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Abstract: In this paper, the mode selective coupler (MSC) is analyzed using the supermode theory.
It is shown that all characteristic parameters of the MSC can be obtained using the propagation
constants of the supermodes supported by the MSC structure. Simulation results show that the
characteristic parameters calculated by the supermode theory match well with those calculated by
the traditional coupled mode theory (CMT) near the phase matching point of the MSC structure. In
practice, the propagation constants of the supermodes can be obtained using common finite element
software directly, avoiding the complex double integral in the traditional CMT. This analysis based
on the supermode theory gives a deeper insight into the characteristics of the MSC, providing a
fast and accurate method for the analysis of MSCs, which is helpful for their design, fabrication
and applications.

Keywords: mode selective coupler; coupled mode theory; supermode theory; coupling length;
maximum power-coupling efficiency

1. Introduction

Mode selective couplers (MSCs) are key components of future mode division mul-
tiplexing (MDM) optical networks [1,2], which could be used in a mode multiplexer/
demultiplexer [3–7], few-mode fiber lasers [8–16], etc. Usually, an MSC consists of a single-
mode-fiber (SMF) and a few-mode-fiber (FMF) whose cores are brought close together. Thus,
there is strong power coupling between the fundamental mode of the SMF and a specific
high-order mode of the FMF, which are designed to have similar propagation constants.

Fiber couplers are commonly analyzed using the coupled mode theory (CMT) [17–19].
Especially for the directional coupler composed of two identical single-mode fibers, the
difference of the propagation constants of the two fibers is zero, and the mode coupling
coefficient can be calculated using an empirical expression obtained from the CMT [18,19].

However, for an MSC composed of different kinds of fibers, the propagation constants
of the two considered modes may be different and should be calculated using other methods.
Also, there is no empirical expression for the calculation of the coupling coefficients,
and they must be calculated using the complex double integral obtained from the CMT.
Furthermore, if there are no analytical expressions for the modal spatial distribution of the
modes supported by individual fiber cores (e.g., graded-index fiber), the modal spatial
distributions should be calculated by using the numerical method or software first. This
increases the difficulty for the analysis and design of MSCs and related work using the
traditional CMT.

In this paper, the supermode theory is applied to the analysis of the MSC [20–27].
It is shown that all characteristic parameters of the MSC can be obtained using only the
propagation constants of the supermodes supported by the MSC structure. Simulation
results show that the calculation results using the proposed method agree well with those
calculated using the traditional CMT near the phase matching point of the MSC structure.
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In practice, the propagation constants of the MSC’s supermodes can be obtained easily
using finite element software [28], which significantly simplifies the analysis and design of
the MSC. The supermode theory also provides a deeper insight into the characteristics of
the MSC.

The paper is organized as follows. In Section 2, the MSC is analyzed using the CMT
and supermode theories. It is shown that all the characteristic parameters of the MSC can be
obtained using the propagation constants of its supermodes. In Section 3, the supermodes
supported by the MSC structure are obtained using the commonly used software COMSOL
Multiphysics, and the results are compared to those obtained using the traditional CMT.
Then, the characteristic parameters of the MSC are calculated using the supermode theory
and the traditional CMT under different gap sizes, core radiuses, and core indexes. The
results are compared and discussed. Finally, a conclusion is drawn in Section 4.

2. Theory

The model of a twin-core fiber that is usually used for the theoretical analysis of the
MSC is presented in Figure 1. It is composed of SMF core 1 with V < 2.4048 and FMF core 2
with V > 2.4048. Here, n1 and n2 represent the refractive indexes of the two fiber cores, n0
represents the refractive index of the cladding, a1 and a2 represent the radiuses of the two
fiber cores, and d represents the gap size between the two cores.
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2.1. Coupled Mode Theory for the MSC

Here, we suppose the mode conversion occurs between the fundamental modes of the
SMF 1 (i.e., HE11p-1, HE11s-1) and the second-order modes of the FMF 2 (i.e., TE01-2, HE21p-2,
HE21s-2, TM01-2). The six vector modes can be classified into two groups: p-modes group
(HE11p-1, HE21p-2, TM01-2 modes) and s-modes group (HE11s-1, TE01-2, HE21s-2 modes). The
mode coupling only occurs between the modes in the same group. In order to simplify the
analysis, we only discuss the mode coupling in the p-modes group. The properties of the
s-modes group are similar to those of the p-modes group.

The mode field of each mode can be written as Ẽm = Am(z)ψm(x, y) exp(−jβmz),
where m = 1, 2, 3 represents the HE11p-1, HE21p-2, TM01-2 mode, respectively. Here Am(z) is
the amplitude of the m-th modal field, ψm(x,y) is the modal spatial distribution, and βm is
the corresponding propagation constant. The mode coupling among the three modes can
be described by the following coupled-mode equations [22,23]

dA
dz

= −jCA, (1)

where A = [A1(z) A2(z) A3(z)]T, and C is a 3× 3 matrix with elements given by

cmk =

{
κmk exp[j(βm − βk)z] m 6= k

Mm m = k
, (2)

and [18]

κmk =
ωε0

∫ ∞
−∞
∫ ∞
−∞ (N2

total−N2
k )ψ∗m(x,y)·ψk(x,y)dxdy

4
√

Pm ·
√

Pk
,

Mm =
ωε0

∫ ∞
−∞
∫ ∞
−∞ (N2

total−N2
m)ψ∗m(x,y)·ψm(x,y)dxdy

4Pm
.

(3)
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Here κmk is the mode coupling coefficient between the m-th and k-th (m, k = 1, 2, 3, and
m 6= k) modes, Mm is the self-coupling coefficient of the m-th mode, ψm(x,y) and ψk(x,y) are
corresponding modal spatial distributions, ω is the free-space angular frequency of the
light, ε0 is the vacuum permittivity, Ntotal is the refractive index distribution in the entire
fiber MSC, Nk is the refractive index distribution of the individual fiber waveguide that
supports the k-th mode, and Pm and Pk are the optical power carried by the m-th and k-th
mode, respectively.

Equation (1) cannot be solved readily as the elements in C are z-dependent. Using

Em(z) = Am(z) exp(−jβmz), (4)

Equation (1) can be transferred to

dE
dz

= −j RE, (5)

where E = [E1(z) E2(z) E3(z)]T, and R is a 3× 3 matrix with elements given by

rmk =

{
κmk m 6= k

βm + Mm m = k
. (6)

The solution of Equation (5) can be obtained as [22,23]

E(z) = V[exp(−jγmz)δmk]V
−1E(0) (7)

where δmk is the Kronecker delta function, γm is an eigenvalue of the matrix R, V = [v1 v2
v3], and vm is the corresponding eigenvector.

For the mode degeneracy in practical weakly guiding optical fibers, the propagation
constants of HE21p-2 mode and TM01-2 mode can be considered as equal, i.e., β2 = β3. Addi-
tionally, M2 = M3. Under such conditions, the eigenvalues and corresponding eigenvectors
of the matrix R can be shown to be

γ1 =
β1 + β2

2
+

M1 + M2

2
+ κe, γ2 = β2 + M2, γ3 =

β1 + β2

2
+

M1 + M2

2
− κe, (8)

Furthermore,

v1 =


κe+δ
κ31
κ21
κ31
1

, v2 =

 0
− κ13

κ12
1

, v3 =

 −
κe−δ
κ31

κ21
κ31
1

, (9)

where
δ =

β1 − β2

2
+

M1 −M2

2
, κe =

√
δ2 + κ12κ21 + κ13κ31 =

√
δ2 + κ2 (10)

The parameter δ denotes the difference between the fundamental mode HE11p-1 mode
and TM01-2/HE21p-2 mode, κ denotes the coupling coefficient, and κe is the effective coupling
coefficient of the MSC [19]. It is obvious that γ1 > γ2 > γ3.

When light is launched into core 1, i.e., A1(0) = 1, A2(0) = A3(0) = 0, analytical solutions
for the amplitudes of the mode field can be obtained as

A1(z) =
[
cos(κez)− j δ

κe
sin(κez)

]
exp(jδz),

A2(z) = −j κ21
κe

sin(κez) exp(jδz),
A3(z) = −j κ31

κe
sin(κez) exp(jδz).

(11)
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Thus, the normalized mode powers can be expressed as

P1(z) = |A1(z)|2 = δ2

κ2
e
+ κ12κ21+κ13κ31

κ2
e

cos2(κez),

P2(z) = |A2(z)|2 =
κ2

21
κ2

e
sin2(κez),

P3(z) = |A3(z)|2 =
κ2

31
κ2

e
sin2(κez).

(12)

The coupling length of the MSC is defined as [19]

Lc =
π

2κe
=

π

2
√

δ2 + κ2
. (13)

We can also define the maximum power-coupling efficiency as [18]

F = 1− P1(z)min = 1− δ2

κ2
e

. (14)

2.2. Supermode Theory for the MSC

In Section 2.1, the MSC was analyzed using the CMT, in which there was periodic
power transfer among the modes (HE11p-1, HE21p-2, TM01-2 modes), and the power of each
mode varied along the z direction. The amplitudes of the three modes were determined by
the coupled mode equations.

However, there is another kind of mode whose electrical field distribution does not
vary along the MSC length. That is the eigen mode of the MSC structure, which is also
called the supermode [19]. Normally, the mode field of the supermode can be constituted
by a linear combination of the mode field supported by the individual fiber waveguide that
forms the MSC, i.e., the mode field of the supermode can be written as

Ẽs(z) =
3

∑
m=1

Am(z)ψm(x, y) exp(−jβmz) (15)

On the other hand, the electrical field distribution of the supermode is z independent,
so it can be written as

Ẽs(z) = [b1ψ1(x, y) + b2ψ2(x, y) + b3ψ3(x, y)] exp(−jβsz), (16)

where b1, b2, b3 are constants and βs is the propagation constant of the supermode supported
by the MSC structure.

By comparing Equation (15) with (16), we can obtain

Am(z) = bm exp[−j(βs − βm)z] (m = 1, 2, 3) (17)

By substituting Equation (17) into Equation (1), we obtain the following equation β1 + M1 κ12 κ13
κ21 β2 + M2 0
κ31 0 β3 + M3

 b1
b2
b3

 = βs

 b1
b2
b3

 (18)

The left matrix in Equation (18) is the same as the matrix R in Section 2.1, so Equation
(18) can be written as

R[ b1 b2 b3 ]
T
= βs[ b1 b2 b3 ]

T (19)

As observed from Equation (19), the propagation constant βs is the eigenvalue of the
matrix R, and [b1 b2 b3]T is the corresponding eigenvectors. That is to say, the eigenvalues of
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the matrix R are the propagation constants supported by the corresponding MSC structure
described by the matrix R.

As in Section 2.1, we set β2 = β3 and M2 = M3, which are reasonable for a practical
MSC. We also obtain

βs1 =
β1 + β2

2
+

M1 + M2

2
+ κe, βs2 = β2 + M2, βs3 =

β1 + β2

2
+

M1 + M2

2
− κe (20)

Thus, the characteristic parameters of the MSC obtained in Section 2.1 can be expressed
using the propagation constants of the supermodes as

δ = βs1+βs3
2 − βs2,

κe =
βs1−βs3

2 ,
κ =

√
(βs1 − βs2)(βs2 − βs3),

Lc =
π

βs1−βs3
,

F = 4(βs1−βs2)(βs2−βs3)

(βs1−βs3)
2 .

(21)

As seen from Equation (21), all characteristic parameters of the MSC can be obtained
by only using the propagation constants of its supermodes. In other words, the propaga-
tion constants of the MSC provide much information about its coupling characteristics,
indicating an alternative method for analysis of the MSC.

In practice, the commercial software COMSOL Multiphysics based on the finite ele-
ment method provides a simple and precise tool for mode analysis of the MSC structure.
The propagation constants of the supermodes supported by the MSC structure can be cal-
culated directly and rapidly by building the corresponding model in the “Mode Analysis”
study of the COMSOL Multiphysics [28]. Thus, we can obtain the characteristic parameters
of the MSC quickly and easily.

In fact, even if the traditional CMT is employed to analyze the MSC, the propagation
constants of the two individual fibers forming the MSC must still be obtained first. The
COMSOL software provides one of the best ways to obtain the propagation constants.

3. Simulation and Discussion

In order to verify the feasibility and accuracy of the proposed method in Section 2,
simulations were carried out in this section. The characteristic parameters of the MSC
were calculated using both the supermode theory and the traditional CMT. The calculation
results are compared and discussed.

3.1. Supermodes for the MSC Structure

Firstly, we utilized the COMSOL software to obtain the supermodes of the MSC.
Figure 2 shows the modal distributions of the six supermodes supported by an MSC
structure obtained using COMSOL, whose parameters are set to be fiber core radius
a1 = 4.493 µm, a2 = 8.56 µm, gap size d = 5 µm, cladding radius dclad = 62.5 µm, cladding
index ncl = 1.444, core index n1 = n2 = 1.449, operating wavelength λ = 1.55 µm. The
propagation constants of the supermodes decrease from supermode 1 to supermode 6,
three of which correspond to the p-modes group (HE11p-1, HE21p-2, TM01-2 modes). The
remaining three supermodes correspond to the s-modes group (HE11s-1, TE01-2, HE21s-2
modes) [29]. Now the question is which modes correspond to the p-modes group or
s-modes group.
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which can be described with accurate analytical expressions [18]. Simulation results are 

shown in Figure 3. 

  

Supermode 1 Supermode 2 Supermode 3 

Supermode 4 Supermode 5 Supermode 6 

Figure 2. The modal spatial distributions of the supermodes supported by an MSC structure, which
are obtained using the commercial software COMSOL Multiphysics. The structural parameters of
the MSC are set to be fiber core radius a1 = 4.493 µm, a2 = 8.56 µm, gap size d = 5 µm, cladding
radius dclad = 62.5 µm, cladding index ncl = 1.444, core index n1 = n2 = 1.449, operating wavelength
λ = 1.55 µm.

In order to answer this question, we calculated the modal distributions of the super-
modes supported by the MSC. Based on the analysis in Section 2, the mode field of the
supermode ψs(x, y) can be expressed as the linear combination of the mode field supported
by the individual fiber waveguide that formed the MSC, denoted as ψs1(x, y)

ψs2(x, y)
ψs3(x, y)

 = [ v1 v2 v3 ]

 ψ1(x, y)
ψ2(x, y)
ψ3(x, y)

, (22)

where ψsm(x, y) (m = 1, 2, 3) is the modal spatial distribution of the m-th supermode
supported by the MSC structure, vm is the corresponding eigenvector shown in Equation
(9), and ψm(x, y) are the modal spatial distributions of the HE11p-1, HE21p-2, TM01-2 modes,
which can be described with accurate analytical expressions [18]. Simulation results are
shown in Figure 3.
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Figure 3. (a–c) are the modal spatial distributions of three supermodes supported by an MSC
structure, which are composed of the p-modes group (HE11p-1, HE21p-2, TM01-2 modes) and obtained
using the traditional CMT. The parameters of the MSC are the same as those in Figure 2.

By comparing Figures 2 and 3, we can observe that the supermodes 2, 4, 6 in Figure 2
are the supermodes corresponding to the p-modes group (HE11p-1, HE21p-2, TM01-2 modes)
and the supermodes 1, 3, 5 in Figure 2 are the supermodes corresponding to the s-modes
group (HE11s-1, TE01-2, HE21s-2 modes).

When considering the symmetry, the analysis here can be simplified. In fact, the
p-modes (HE11p-1, HE21p-2, TM01-2 modes) are mirror symmetric about the line connecting
the two core center points, while the s-modes (HE11s-1, TE01-2, HE21s-2 modes) are mirror
antisymmetric. Therefore, the supermodes corresponding to the p-modes group and s-
modes group should also be mirror symmetric and antisymmetric, respectively, as shown
in Figure 2.
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3.2. Calculation of the Characteristic Parameters of the MSC

In this section, simulations were carried out to verify the feasibility and accuracy of
the supermode theory under different parameters of the MSC structure. The characteristic
parameters of the MSC, including the difference of the propagation constants between the
modes |δ|, coupling coefficient κ, effective coupling coefficient κe, coupling length Lc and
maximum power-coupling efficiency F, were calculated using both the supermode theory
and the traditional CMT under different parameters of the MSC structure, including gap
size d, core radius a1, and core index n1.

Figure 4 shows the characteristic parameters of the MSC calculated using the two
methods under different gap sizes. The red lines are obtained by the supermode theory,
and the black lines are obtained by the traditional CMT. Parameters of the MSC structure
are the same as those in Figure 2 except for the gap size.
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Figure 4. (a) The differences of the propagation constants |δ|, (b) coupling coefficient κ, (c) coupling
length Lc, effective coupling coefficient κe, (d) maximum power-coupling efficiency F of the MSC
under different gap sizes, which are calculated using the supermode theory (red lines) and the
traditional CMT (black lines). The structure parameters of the MSC are the same as those used in
Figure 2.

As seen from Figure 4a,d, when the gap size between the two cores of the MSC
is smaller than ~3.5 µm, there is a notable calculation error for the differences of the
propagation constants |δ| and the maximum power-coupling efficiency F calculated
using the two methods. This is due to the fact that the two cores are so close that strong
coupling occurs between the modes. Therefore, there is some error when we represent the
supermodes as linear combinations of the individual modes supported by the single fiber



Photonics 2022, 9, 63 8 of 12

waveguides as in Equation (16). However, when the gap size is greater than ~3.5 µm, |δ|
and F calculated using the two methods fit to each other quite well. In fact, for a practical
MSC, normally the gap size between the two cores is greater than 4 µm.

As seen from Figure 4b, the calculation results for the coupling coefficient κ using
the two methods match well with each other. Furthermore, the amplitude of the coupling
coefficient κ is much greater than δ. Therefore, the effective coupling coefficient κe, which is
defined as the square root of (δ2 + κ2), is mainly determined by the value of κ. As a result,
the effective coupling coefficients κe and corresponding coupling lengths Lc calculated by
the two methods match well with each other, as seen from Figure 4c.

In Figure 4, the maximum power-coupling efficiency F is almost always 1 when the
gap size increases from 0 to 15 µm. This is because the parameters of core 1 and core
2 are designed properly to ensure the HE11p-1 mode and HE21p-2/TM01-2 mode are well
phase-matched, i.e., the propagation constants of the three modes are almost the same
(β1 ≈ β2). In other words, the MSC works at the phase matching point. This is also the
reason why the amplitude of the coupling coefficient κ is much greater than δ.

However, for a practical MSC composed of an SMF and an FMF, it is difficult to
ensure all parameters of the two fibers are so accurate. The core radius and index may be
different from the designed value. Therefore, it is necessary to analyze the mode coupling
characteristic under non-ideal conditions.

Figure 5 shows the characteristic parameters of the MSC calculated using the two
methods under different core radiuses a1. The red lines are obtained by the supermode
theory, and the black lines are obtained by the traditional CMT. The other structure param-
eters of the MSC used here are the same as those in Figure 2. It should be pointed out that
the core radius a1 is limited to 4.9 µm in order to ensure the fiber core 1 only supports the
fundamental mode.

As seen from Figure 5a,b, the differences of the propagation constants |δ| calculated
using the two methods match well with each other when the core radius a1 varies from
3 µm to 4.9 µm, while there is a notable calculation error for the coupling coefficient κ
when a1 is smaller than ~4.2 µm, which is different from the results in Figure 4. This is
also due to the error when we represent the supermodes as linear combinations of the
individual modes supported by the single fiber waveguides, as shown in Equation (16).
When a1 deviates from the phase matching point (a1 ≈ 4.493 µm), the error between the
modal distributions of the supermodes and the linear combinations of the individual modes
increases. The coupling coefficient κ is determined by the overlap integral of the modal
distributions in the CMT, as shown in Equation (3). Therefore, when a1 deviates from the
phase matching point, the error between the coupling coefficients calculated using the two
methods increases.

As seen from Figure 5c, the effective coupling coefficients κe and corresponding
coupling lengths Lc calculated by the two methods match well with each other when a1
varies from 3 to 4.9 µm. This is because |δ| becomes significantly greater than κ when a1
deviates from the phase matching point, thus κe and Lc are mainly determined by the value
of |δ|.

As seen from Figure 5d, the maximum power-coupling efficiency F decreases when the
core radius a1 deviates from the phase matching point. F calculated using the supermode
theory corresponds well with that obtained by the traditional CMT, besides slight errors
when a1 is smaller than ~4 µm. In fact, the maximum power-coupling efficiency F is less
than ~17% when a1 is smaller than ~4 µm, which should be avoided in the design and
fabrication of the practical MSC.
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Figure 5. (a) The differences of the propagation constants |δ|, (b) coupling coefficient κ, (c) coupling
length Lc, effective coupling coefficient κe, (d) maximum power-coupling efficiency F of the MSC
under different core radiuses a1, which are calculated using the supermode theory (red lines) and the
traditional CMT (black lines). The structure parameters of the MSC are the same as those used in
Figure 2.

Figure 6 shows the characteristic parameters of the MSC calculated using the two
methods under different core indexes n1. The other parameters are the same as those in
Figure 2. Similarly to the above results in Figure 5, the differences of the propagation
constants |δ| calculated using the two methods match well with each other when the core
index n1 varies from 1.448 to 1.45, while there are obvious differences for the coupling
coefficient κ when n1 deviates from the phase matching point (n1 ≈ 1.449), as seen in
Figure 6a,b. The reason for the calculation error for the coupling coefficient is the same
with that in Figure 5. Furthermore, |δ| is significantly larger than κ when n1 deviates
from the phase matching point. Therefore, the effective coupling coefficients κe and the
coupling lengths Lc calculated by the two methods match well with each other, as shown in
Figure 6c.
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Figure 6. (a) The differences of the propagation constants |δ|, (b) coupling coefficient κ, (c) coupling
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under different core indexes n1, which are calculated using the supermode theory (red lines) and the
traditional CMT (black lines). The structure parameters of the MSC are the same as those used in
Figure 2.

As illustrated in Figure 6d, the maximum power-coupling efficiency F calculated
using the supermode theory also corresponds well with that obtained from the traditional
CMT, besides slight errors when n1 is smaller than 1.4486. Furthermore, the maximum
power-coupling efficiency F is less than ~20% when n1 is smaller than 1.4486, which should
be avoided in the design and fabrication of the practical MSC.

According to the above simulations and analyses, the characteristic parameters of
the MSC (including the difference of the propagation constants |δ|, coupling coefficient
κ, the effective coupling coefficient κe, coupling length Lc and maximum power-coupling
efficiency F) calculated using the supermode theory match well with those calculated using
the traditional CMT near the phase matching point. Therefore, the supermode theory is
shown to be valid and accurate for analysis of the MSC near the phase matching point.
When the structure parameter of the MSC deviates from the phase matching point, the
maximum power-coupling efficiency F decreases quickly, which should be avoided in the
design and fabrication of the practical MSC.

It should be noted that, although the analysis and simulations here are based on the
mode coupling between the fundamental modes of SMF 1 (i.e., HE11p-1, HE11s-1) and the
second-order modes of the FMF (i.e., TE01-2, HE21p-2, HE21s-2, TM01-2), the supermode
theory is also valid for other kinds of MSC [30].
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Especially for the analysis of MSC composed of fibers with complex index profiles, in
which there are no analytical expressions for the modal distribution of the modes supported
by the individual fiber waveguides, the analysis and design of the MSC are complex and
time-consuming when using the traditional CMT. In this case, the supermode theory
proposed in this paper will be a better choice.

4. Conclusions

In this paper, the supermode theory was applied in the analysis of the MSC. All the
characteristic parameters of the MSC are expressed using the propagation constants of the
supermodes supported by the MSC structure, which can be obtained using the common
finite element software COMSOL directly, avoiding the complex double integral in the
traditional CMT. Simulation results showed that the characteristic parameters calculated
using the supermode theory corresponded well with those calculated using the traditional
CMT near the phase matching point of the MSC structure. Therefore, this work provides
a fast and accurate method for the analysis of the MSC, which is helpful for the design,
fabrication and applications of the MSC.
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