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Abstract: In the image plane configurations frequently used in digital holographic microscopy (DHM)
systems, interference patterns are captured by a photo-sensitive array detector located at the image
plane of an input object. The object information in these patterns is localized and thus extremely
sensitive to phase errors caused by nonlinear hologram recordings (grating profiles are either square
or saturated sinusoidal) or inadequate sampling regarding the information coverage (undersampled
around the Nyquist frequency or arbitrarily oversampled). Here, we propose a solution for both
hologram recording problems through implementing a photon-counting detector (PCD) mounted
on a motorized XY translation stage. In such a way, inherently linear (because of a wide dynamic
range of PCD) and optimum sampled (due to adjustable steps) digital holograms in the image
plane configuration are recorded. Optimum sampling is estimated based on numerical analysis.
The validity of the proposed approach is confirmed experimentally.

Keywords: holography; digital holography; photon-counting; Nyquist sampling

1. Introduction

Diverse optical-hybrid solutions have been developed in digital holographic mi-
croscopy (DHM) [1,2], from the simplest optical setups known as the lensless DHMs to
the most frequently exploited imaging configurations. While the lensless DHM configura-
tions are particularly attractive due to their compactness and robustness prospects [3,4],
the later image plane setups are mostly preferred due to the flexibility and efficacy of
(i) light collection, (ii) optical magnification, and (iii) pixel usage of local hologram data [5].
For real-world applications, quality recording of the entire hologram is a crucial operation
since the object information is locally constrained rather than spread throughout the detec-
tor. When recording a sinusoidal fringe pattern, the continuous analog input is sampled
to produce a discrete pattern which consequently suffers from various defects. We expect
accurate phase information from the recorded digital hologram (DH). In obtaining the
phase information, there are several problems, such as speckle [6,7] or shot noise [8]. An-
other effect, a rolling shutter aberration caused by the sequential readout nature of some
detectors, has also been studied, and a method for compensating this effect in an image
plane DHM has been proposed [9]. In temporal phase-shifting DHM, it was demonstrated
that a partially coherent light source (LED) yields a lower phase noise than a coherent one
(laser) [10]. In the field of electronic speckle pattern interferometry (ESPI), the periodic
phase reconstruction errors were studied, and the noise reduction was proposed within the
spatial phase-shifting technique [11]. Apart from these problems, for the correct phase cal-
culation, special care should be focused on the deviation from linearity of the holographic
grating (profiles such as saturated sinusoidal profile or square profile) and particularly on
the sampling conditions.
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A typical sampling and nonlinearity problem that occurs in the image plane setups is
illustrated in Figure 1. We show a part of an image plane hologram recorded at the Nyquist
sampling rate with 8-bit gray levels. The areas with high contrast fringes and areas in
which the interference pattern is lost (or having very low contrast due to the beating effect)
can be easily spotted. The cross-section along the red line of Figure 1 shows the locations
with the information loss that cannot be recovered for that part of the object.
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Figure 1. Image plane hologram of the 1951 USAF resolution target recorded using the experimental
setup described in Section 3. The inset shows the signal along one line of the hologram.

Figure 1 demonstrates that in the image plane setups, where the object information is
localized at the detector’s plane, the sampling necessary condition is not withal sufficient.
In other architectures, such as Fresnel and Fourier setups, the Nyquist rate is usually suffi-
cient for sampling data since the object wavefront information is non-localized (every point
on the object potentially contributes to every hologram pixel), and thus the information
is preserved. In addition to the loss of information, we can easily notice that the recorded
grating is not of the sinusoidal profile, and it is saturated (at 255 gray level).

Nonlinear hologram gratings cause the appearance of not only the higher diffrac-
tion terms in the reconstructed field but also the phase errors [12–14]. Such experimental
errors have been identified in phase-shifting interferometry [12] and well analyzed and
compensated by an iterative algorithm in phase-shifting digital fringe projection profilom-
etry [13]. In Ref. [14], the phase demodulation errors involved in analyzing single-frame
fringe patterns were studied, and the advanced variational image decomposition technique
proposed to reduce the errors such as random noise and nonlinearity, where for weaker
noise, the nonlinearity was identified as the dominant source of phase errors. Therefore,
nonlinearities persist in the DHM systems as a concomitant recording problem.

The sampling conditions have been well studied in the DH systems [15–21]. In brief,
for a band-limited input optical signal with the size L and spatial frequency bandwidth W,
the information density or its space-bandwidth product (SBP) can be defined as SBP = LW,
where only one dimension is considered for simplicity. The cost-effective optical system
ought to have its SBP capacity slightly greater or equal to the SBP of the signal. In the DH
systems, there are differences between the SBPs of the input signal, the recording sensor,
and the reconstructed signal. These differences are due to the wavefront propagation
configuration (Fresnel, Fourier, or image plane), the object/reference beams geometry
(on-axis or off-axis), and the resolution properties of the array detector, as discussed,
for example, in Ref. [15]. The least demanding configuration concerning the recording
sensor is the Fourier configuration, while the introduction of lenses should be generally
avoided unless the object is too small, as is the case of the DHM. Although the phase
information will not be reconstructed properly if the Nyquist condition is not satisfied,
a variety of possibilities as well as techniques to overcome this limitation exist. The full
recovery of the undersampled Fresnel diffraction patterns can be achieved for the finite-
sized input objects by windowing the backpropagating field [16]. Also, in the off-axis
quasi-Fourier setup, the effects of increasing the angle between the reference and object
beams beyond the Nyquist limit on the hologram reconstruction were analyzed both
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theoretically and experimentally [17]. For a given input object bandwidth, it was shown
that the reconstructed image of the object is repeatedly folding and inverting (passing
through non-overlapping intervals) until the image faded out. It was also demonstrated
that these non-overlapping intervals could be significantly extended by applying the
subtraction digital holography method [17,18]. The influence of the pixel dimension for
hologram recordings beyond the Shannon limits was also investigated [19]. The space
bandwidth available for recording an object wave in an off-axis configuration was extended
by intentionally setting the aliasing to the recorded hologram [20]. In yet another study,
it was shown that the aliasing-free DHM with resolution equal to the diffraction limit of
the lensless system could be achieved for partly coherent light [21].

In this paper, we present a new approach to holographic recordings that are (i) always
linear (sinusoidal) and (ii) optimally sampled (minimum redundancy). The proposed
approach employs a photon-counting detector (PCD) for recording digital holograms in
a DHM system with an image plane configuration. The PCD was already used in the
DH systems [22–24]. First, the recording of a digital hologram was demonstrated for the
signal light intensity above the dark count noise of the detector [22]. Later, the recording
of holograms was extended to the signal light levels that were significantly below dark
count noise [23], as well as to the recording of time-averaged holograms [24]. Here, we take
advantage of the PCD over a standard array detector such as a charge-coupled device
(CCD) in terms of pixel size flexibility and inherent recording linearity. These properties are
especially beneficial in physically constrained sample volumes with fixed fringe spacing at
the sensor, as presented in a compact DHM system [25].

The conditions for optimum sampling are numerically evaluated in Section 2.1, where
we first explain the role of the detector’s position relative to the input sinusoidal light
distribution, and then find a parameter for optimum sampling. The experimental setup
is described in Section 2.2. The results is presented in Section 3, while the concluding
discussion is drawn in Section 4.

2. Methods
2.1. Optimum Sampling Conditions

To preserve information, the interference pattern is required to be sampled at the Nyquist
limit, i.e., the maximum spatial frequency of the pattern is restricted by fmax ≤ fN , where fN
is the Nyquist frequency. fN is defined by the pixel size ∆x of the detector, fN = 1/(2∆x).
The limitation imposed by the pixel size ∆x can be managed by adjusting the distance
between the detector and object, by the angle between the reference and object beams,
and by the apertures in the system. Since the Fourier spectrum of the sinusoidal fringe
pattern contains a Dirac impulse, the sampling efficacy (fidelity) depends not only on
the pixel size but also on the relative position of the pixels in relation to the phase of the
sinusoidal pattern.

A sinusoidal fringe pattern can be generally described by a continuous intensity function:

I(x) = a(x) + b(x)sin[ϕ(x)] (1)

where a(x) and b(x) are the background and modulation intensities, respectively, and ϕ(x)
is the desired phase. We use the one-dimensional notation of generally two-dimensional
spatial coordinates for simplicity. One of the most important measurables is the contrast of
fringes or the fringe visibility,

V(x) =
b(x)
a(x)

=
[IM(x)− Im(x)]
[IM(x) + Im(x)]

, (2)

where IM(x) and Im(x) are the maximum and minimum intensities, respectively. V(x)
varies across the fringe pattern but has nearly constant value locally (as demonstrated
in Figure 1).
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For numerical simulations, we take the simplified discrete form of Equation (1), repre-
senting an input signal to the detector

IS(jδx) = 1 + sin(2π f0 jδx) (3)

where the detector plane is sampled with sampling interval δx, j denotes the number of
calculation points. In Equation (3), f0 is the spatial carrier frequency, f0 = 1/X, where
X is the period of fringes in the spatial domain. The calculations are further simplified by
taking X = 1. Numerical simulations are performed assuming that the parameters of input
sinusoidal distribution are fixed while the parameters of the pixelated detector are variable.
Furthermore, for all calculations, we take many points per detector’s pixel, J∆x

′′ 1, where
J∆x is the total number of points inside one pixel ∆x.

The output value recorded by the detector at the position of the k-th pixel of a size ∆x
can be described by:

Ik(x0 + k∆x) = 1 +
1

J∆x

jk

∑
jk−1

sin[2π(x0 + jδx)] (4)

where the summation limits are jk−1 = Jx0 + (k− 1)J∆x and jk = Jx0 + kJ∆x, and where Jx0

is the total number of calculation points describing the phase shift of the detector regarding
the fixed input sinusoidal signal. Thus, the output pattern has constant values across each
pixel area k∆x for the total of K pixels. This concept is illustrated in Figure 2.
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In Figure 3, the input signal is sampled under the Nyquist condition, where the effect
of phase shifts between PCD pixels and the input signal is shown. The sine curve (the
lowest one) represents the input signal to the detector, Equation (3), while other lines are
readout signals acquired and digitized by the detector for the following ∆ϕ = 2πx0 values,
∆ϕ = 0, π/8, 2π/8, 3π/8, 4π/8. As it can be expected, for ∆ϕ = π/2, the recorded
pattern becomes flat. Therefore, a complete loss of visibility is possible under Nyquist
conditions. Figure 4 shows the dependence of the fringe visibility function on the phase
shift at the Nyquist frequency.
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Since we generally have two spatial frequencies involved, one defined by the input
pattern, f0 = 1/X, and the other defined by the detector’s pixel size, f = 1/(2∆x),
the beating effect occurs as demonstrated in DH previously [26]. In our case, the beating
can be observed for

|2∆x− X| = εx, εx � 2∆x, X; εx 6= 0 (5)

where εx is the absolute value of the difference between the period of the sinusoidal input
pattern and the period defined by the detector’s Nyquist condition. Thus, the readout
signal is modulated by the beating frequency fB = | f − f0| with a period TB = 2∆xX/εx.
This effect is illustrated in Figure 5, where the recorded signal is calculated for several
sampling frequencies f, near Nyquist frequency (fN = 2). Changing f in simulations means
that the pixel size of the detector is changing. From Figure 5, it can be seen that the highest
beating amplitude occurs when the input signal and the detector’s pixel are in phase.
Also, note that some of the patterns depicted in Figure 5 resemble patterns in the recorded
hologram, shown in Figure 1. Of course, with the increase of the sampling rate, the beatings
fade out. Figure 6 shows a decrease in the beating effect for higher frequencies ( f ≥ 2.5 fN).
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Figure 6. The signals for the sampling frequencies above Nyquist show a decrease in beatings.
From the bottom to the top: f = 2.05, 3.05, 4.05, 5.05, and 6.05.

The local fringe visibility at the k-th pixel, V(x0 + k∆x) can be calculated according
to Equation (2) for two subsequent output intensity values. To measure the quality of the
recorded pattern, we calculate the local signal-to-noise ratio (SNR) as:

SNR(k, jδx) =
V(x0 + k∆x){

1
J∆x

∑
jk
j=jk−1

[IS(jδx)− Ik(x0 + k∆x)]2
}1/2 (6)

In Equation (6), the numerator is calculated according to Equation (2) and can take
values between 0 and 1. The denominator is standard deviation, i.e., the square root of
the average of the squared differences between the ideal sinusoidal signal described by
Equation (3) and the output constant value detected at the position (x0 + k∆x). In typical
calculations, by taking at least 10 points per pixel size ∆x, the standard deviation will always
have some finite value greater than zero. Theoretically, the SNR can be indeterminate for
an infinitesimally small pixel size ( ∆x → 0, SNR = 0/0) but such a situation cannot be
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realized in reality. The SNR values averaged over a period are shown in Figure 7, where it
is evident that considerable rise is achieved for sampling frequencies above f = 2.5 fN .
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The purpose of this section is to highlight the loss of information that occurs in the
image plane DHM when holograms are recorded near the Nyquist frequency. We have
simulated detection of an ideal sinusoidal pattern by a one-dimensional array which has
the possibility of shifting and changing its pixel size. The patterns with beating effects
(Figures 4 and 5) are clearly shown, and the conditions for forming such patterns have been
presented. The similarity of patterns in Figure 5 and the recorded hologram in Figure 1 is
well established. Since the beating effect inevitably causes loss of information, an optimum
sampling rate (i.e., optimum detector’s pixel size) should be estimated to avoid both beating
and redundancy. The results shown in Figures 6 and 7 may serve as a useful guide in setting
the optimum frequency in practical setups. We have estimated the optimum frequency as
f = 2.5 fN and applied that value in a practical study.

2.2. Experimental Setup

Figure 8 illustrates the experimental setup employed for all measurements. The used
setup is a Twyman-Green interferometer with He-Ne laser (wavelength 632.8 nm) as a
light source. Before entering the interferometer, the laser beam is spatially filtered by a
microscope objective (40× magnification) and a pinhole (10 µm). After the spatial filtering,
the beam is collimated by the first lens (100 mm) and slightly focused by the second lens
(300 mm). Inside the interferometer on both sides are two equal microscope objectives
(10× magnification). The object and the reference mirror (M2, λ/10 flatness) are tilted with
respect to each other (not depicted on the scheme) to provide a certain spatial frequency of
fringes. Manual XY translation stage (XY1) holds an object (O). For adjusting the intensity
ratio of the reference to the object beam, various neutral density filters (AT1-2) are used.
Two detectors, a CCD camera (Imperx IPX-4M15), and a PCD mounted on a motorized XY
translation stage are located at the same distance from the object. We used the best available
(regarding the signal-to-noise ratio) CCD camera with an active area of 16.67 × 16.05 mm2,
pixel size of 7.4 µm and full well capacity is 40,000 electrons. The PCD is a homemade
one, based on a single-photon avalanche photodiode (SPAD) (model SAP500, LC) selected
for low noise, cooled to −23 ◦C, and operated in Geiger mode. The detector features a
maximum count rate of 10 Mcps and a dark count rate of 21 cps; for more details, see [27].
A small aperture was placed before the SPAD to increase the resolution. We used apertures
of 1 µm and 2 µm which determined the resolution. Hologram recordings are made with
the PCD during motorized movement of the translation stage. Thus, the pixel size is
defined by the product of the speed at which the PCD moves and the integration time
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convoluted with the aperture size. Each line of a hologram was taken separately, always in
the same direction, and during the transition to the next line, the recording was stopped.
The maximum size of holograms taken with moving PCD was 3000 × 3000 pixels, and the
recording time was 6 h. For smaller sizes, the recording time was shorter. The CCD camera
recordings are used for comparison.
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Figure 8. Twyman-Green experimental setup. He-Ne, Helium-neon; M1and M2, mirrors; OBJ1-3,
microscope objectives; PIN, pinhole; L1 and L2, lenses; BS1-2, beam splitters; AT1-2, neutral density
filters; O, object; POL, polarizer; AP, aperture; PCD, single-photon counting detector; XY1, manual
translation stage; and XY2, motorized translation stage.

3. Results

For comparing the linearity of holograms captured by the CCD and the PCD, we used
the 1951 USAF resolution target. We then applied the optimum sampling analysis and
photon-counting approach to study the thin metallic film buckling.

3.1. Nonlinear Recording

The linearity is best indicated in the Fourier domain since the first-order term is linear
characteristics of the response, while the higher terms represent nonlinearities. Nonlinear
recording of sinusoidal patterns is difficult to avoid by standard array detectors. Since the
nonlinearity is best revealed in the frequency domain, we show the Fourier transform (FT)
spectra of the recorded holograms. We compared the linearity of the recorded holograms
obtained by the CCD sensor and the PCD in a Twyman-Green setup shown in Figure 8.
For this analysis, the off-axis angle is chosen to be far from the Nyquist limit, and all
experimental conditions are kept identical for the measurements to be compared. It should
be noted that the acquisition time of the DHs recorded by the CCD is much shorter than
the acquisition time of the corresponding DHs recorded by the PCD. The obtained results
for various experimental conditions are presented in Figures 9 and 10. First, the DHs are
recorded by attenuating both the reference and the object beams by the same neutral density
(ND) filter while adequately prolonging the exposure time of the DHs. Second, we repeated
the procedure by attenuating only the object beam. The upper row of Figures 9 and 10
(the CCD DHs) should be compared with the corresponding bottom row (PCD DHs).
All PCD DHs have demonstrated linear recording even in considerably noisy conditions.
As expected, the CCD DHs have shown linear recording only for higher reference to object
beam intensity ratios (Figure 10c,d).



Photonics 2022, 9, 68 9 of 14

Photonics 2022, 9, x FOR PEER REVIEW 9 of 15 
 

 

DHs). All PCD DHs have demonstrated linear recording even in considerably noisy con-

ditions. As expected, the CCD DHs have shown linear recording only for higher reference 

to object beam intensity ratios (Figure 10c–d). 

    

    

Figure 9. (a–d): FT spectra recorded with CCD using ND filters on both beams with OD = 0, 1.0, 

2.0 and 3.0, respectively. (e–h): FT spectra recorded with PCD using ND filters on both beams with  

OD = 0, 1.0, 2.0 and 3.0, respectively.  

    

    

Figure 10. (a–d): FT spectra recorded with CCD using ND filters to attenuate the object beam with 

OD = 0, 0.6, 1.3, and 2.0, respectively. (e–h): FT spectra recorded with PCD using ND filters to at-

tenuate the object beam with OD = 0, 0.6, 1.3, and 2.0, respectively.  

3.2. Thin Metallic Filmbuckling 

As a model for testing hologram recording in DHM configuration with moving PCD, 

the thin film buckling structures were used. The topography of buckling patterns that can 

be observed on thin film during or after its delamination from thick substrate has been of 

considerable interest [28–30]. For deposition of tungsten thin films by magnetron sputter-

ing, it is known that argon pressure significantly affects film internal stress. In the case of 

tensile residual stress, a network of through-thickness cracks forms in the film while the 

residually compressed thin films may delaminate from substrate and buckle. The buck-

ling of thin tungsten film can result in several topographical patterns such as disordered 

surface wrinkles, regular herringbone, straight-sided or telephone cord buckles, and cir-

cular blisters. The associated mechanics have been studied for all types of buckles, but for 

the telephone cord (TC), more precise microscopic observation (complemented by topo-

graphic measurements) is still needed for testing the corresponding models [31]. In gen-

eral, buckling profiles can be characterized depending on scale, by mechanical or laser-

scanning profilometry, optical interferometer microscopy, or by using an atomic force mi-

croscope [31,32]. These objects were chosen because of their well-defined surface, stability 

over time, and reflectivity that was not too low. As already indicated, maximum care was 

taken to make the whole setup the most stable since the scanning procedure lasts long. 

For holograms presented here, we took 3000 × 3000 pixels which lasted about six hours 

per hologram. 

The DHs were recorded by first employing the setup shown in Figure 8 and then 

reconstructed by a standard procedure for several topological structures. The fundamen-

tal fringe period, defined by the angle between the object and the reference beam, was 

around 17 m, and the scanning step was chosen to be 3 m according to the optimal 

sampling analysis. The standard numerical procedure for reconstructing image plane 

DHs can be described briefly as: (i) the recorded DH is Fourier transformed yielding for 

Figure 9. (a–d): FT spectra recorded with CCD using ND filters on both beams with OD = 0, 1.0,
2.0 and 3.0, respectively. (e–h): FT spectra recorded with PCD using ND filters on both beams with
OD = 0, 1.0, 2.0 and 3.0, respectively.
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3.2. Thin Metallic Filmbuckling

As a model for testing hologram recording in DHM configuration with moving PCD,
the thin film buckling structures were used. The topography of buckling patterns that
can be observed on thin film during or after its delamination from thick substrate has
been of considerable interest [28–30]. For deposition of tungsten thin films by magnetron
sputtering, it is known that argon pressure significantly affects film internal stress. In the
case of tensile residual stress, a network of through-thickness cracks forms in the film
while the residually compressed thin films may delaminate from substrate and buckle.
The buckling of thin tungsten film can result in several topographical patterns such as
disordered surface wrinkles, regular herringbone, straight-sided or telephone cord buckles,
and circular blisters. The associated mechanics have been studied for all types of buckles,
but for the telephone cord (TC), more precise microscopic observation (complemented
by topographic measurements) is still needed for testing the corresponding models [31].
In general, buckling profiles can be characterized depending on scale, by mechanical or
laser-scanning profilometry, optical interferometer microscopy, or by using an atomic
force microscope [31,32]. These objects were chosen because of their well-defined surface,
stability over time, and reflectivity that was not too low. As already indicated, maximum
care was taken to make the whole setup the most stable since the scanning procedure lasts
long. For holograms presented here, we took 3000 × 3000 pixels which lasted about six
hours per hologram.

The DHs were recorded by first employing the setup shown in Figure 8 and then
reconstructed by a standard procedure for several topological structures. The fundamental
fringe period, defined by the angle between the object and the reference beam, was around
17 µm, and the scanning step was chosen to be 3 µm according to the optimal sampling
analysis. The standard numerical procedure for reconstructing image plane DHs can be de-
scribed briefly as: (i) the recorded DH is Fourier transformed yielding for linear recordings
three separated terms (zeroth, plus first, and minus first orders) in the frequency plane,
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(ii) one diffraction term (for example, plus first) is isolated, (iii) the resulting image with
the isolated part is inverse Fourier transformed, and (iv) the obtained image is multiplied
by its complex conjugate. Alternatively, the same procedure can be performed by optical
means using a high-resolution liquid crystal display [33].

Along with the reconstruction of DHs, we calculated interferograms which helped us
reveal the topological information about film buckling from a single recorded hologram.
The interferograms were calculated by the following procedure. In the first step, the back-
ground hologram was numerically produced from the original hologram. The background
should emulate the hologram of the surface without the object. For this procedure, it is
important that a well-defined surface exists outside of the object. Each hologram consists
of N horizontal lines, and each line is M pixels long. Every j-th line is represented with a
simple cosine function in the form:

yj(i) = Aj + Bj cos
(

fx i + δj
)
, i = 1, 2, . . . M, j = 1, 2, . . . N (7)

The fundamental fringe frequency, fx, assumed to be the same for every line, is
deduced from simple Fourier analysis. Then each line j is fitted separately one after
another with fitting parameters: Aj the offset, Bj the amplitude, and δj the fundamental
fringe shift of the line. For the start value regarding fitting the specific δj, the previous
value, δj−1 is taken. In this way, we avoid the phase jumps and obtain δj value for each line.
These values are smooth along the lines, except maybe at the region where the object is
located. The overall smooth function of the shift, ∆(j), is then retrieved from the fitting of
the δj for j = 1, 2, . . . , N. In this fitting procedure, more weight is given to the lines on the
edges, i.e., the regions of the hologram outside the object. An example of finding ∆(j) as
polynomial ∆(j) = ∑4

k=0 ck jk is shown in Figure 11.
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Figure 11. Fitting of δj for an object located between lines 1000 and 2500.

As can be seen, the smooth function fits almost perfectly the fringe shifts outside of
the object. Finally, the background BH(i, j) was constructed as:

BH(i, j) =
M

∑
j

N

∑
i
[AA + BB cos( fxi + ∆(j)] (8)

where AA = ∑M
j=1 Aj/M, and BB = ∑M

j=1 Bj/M are mean values of the offset and the
amplitude, respectively, and their values are not so important for the procedure. Then the
background was subtracted from the hologram and reconstructed.
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We demonstrate our approach by recording holograms of two objects that appear
on the tungsten 4 µm thin film originally deposited by magnetron sputtering on a glassy
substrate. The first object is a tip of the straight-line delamination buckling type structure
formed by an in situ thermal gradient. The second buckling structure has been developed
after poking the flat area by Vickers indentor (100 N force) due to local relaxation of the
residual stress in the same thin film. Both of these two structures are shown by white-light
microscopy in Figure 12.
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Figure 12. Microscopic image of a blister and a tip of a filmbuckling structure.

The holographic analysis of the buckling and the blister is illustrated in Figure 13.
The left columns in Figure 13 show amplitude reconstruction from holograms, obtained
by the usual procedure. The right-hand side of Figure 13b–d are reconstructions of the
interferograms generated by the above-mentioned method. The fringes which can be
seen depict the iso-lines of the topological structure of those two microscopic objects,
thus yielding obvious qualitative information of height distribution of the object.
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Figure 13. Object reconstruction from the hologram (a,c), and object reconstruction from the interfer-
ogram (b,d). Pictures (a,b) depict the end of the telephone cord buckle, and (c,d) depict a poke in the
thin film that caused inflation of the structure.

Quantitative information can be extracted from the phase, which is wrapped in the
steps of 2π. There are many unwrapping algorithms described in the literature [34], but the
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core idea is to find true phase values and then map these values to the object height.
In Figure 14a, we illustrate the modulo 2π phase distribution and the corresponding line
profile in Figure 14b.
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Figure 14. (a): Phase picture of the object shown in Figure 13b, and (b): phase values along the
red line.

4. Discussion

Typically, holograms are recorded close to saturation to obtain large SNR. For hologram
recording, this means that nonlinearities are often unavoidable. The presence of terms
above the first-order in the Fourier domain, such as in Figures 9a–d and 10a,b, indicate
saturation in a digital recording of holograms. The signal recorded with a CCD camera is
constrained by a limited dynamic range (mostly 256 gray levels). However, when using
PCD as a recording device, the signal is always unsaturated, as shown in corresponding
figures, e.g., Figures 9e–h and 10e,f.

Although the values of the experimental parameters have been arbitrarily chosen,
the obtained results are consistent concerning the linearity issue. We remark that when the
hologram is recorded by the CCD in attenuated conditions, it would be possible to some
extent to eliminate nonlinearities while having low noise by summing holograms to the
same number of photons as acquired in a single hologram. We cannot say that a scanning
PCD is a better solution than CCD or CMOS cameras, but fast emerging new devices based
on an array of photon-counting photodiodes should show benefits in holography regarding
linearity issues.

The issue with optimum sampling was studied with scanning PCD inserted in the
Twyman-Green optical setup (shown in Figure 8) and used for recording digital holo-
grams. As an input object, we used a stable structure of buckling patterns on tungsten
thin film. We followed the procedure presented in Section 2.1 by, first by finding the
Nyquist frequency and then by taking the spatial frequency 2.5 times the Nyquist frequency
for recording digital holograms. To find the topology of objects from a single recorded
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hologram, we utilized the numerical procedure described in Section 3.2. The obtained
results demonstrate successful recording of digital holograms as well as useful production
of synthetic interferograms. Figure 13d shows smooth interferometric fringes describing
most of the topology of the blister accurately. The area of low contrast fringes corresponds
to the very steep slope of the blister.

We have demonstrated a method for recording perfectly linear and optimum sampled
digital holograms particularly suited for efficient use of a PCD in the image plane DHM
configurations. Aside from the general problem in the DHM of nonlinear hologram record-
ing, image plane configurations are often suffering from inadequate sampling regarding the
information content (undersampled or oversampled holograms). Namely, for holograms
recorded near the Nyquist sampling rate, the frequency beatings occur due to the slight
local phase shifts leading to a loss of hologram information. An obvious approach to in-
creasing the sampling frequency to a safety zone (far above the Nyquist rate) is not always
possible. To overcome that problem, we found an optimized sampling measure through
numerical analysis and applied it in a practical DHM system. The PCD was mounted on
a motorized XY translation stage, which enabled flexibility in changing the pixel size of
the hologram recording (product of the speed at which the PCD moves and the integration
time). Thus, by employing the PCD, hologram recordings were inherently linear, and the
sampling rate was easily adjusted to an optimized value. Currently, this approach is fea-
sible for stable measuring conditions and static objects because of long recording times.
However, the presented work can be useful in future optimal use of more advanced PCD
based systems for hologram recordings in the image plane DHM. This includes phase
measurements not only of technical microstructures (particularly suitable are test structures
obtained by 3D printing), but also of biological and biomedical specimens, as detailed in
article reviews [35,36]. We emphasize the holographic tomography applications with beam
rotation or sample rotation architectures, where variations in both the spatial frequency
and beam ratio must be optimized, which our method offers.

Author Contributions: Conceptualization, N.D.; funding acquisition, H.S.; methodology, N.D.
and H.S.; experimental setup and results: N.D., H.S., D.A., O.M. and M.S.; data acquisition and
software, H.S., D.A., M.S. and N.D.; writing, original draft preparation, N.D. and H.S.; writing,
review and editing, N.D., H.S. and D.A. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by NATO SPS MYP- G6518 and the Ministry of Science and
Education of Republic of Croatia grant No. KK.01.1.1.01.0001.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the
study’s design, in the collection, analyses, or interpretation of data, in the writing of the manuscript,
or in the decision to publish the results.

References
1. Kim, M.K. Digital Holographic Microscopy; Springer Series in Optical Sciences; Springer: New York, NY, USA, 2011; Volume 162,

ISBN 978-1-4419-7792-2.
2. Anand, A.; Chhaniwal, V.; Javidi, B. Tutorial: Common path self-referencing digital holographic microscopy. APL Photon. 2018,

3, 071101. [CrossRef]
3. Bishara, W.; Su, T.-W.; Coskun, A.F.; Ozcan, A. Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution.

Opt. Express 2010, 18, 11181. [CrossRef] [PubMed]
4. Serabyn, E.; Liewer, K.; Lindensmith, C.; Wallace, J.; Nadeau, J. Compact, lensless digital holographic microscope for remote

microbiology. Opt. Express 2016, 24, 28540. [CrossRef] [PubMed]
5. Singh, M.; Khare, K. Single-shot full resolution region-of-interest (ROI) reconstruction in image plane digital holographic

microscopy. J. Mod. Opt. 2018, 65, 1127. [CrossRef]
6. Goodman, J.W. Speckle Phenomena in Optics Theory and Applications; Roberts and Company: Englewood, CO, USA, 2007;

ISBN 978-1-9362-2114-1.
7. Bianco, V.; Memmolo, P.; Leo, M.; Montresor, S.; Distante, C.; Paturzo, M.; Picart, P.; Javidi, B.; Ferraro, P. Strategies for reducing

speckle noise in digital holography. Light. Sci. Appl. 2018, 7, 48. [CrossRef] [PubMed]

http://doi.org/10.1063/1.5027081
http://doi.org/10.1364/OE.18.011181
http://www.ncbi.nlm.nih.gov/pubmed/20588977
http://doi.org/10.1364/OE.24.028540
http://www.ncbi.nlm.nih.gov/pubmed/27958498
http://doi.org/10.1080/09500340.2018.1426798
http://doi.org/10.1038/s41377-018-0050-9
http://www.ncbi.nlm.nih.gov/pubmed/30839600


Photonics 2022, 9, 68 14 of 14

8. Charriére, F.; Rappaz, B.; Kühn, J.; Colomb, T.; Marquet, P.; Depeursinge, C. Influence of shot noise on phase measurement
accuracy in digital holographic microscopy. Opt. Express 2007, 15, 8818. [CrossRef]

9. Monaldi, A.C.; Romero, G.G.; Cabrera, C.M.; Blanc, A.V.; Alanís, E.E. Rolling Shutter Effect aberration compensation in Digital
Holographic Microscopy. Opt. Commun. 2016, 366, 94. [CrossRef]

10. Remmersmann, C.; Stürwald, S.; Kemper, B.; Langehanenberg, P.; Von Bally, G. Phase noise optimization in temporal phase-
shifting digital holography with partial coherence light sources and its application in quantitative cell imaging. Appl. Opt. 2009,
48, 1463. [CrossRef]

11. Bothe, T.; Burke, J.; Helmers, H. Spatial phase shifting in electronic speckle pattern interferometry: Minimization of phase
reconstruction errors. Appl. Opt. 1997, 36, 5310. [CrossRef]

12. Styk, A.; Patorski, K. Identification of nonlinear recording error in phase shifting interferometry. Opt. Lasers Eng. 2007, 45, 265.
[CrossRef]

13. Pan, B.; Kemao, Q.; Huang, L.; Asundi, A. Phase error analysis and compensation for nonsinusoidal waveforms in phase-shifting
digital fringe projection profilometry. Opt. Lett. 2009, 34, 416. [CrossRef] [PubMed]
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27. Stipčević, M.; Skenderović, H.; Gracin, D. Characterization of a novel avalanche photodiode for single photon detection in

VIS-NIR range. Opt. Express 2010, 18, 17448. [CrossRef]
28. Freund, L.B.; Suresh, S. Thin Film Materials; Cambridge University Press: Cambridge, MA, USA, 2003; pp. 86–153,

ISBN 978-0-5215-2977-8.
29. Mondal, K.; Liu, Y.; Shay, T.; Genzer, J.; Dickey, M.D. Application of a Laser Cutter to Pattern Wrinkles on Polymer Films. ACS

Appl. Polym. Mater. 2020, 2, 1848. [CrossRef]
30. Tang, J.; Qiu, Z.; Li, T. A novel measurement method and application for grinding wheel surface topography based on shape

from focus. Measurement 2019, 133, 495. [CrossRef]
31. Faou, J.-Y.; Parry, G.; Grachev, S.; Barthel, E. How Does Adhesion Induce the Formation of Telephone Cord Buckles? Phys. Rev.

Lett. 2012, 108, 116102. [CrossRef]
32. Moon, M.; Jensen, H.; Hutchinson, J.; Oh, K.; Evans, A. The characterization of telephone cord buckling of compressed thin films

on substrates. J. Mech. Phys. Solids 2002, 50, 2355. [CrossRef]
33. Demoli, N.; Halaq, H.; Vukicevic, D. White light reconstruction of image plane digital holograms. Opt. Express 2010, 18, 12675.

[CrossRef]
34. Zappa, E.; Busca, G. Comparison of eight unwrapping algorithms applied to Fourier-transform profilometry. Opt. Lasers Eng.

2008, 46, 106. [CrossRef]
35. Park, Y.; Depeursinge, C.; Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photon. 2018, 12, 578. [CrossRef]
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