relationships between different c#-# are quite chaotic and no strong
regular manners can be found due to the asymmetric supermodes based on the vertex-core
excitation scheme. However, when D = 13 µm and 10 µm, the power oscillations become
highly overlap with each other for the curves c#1-#1 and c#1-#4 at the longer wavelengths,
shown in Figure 3d,e.

Photonics 2022, 9, 45 6 of 11 
 

 

supermodes. Thus, for D = 26 μm, the core c#1,2,3 are grouped together to produce the tri-
core-based supermodes first, whereas the evanescent power overlapping only occurs at 
the longer wavelengths for core c#4 to generate the quadruple-core-based supermodes. 
This is the reason why the oscillating spectral curve for c#1-#4 is partially in phase to that 
of c#1-#1. However, this phenomenon disappears rapidly soon after D increasingly de-
creases. The spectral curves for all power coupling start when D = 15 μm, 13 μm, and 10 
μm are respectively shown in Figure 3c–e. As predicted, along with the decreasing D, the 
FSR decreases. The relationships between different c#-# are quite chaotic and no strong 
regular manners can be found due to the asymmetric supermodes based on the vertex-
core excitation scheme. However, when D = 13 μm and 10 μm, the power oscillations be-
come highly overlap with each other for the curves c#1-#1 and c#1-#4 at the longer wave-
lengths, shown in Figure 3d,e. 

1250 1300 1350 1400 1450 1500 1550 1600 1650
-40

-35

-30

-25

-20

-15

-10

-5

0

Tr
an

sm
iss

io
n 

lo
ss
 (d

B)

Wavelength (nm)

 D = 26 μm, c#1-#1
 D = 15 μm, c#1-#1
 D = 13 μm, c#1-#1
 D = 10 μm, c#1-#1

(a)

RES = 0.5 nm
1250 1300 1350 1400 1450 1500 1550 1600 1650

-35

-30

-25

-20

-15

-10

-5

0

RES = 0.5 nm

Tr
an

sm
iss

io
n 

lo
ss

 (d
B)

Wavelength(nm)

 c#1-#1
 c#1-#2
 c#1-#3
 c#1-#4

(b)

D = 26 μm

1250 1300 1350 1400 1450 1500 1550 1600 1650
-30

-25

-20

-15

-10

-5

RES = 0.5 nm

Tr
an

sm
iss

io
n 

lo
ss

 (d
B)

Wavelength (nm)

 c#1-#1
 c#1-#2
 c#1-#3
 c#1-#4

D = 15 μm

(c)

1250 1300 1350 1400 1450 1500 1550 1600 1650
-35

-30

-25

-20

-15

-10

-5

RES = 0.5 nm

Tr
an

sm
iss

io
n 

lo
ss

 (d
B)

Wavelength (nm)

 c#1-#1
 c#1-#2
 c#1-#3
 c#1-#4

D = 13 μm

(d)

 
Figure 3. Spectral responses of the oscillating curves for (a) D = 26, 15, 13, 10 μm with the c#1-#1 
states and for (b) D = 26 μm, (c) D = 15 μm (d) D = 13 μm, and (e) D = 10 μm with the c#1-#1/2/3/4 
states. 

For RI sensing, the two TFCFs with D of 13 μm and 10 μm were selected due to their 
better performances. The prepared liquids were ranging over the index 1.334–1.342, 1.37–
1.38, 1.41–1.42 [40]. Each of them was individually applied into a U-groove and then lifted 
to a right position by a precision translation stage to make the TFCF entirely immersed. 
After each time of measurement at room temperature, the samples were thoroughly 
cleaned using DI water and alcohol to complete the experiments. The refractive indices of 
the liquids were accurately measured using an Abbe refractometer and the step of the 
index increment was from 0.0003 to 0.001 contingent upon the fiber samples. At the be-
ginning, the spectral responses with the best interferences at some specific wavelengths 
were intentionally searched and observed from OSA. Subsequently, the refractive indices 
of the liquids were finely tuned around there. When the RI gradually increases, the reso-
nant wavelengths red-shift. However, the extinction ratio downgrades slowly with in-
creasing RI since the phase-matching conditions are no longer well-satisfied. Hence, the 
RI sensitivity was measured at some specifically selected wavelengths and at some RI in-
tervals over 1.334–1.42. The spectral responses of the samples A3 and A4 for the direct-

1250 1300 1350 1400 1450 1500 1550 1600 1650
-25

-20

-15

-10

-5

RES = 0.5 nm

Tr
an

sm
iss

io
n 

lo
ss

 (d
B)

Wavelength (nm)

 c#1-#1
 c#1-#2
 c#1-#3
 c#1-#4

(e)

D = 10 μm

Figure 3. Spectral responses of the oscillating curves for (a) D = 26, 15, 13, 10 µm with the c#1-#1 states
and for (b) D = 26 µm, (c) D = 15 µm (d) D = 13 µm, and (e) D = 10 µm with the c#1-#1/2/3/4 states.

For RI sensing, the two TFCFs with D of 13 µm and 10 µm were selected due to
their better performances. The prepared liquids were ranging over the index 1.334–1.342,
1.37–1.38, 1.41–1.42 [40]. Each of them was individually applied into a U-groove and then
lifted to a right position by a precision translation stage to make the TFCF entirely immersed.
After each time of measurement at room temperature, the samples were thoroughly cleaned
using DI water and alcohol to complete the experiments. The refractive indices of the liquids
were accurately measured using an Abbe refractometer and the step of the index increment
was from 0.0003 to 0.001 contingent upon the fiber samples. At the beginning, the spectral
responses with the best interferences at some specific wavelengths were intentionally
searched and observed from OSA. Subsequently, the refractive indices of the liquids were
finely tuned around there. When the RI gradually increases, the resonant wavelengths
red-shift. However, the extinction ratio downgrades slowly with increasing RI since
the phase-matching conditions are no longer well-satisfied. Hence, the RI sensitivity
was measured at some specifically selected wavelengths and at some RI intervals over
1.334–1.42. The spectral responses of the samples A3 and A4 for the direct-through and
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cross-coupled states were all recorded at the wavelengths around 1500—1600 nm as well
as the S are shown in Figure 4a–l. In Figure 4e,g, the D, L, maximum wavelength shift
∆λ, index variations, and c#-# are (13 µm, 1.8 mm, 12.49 nm, 1.41–1.4139, cross-coupled
c#1-#2) and (10 µm, 2.1 mm, 4.62 nm, 1.334–1.342, direct-through c#1-#1), respectively.
Figure 4g,i,k are the spectral responses of the sample A4 on the c#1-#1 states over different
index ranges while Figure 4h,j,l are their corresponding sensitivity. Explicitly, the different
index liquids give rise to different resonant wavelengths and the sensitivity gradually
increases with an increasing external index, shown in Figure 4g,i,k. This is because an
external index closing to the effective index of the TFCF can expand the mode fields much
more to extend to the outside of TFCF to increase the index sensitivity. From Figure 4e,k,
the resonant wavelengths red-shift with an increasing index and the maximum S can be
found to be 2911 nm/RIU, shown in Figure 4f, and 3249 nm/RIU, shown in Figure 4l,
respectively. It is worthy to note that the S has been shown to be significantly improved
compared with the reported fiber interferometers using FCF [26,32,33]. In addition, the
coefficients of determination R2 of linear fitting are 0.976 and 0.9885, respectively, and
which reflects the 0394λ exhibits high linearity. In Figure 4k, it is interesting to note that
when the ambient index gradually goes up, the resonant wavelength red-shifts. On the
other hand, when the tapered diameter is as small as 10 µm and the ambient index is higher
than 1.41, two resonant wavelengths can be generated and clearly observed around the
refractive index range 1.41–1.417. This is because when a silica tapered fiber is surrounded
by the liquid with a refractive index closing to its effective refractive index, more high
order supermodes can be excited and survived. This is why the two resonant wavelengths
can be observed. However, when the ambient refractive index continuously increases,
the phase-matching conditions are no longer well-satisfied. Thus, one of the resonant
wavelengths disappears. To simplify the comparisons among samples A2, A3, A4, the best
measured working parameters including D, L, ER, FSR, ∆λ, S, and c#-# are listed in Table 1.
Obviously, a smaller D can lead to the larger ∆λ and S since the higher order supermodes
were excited when the four cores are tightly gathered. Moreover, by selecting the proper
tapered diameter and RI liquids, the desired spectral responses as well as the S can be
achieved. However, in terms of the best S, the D as small as 10 µm would be the best option
over the low RI range near 1.334.

Table 1. Working parameters for TFCF-based RI sensors.

Parameters Sample A2 Sample A3 Sample A4

Tapered diameter (D) 15 µm 13 µm 10 µm
Tapered length (L) 2 mm 1.8 mm 2.1 mm

Extinction ratio (ER) 15.31 dB 14.76 dB 15.5 dB
Free spectral range (FSR) 56.3 nm 31.7 nm 28.5 nm

Wavelength shift (∆λ) 3.8 nm 12.49 nm 33.57 nm
Maximum index sensitivity (S)

I/O Power coupling ports
(c#-#)

1213 nm/RIU
c#1-#2

2911 nm/RIU
c#1-#2

3249 nm/RIU
c#1-#1
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and (l) 3249 nm/RIU for sample A4 using different index liquids. 
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Figure 4. Spectral responses of the wavelength shift versus index variations for (a) sample A3

over the index range 1.333–1.341, (c) 1.3704–1.3772, (e) 1.41–1.4139 and for sample A4 over the
index range (g) 1.334–1.342, (i) 1.37–1.38, and (k) 1.41–1.42, respectively. The measured index
sensitivity is (b) 389 nm/RIU, (d) 832 nm/RIU, (f) 2911 nm/RIU for sample A3 and (h) 535 nm/RIU
(j) 885 nm/RIU, and (l) 3249 nm/RIU for sample A4 using different index liquids.
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4. Conclusions

In this work, the asymmetric supermode interferences based on the TFCF in the vertex-
core excitation scheme were demonstrated to achieve high sensitivity RI sensors. The best
sensitivity can be as high as 3249 nm/RIU over the index range 1.41–1.42 and the best
extinction ratio is 15.5 dB while the tapered diameter is 10 µm. When the tapered diameter
is approaching 30 µm, the supermodes excitations were started to produce. Initially, the
supermodes are exited based on a tri-core structure and then gradually transitioned to
a quadruple-core structure. This can be verified to explain that the spectral responses of
the diagonal core c#4 are in-phase and out-of-phase relative to that of the excitation core
c#1 at the short- and long-wavelength side of 1450 nm, respectively. When the tapered
diameter gradually decreases, the phases of the cross-coupled and the direct-through
spectra become less correlated due to over-coupling. The best sensitivity is achieved when
the tapered diameter and tapered length are 10 µm and 2.1 mm, respectively. The measured
index sensitivity for fiber sample A4 is 535 nm/RIU, 884 nm/RIU, and 3249 nm/RIU
over the indices ranging from 1.334–1.342, 1.37–1.38, and 1.41–1.42, respectively. The
best sensitivity of the TFCF-based RI sensor is 3249 nm/RIU. The excited asymmetric
supermodes in TFCF based on a vertex-core excitation are very different from the mode
characteristics of the symmetric supermodes in tapered MCF. This RI sensor can also be
used to measure the variations of temperature, humidity, blood glucose concentration, and
many other applications in biochemical and biomedical fields. It is thus highly promising
for developing high sensitivity fiber interferometric sensors.
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