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Abstract: Due to limited data transmission bandwidth and data storage space, it is challenging to
perform fast-moving objects classification based on high-speed photography for a long duration.
Here we propose a single-pixel classification method with deep learning for fast-moving objects. The
scene image is modulated by orthogonal transform basis patterns, and the modulated light signal is
detected by a single-pixel detector. Thanks to the property that the natural images are sparse in the
orthogonal transform domain, we used a small number of basis patterns of discrete-sine-transform
to obtain feature information for classification. The proposed neural network is designed to use
single-pixel measurements as network input and trained by simulation single-pixel measurements
based on the physics of the measuring scheme. Differential measuring can reduce the difference
between simulation data and experiment data interfered by slowly varying noise. In order to improve
the reliability of the classification results for fast-moving objects, we employed a measurement data
rolling utilization approach for repeated classification. Long-duration classification of fast-moving
handwritten digits that pass through the field of view successively is experimentally demonstrated,
showing that the proposed method is superior to human vision in fast-moving digit classification.
Our method enables a new way for fast-moving object classification and is expected to be widely
implemented.

Keywords: object classification; single-pixel measuring; deep learning; differential measuring; mov-
ing object

1. Introduction

Object classification is the fundament of scene understanding and one of the most
basic problems in machine vision [1]. Recently, with the help of deep learning, image-based
object classification has made great progress [2–8]. However, object classification still
faces many challenges, such as fast-moving objects classification for long-duration. The
reason is two-fold. On the one hand, images of fast-moving objects captured by a regular
camera might suffer from motion blur. On the other hand, although a high-speed camera
can reduce motion blur, it is hardly possible to use the camera for long-duration image
acquisition, because massive image data brings great difficulties to storage, transfer, and
analysis [9].

Actually, images are an intermediate in the process of object classification. The object
classification methods rely on the feature information embedded in the images rather than
the images themselves. It is therefore possible to achieve object classification in an image-
free manner if object feature information can be obtained without image reconstruction.
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Inspired by single-pixel imaging [10–15], single-pixel object classification without image
reconstruction has recently been explored [16–21]. In these reported methods, the object
light field is modulated by using special patterns to obtain the feature information of objects
for classification of static objects, such as Hadamard-transform basis patterns [16], discrete-
cosine-transform basis patterns [17], random patterns [18], and optimized patterns [19,20].
The single-pixel object classification methods are data- and bandwidth-efficient, allowing
long-duration classification. Our group realized the classification of moving handwritten
digits, using the single-pixel object classification method through the learning structured
light illumination [21].

It is well-known that deep learning always needs a large amount of data to train
networks [22]. In some cases, it may be difficult or time-consuming to collect thousands of
labeled data on experiments. If the physical process of experiment is well understood, it is
possible to use only a small number of training examples even simulation examples to train
networks. M. R. Kellman et al. proposed a physics-based design that was learned by only a
small number of training examples and generalized well in the experimental setting [23]. F.
Wang et al. demonstrated that a neural network for single-pixel imaging can be trained by
using simulation data [24]. However, how to establish a simulation physical model that is
insensitive to some uncertain factors, such as noise, is the key to ensure that the network
trained by simulation data is effective in practical application.

In this paper, we propose a single-pixel classification method with deep learning for
fast-moving objects. Based on the structured detection scheme, the proposed method uses
a small number of discrete-sine-transform (DST) [25] basis patterns for feature information
acquisition, because most energy of natural images is concentrated at the low-frequency
band and the images exhibit strong sparsity in the DST domain [26]. A single-pixel detector
is used to measure the light signals modulated by these patterns and then the single-
pixel measurements are sent to a neural network for classification. The neural network is
designed to use single-pixel measurements as network input and trained by simulation
single-pixel measurements based on the physical process of the measuring scheme. A
differential measuring approach [27,28] can reduce the difference between simulation
data and experimental data caused by slowly varying noise. To improve the credibility of
classification results, we designed a repeated measurement data rolling utilization approach
to increase the number of tests. The proposed method was experimentally demonstrated in
the classification of handwritten digits on a fast-rotating disk. The results show that our
method enables fast-moving object classification of a high accuracy in a noisy scene, which
can hardly be achieved by human vision.

2. Methods and System Architecture
2.1. The System Architecture

The optical configuration of the proposed method, which is a structured detection
scheme in single-pixel imaging, is illustrated in Figure 1 [12]. Figure 1a shows the optical
system. The target object is illuminated by a light source and then is imaged on the
modulation array of a spatial light modulator (SLM) by an imaging lens. The SLM generates
a small number of DST basis patterns to modulate the image of the object. The modulated
light is collected by a lens and is measured by a single-pixel detector. The single-pixel
measurements are fed to a trained neural network, which outputs the classification results.
Figure 1b shows the experimental setup. We use a light-emitting diode (LED) to illuminate
the target object, and the object is imaged on a digital micromirror device (DMD) through
Lens 1. The DMD generates a series of DST basis patterns to modulate the image of
objects. As for a proof-of-concept demonstration, we take handwritten digits as target
objects. The digits are laser-engraved on acrylic boards (black background and hollowed-
out digits). The digits are put on a disk, as shown in Figure 1c, which can be driven by
a motor. Then a photodiode is used as a single-pixel detector to measure the reflected
light from DMD collected by Lens 2. The single-pixel measurements are fed to the neural
network as input. The digits are from the MNIST (Modified National Institute of Standards
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and Technology) handwritten digits database [29]. The database provides 60,000 training
images and 10,000 test images, each of which is 28 × 28 pixels.

Figure 1. Optical configuration of the proposed method: (a) optical system, (b) experimental setup,
and (c) layout of the disk.

2.2. Differential Measuring in Transform Domain

An image contains rich information, but object classification needs only the specific
feature information. In other words, the image data of objects are redundant for object
classification. Just as the images and their DST spectra shown in Figure 2, most energy of
natural images is concentrated at the low-frequency band, and the images exhibit strong
sparsity in the DST domain. Therefore, it is possible to classify the target object with
the low-frequency DST coefficients in a deep-learning manner, that is, achieving object
classification by feeding the low-frequency DST coefficients to a trained neural network.
Similar to Fourier single-pixel imaging [11], we use DST basis patterns to measure DST
coefficients by a single-pixel detector, so as to avoid massive image data.

The discrete-sine-transform is expressed as follows:

F(u, v) =
N−1

∑
x=0

N−1

∑
y=0

f (x, y)T(x, y, u, v), (1)

where (x, y) and (u, v) are the coordinate in the spatial and transformation domain, respec-
tively. Moreover, the inverse discrete-sine-transform is expressed as follows:

f (x, y) =
N−1

∑
u=0

N−1

∑
v=0

F(u, v)T(x, y, u, v). (2)



Photonics 2022, 9, 202 4 of 17

T(x, y, u, v) is the transformation kernel of DST, which is defined as follows:

T(x, y, u, v) =
2

N + 1
sin
(
(x + 1)(u + 1)π

N + 1

)
sin
(
(y + 1)(v + 1)π

N + 1

)
. (3)

Figure 2. Natural images and their DST spectra: (a1) handwritten digit “2” image (28 × 28 pixels),
(a2) DST spectrum of (a1), (b1) “Cameraman” image (256 × 256 pixels), (b2) DST spectrum of
(b1), (c1) “Peppers” image (512 × 512 pixels), (c2) DST spectrum of (c1), (d1) “Goldhill” image
(512 × 512 pixels), and (d2) DST spectrum of (d1).

In order to use a small number of the DST coefficients for training neural networks,
we set quadrants with different radii as masks to select the coefficients from low-frequency
to high-frequency in DST domain, as shown in Figure 3a. Figure 3b shows the examples
of the selected low-frequency coefficients. The 8 masks have radii from 2 to 9 pixels,
corresponding to 4, 9, 15, 22, 33, 43, 56, and 71 coefficients, respectively.

Figure 3. Selection of DST coefficients: (a) a quadrant mask to select low-frequency coefficients and
(b) selected low-frequency coefficients.

The DST basis patterns [25] we use can be expressed as follows:

P(x, y, u0, v0) =
N−1

∑
u=0

N−1

∑
v=0

δ(u0, v0)T(x, y, u, v), (4)

where P(x, y, u0, v0) represents the basis patterns, and δ(u, v) is a delta function expressed
by the following:

δ(u, v) =
{

1,
0,

u = u0, v = v0
otherwise

. (5)

We note that DMD can only generate non-negative intensity patterns, but, as
Equations (1)–(5) imply, the intensity of the DST basis patterns contains negative value.
Thus, we apply intensity normalization to the basis patterns, so that the intensity of the
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resulting patterns P+ ranges from 0 to 1. The inversed patterns of P+ can be obtained as
P− = 1 − P+. In addition, DMD is a binary device; hence, we utilize the “upsample-and-
dither” strategy [30] for pattern binarization. The binarized basis patterns of the first four
coefficients are shown in Figure 4.

Figure 4. Binarized basis patterns: (a) binarized basis patterns of the first four coefficients and
(b) inversed patterns of (a).

By using the generated patterns to modulate the object image O(x, y), the resulting
single-pixel measurement is as follows:

D(u, v) =
N−1

∑
x=0

N−1

∑
y=0

P(x, y, u, v) · O(x, y). (6)

We employ differential measuring in the acquisition of DST coefficients to reduce the
difference between simulation data and experiment data caused by noise. We can acquire
two single-pixel measurements D+

i and D−
i by a pair of DST basis patterns P+

i and P−
i ,

respectively. A differential single-pixel measurement is acquired by using the following
calculation:

Di = D+
i − D−

i , i = 1, 2, 3, · · · . (7)

Specifically, each basis pattern P+
i (i = 1, 2, 3, · · ·) displayed on the DMD is followed

by its inversion P−
i . Di is exactly a DST coefficient. Thus, we acquire the 1D single-pixel

measurements that is fed to a neural network for object classification.

2.3. Neural Network Design and Training

We designed a neural network that accepts single-pixel measurements as input to
achieve object classification. The framework of the neural network is shown in Figure 5. It
needs to be emphasized that the framework we chose is simple in order to preserve a high
classification speed, although a sophisticated network framework may get better results.
The neural network we employ consists of an input layer, a 1D convolution layer, three fully
connected layers, and an output layer. The input layer has M neurons, because the network
is designed to accept M measurements as input, that is, M DST coefficients. There are
15 filters in the 1D convolution layer with kernel size of M× 1, and the three fully connected
layers have 400, 200, and 100 units, respectively. There are n neurons in the output layer for
the n classes. The nonlinear activation function rectified linear unit is used between fully
connected layers, and the Softmax function is used in the output layer. In our proof-of-
concept demonstration, n equals 10. The output layer exports n probabilities (b1, b2, · · · , bn)
for n classes. The class with maximum probability is picked as a classification result. The
parameters in the network are initialized randomly with truncated normal distribution and
then updated by the adaptive moment estimation (ADAM) optimization. The cross-entropy
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loss function is adopted for optimizing. The network is built on the TensorFlow version
2.1.0 platform, using Python 3.7.6.

Figure 5. Framework of the neural network.

Deep learning requires a large amount of data to train the network, but experimen-
tally collecting tens of thousands of labeled data for the neural network training is time-
consuming. To solve this problem, we generate simulation single-pixel measurements for
network training based on the physical process of single-pixel measuring. The simulation
single-pixel measurements are generated by calculating the inner products of the binarized
basis patterns and a handwritten digit image, as shown in Figure 6. We apply the same
procedure to each image in the MNIST database to generate simulation datasets. Note that,
for non-differential mode, D+

i forms a non-differential dataset. For differential mode, the
differences of D+

i and D−
i form a differential dataset.

Figure 6. Process of generating simulation data of single-pixel measurements.

Considering that the objects moving through the field of view have rotation, as shown
in Figure 1, we rotate the handwritten digit images in the dataset with random angles. The
center of the field of view is 112 pixels far from the center of disk point O according to
actual size. The digit images are randomly rotated between −4 and 4 degrees around point
O. Figure 7 shows the example of 5 pairs of original training images and the corresponding
rotated images. The simulation single-pixel measurements for moving digits are generated
by using the procedure shown in Figure 6.
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Figure 7. Example of the training images. The first row shows the original images, and the second
row shows the images with random rotation.

Therefore, according to the 8 groups of DST coefficients in Figure 3, we generate
4 kinds of simulation single-pixel measurement datasets for every group of coefficients.
They are non-differential and differential datasets of original digits, and non-differential
and differential datasets of rotated digits. Each dataset corresponds to 60,000 digits for
training and 10,000 digits for testing. These simulation datasets are used to train the
network shown in Figure 5, respectively. Training is run for 70 epochs. It takes ~5 min on a
computer (AMD Ryzen 7 1700X CPU, 32-GB RAM, and an NVIDIA RTX 2080Ti GPU).

2.4. Data Rolling Utilization for Repeated Tests

In order to ensure the reliability of the classification results, we need to achieve
repeated tests by taking full use of the acquired single-pixel measurements. This is because,
from a statistical point of view, generally speaking, the more repeated tests, the higher
reliability of the classification results. To achieve as many repeated tests as possible, we
propose a data rolling utilization approach for repeated tests. Figure 8 shows the specific
process of the proposed data rolling utilization approach for the differential mode.

Figure 8. Diagram of data rolling utilization approach for the differential mode.

We assume that, during the period that an object passes through the field of view, we
obtain m measurements for k DST coefficients to perform a test; m is an integer multiple of
k. For the differential mode, we assume that D+

1 is the measurement for the first pattern P+
1 ,

D−
1 for the second pattern P−

1 , and so on. Using Equation (7), we obtain m/2 differential
measurements from the m measurements. We can perform m/(2k) tests by using regular
data utilization approach.

As for the data rolling utilization approach, we set a sliding window in a size of k,
which slides 1 unit each time. The first window contains measurements from D1 to Dk, and
we feed these measurements to the neural network for the first test. The second window
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contains measurements from D2 to Dk+1. Before the measurements contained in the second
window are sent to the neural network, we rearrange the measurements into Dk+1, D2, · · · ,
Dk, so that they follow the order from low-frequency to high-frequency in the DST domain.
This is because Dk+1 and D1 correspond to the same pattern. In this way, we can finally
obtain (m/2 − k + 1) tests from the m measurements for differential mode. The proposed
data rolling utilization approach significantly increases the number of tests by comparison
with the regular data utilization approach.

The non-differential mode is similar to the differential mode. For the non-differential
mode, we assume that D1 is the measurement for the first pattern P+

1 , D2 for the second
pattern P+

2 , and so on. We can obtain only m/k tests by using regular data utilization
approach, but we obtain (m − k + 1) tests by using data rolling utilization approach from
the m measurements.

For continuous classification of moving objects, it is difficult to determine the time
when the target object enters the field of view, so it is necessary to continuously measure
the object in the field of view. Fortunately, single-pixel measurements produce much less
data than image measurements. However, the faster the object moves, the fewer single-
pixel measurements can be performed. Therefore, such a data rolling utilization approach
is important in fast-moving object classification, as it improves the data utilization and
increases the number of tests, enhancing the reliability of classification results.

3. Neural Network Performance Test
3.1. Network Performance Test with Simulation Data

Prior to the experiments, we evaluate the performance of the proposed network by
using simulation test datasets, including original and rotated digit test datasets. We also
evaluate the robustness of the proposed network by simulation test datasets with constant
noise and slowly varying noise.

It is known that noise, such as slowly varying noise, is common in practical applica-
tions. Slowly varying noise usually comes from sunlight, lamplight, alternating-current
power supply, and so on. The noise is slowly varying in comparison to the refresh rate of
patterns. We assume that a simulation slowly varying noise is expressed as follows:

εt,noise = a + b sin
(

2π
fnoise

fpattern
t
)

, (8)

where the direct-current (DC) component, a, represents the constant noise intensity; b is
the amplitude; fnoise is the frequency of the slowly varying noise; and fpattern is the refresh
rate of patterns. Each pattern corresponds to a measurement. The moment of the i-th
measurement is t = fpatterni. Equation (8) can be rewritten as follows:

εi,noise = a + b sin(2π fnoisei), i = 1, 2, 3, · · · . (9)

We add εi,noise to the simulation single-pixel measurements to generate noisy simula-
tion test datasets. For the non-differential mode, the measurements are composed of D+

i ,
so the noisy measurements are expressed as follows:

D+
i,noise = εi,noise + D+

i , i = 1, 2, 3, · · · . (10)

D+
i,noise forms the noisy test datasets for the non-differential mode.

For the differential mode, the noisy measurements are expressed as follows:{
D+

i,noise = ε2i−1,noise + D+
i , i = 1, 2, 3, · · ·

D−
i,noise = ε2i,noise + D−

i , i = 1, 2, 3, · · · . (11)
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The noisy test dataset for the differential mode is generated by the differences of
D+

i,noise and D−
i,noise:

Di,noise = D+
i,noise − D−

i,noise, i = 1, 2, 3, · · · . (12)

Then we test the network trained by noise-free simulation datasets of original digits on
the test datasets with slowly varying noise. The classification results are shown in Figure 9.
For the noise expressed by Equation (8), we set the frequency, fnoise, of the slowly varying
noise to 100 Hz (the power supply frequency), and the refresh rate, fpattern, of the pattern is
10,000 Hz. We set four values for the amplitude b(0, 10, 20, and 30), which represents the
effects of slowly varying noises. Then, for each b, we set three values for the DC component,
a, which represents the effects of different constant noises. A noise-free condition is placed
when a = 0, b = 0 (black line with triangle marker in Figure 9a). The mean voltage value
of the simulation measurements is 52.72 V. According to the signal-to-noise ratio (SNR)
formula SNR = 10 × lg(52.72/a), we calculate all the SNR with different DC components,
a. As shown in Table 1, the SNR is between 7.22 and −1.23 dB, which illustrates that the
noise added to the simulation dataset seriously affects the acquired signal.

Figure 9. Simulation classification accuracy of the original digit on noisy test sets with non-differential
and differential mode: the amplitude of slowly varying noise (a) b = 0, (b) b = 10, (c) b = 20, and
(d) b = 30.

Table 1. DC component, a, and corresponding SNR.

a 10 20 30 40 50 60 70

SNR (dB) 7.22 4.21 2.45 1.20 0.23 −0.56 −1.23

By combining Figure 9 and Table 1, we can draw the following conclusions. First,
overall, the classification accuracy increases with the number of acquired coefficients.
Second, for each amplitude, b, the accuracy of the non-differential mode (black lines)
decreases with the increase of DC component, a, confirming that the network performance
of the non-differential mode is seriously influenced by constant noise. Conversely, for each
amplitude, b, the accuracy of differential mode (red lines) maintains the same for different
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DC component, a, so we represent the accuracy of differential mode by the same marker. It
confirms that differential mode resists the influence of constant noise, because the constant
noise is subtracted. Third, by comparing Figure 9a–d, we find that, with the increase of
amplitude (b), the accuracy of non-differential mode generally drops, while the accuracy
of differential mode keeps at almost the same level. We thus confirm the robustness of
differential mode against the slowly varying noise. When we employ 33 coefficients, the
accuracy of differential mode has already reached 95.42%. Finally, we note that there is a
trade-off between classification accuracy and measuring time. More coefficients mean high
classification accuracy but a long measuring time. An appropriate number of coefficients
should be chosen in terms of requirements.

Meanwhile, we also test the network trained by simulation datasets of rotated digits.
We set a = 70, b = 30 as a noisy condition. The results are shown in Figure 10. By
comparing them to the results of original digit datasets in Figure 9 in the same condition,
the results of the rotated digit datasets give an average 9.04% decrease. Thus, it is indicated
that the network has good robustness on rotated digits. Similar to the original image
simulation results in Figure 9, we conclude that the non-differential mode is seriously
influenced by noise, while the differential mode can reduce the impact of noise effectively.
There is also a trade-off between classification accuracy and measuring time.

Figure 10. Simulation classification accuracy of the rotated digit on noisy and noise-free test sets with
non-differential and differential mode.

In summary, the test results of both simulation original and rotated datasets reveal
that the differential mode has a remarkable performance in regard to noise immunity in
slowly varying noise conditions.

3.2. Network Performance Test with Experiment Data of Static Objects

To confirm the generalization ability of the neural network and demonstrate that the
network trained by simulation dataset can be applied in practical classification, we conduct
experiments by using the setup shown in Figure 2b. A 10-watt white LED is used as a light
source. The DMD (ViALUX V-7001), operating at its highest refreshing rate of 22,727 Hz,
generates DST basis patterns. These DST basis patterns are scaled to 672 × 672 pixels. A
photodiode (Thorlabs PDA-100A2, gain = 0) is used as a single-pixel detector to collect the
light reflected by the DMD. Moreover, a data acquisition card (National Instruments USB-
6366 BNC) operating at 2 MHz is employed to digitalize the single-pixel measurements.

Considering the trade-off between classification accuracy and measuring time accord-
ing to simulation results, we choose 9, 15, 22, and 33 coefficients to perform experiments.
On the one hand, when the number of coefficients reaches nine, satisfactory classification
accuracy can be obtained. On the other hand, using fewer coefficients guarantees a short
measuring time.

In the static object experiment, the disk is stationary, and we randomly choose eight
handwritten digits from the test set of the MNIST database as target objects. We use the
network trained by simulation dataset of original images for classification. We select one
of the digits to compare the simulation measurements and experiment measurements
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in Figure 11. For both non-differential mode and differential mode, the general trend
of experiment measurements is similar to simulation measurements, meaning that the
simulation data are close to the experiment data. However, for the non-differential mode,
the average values of simulation data and experiment data are not exactly the same. As
the dashed lines shown in Figure 11a,c, the normalized average value of simulation data
and experiment data in non-differential mode is 0.5651 and 0.6461, respectively. For the
differential mode, the average values of simulation data and experiment data are almost
the same, i.e., 0.0224 in Figure 11b and 0.0461 in Figure 11d. According to the simulation
results of Figure 9, the difference between the average value of the simulation data and
experiment data affects the classification performance of non-differential mode, while the
differential mode resists the influence of constant noise.

Figure 11. Example of simulation single-pixel measurements and experiment single-pixel
measurements.

The experiment classification results of static objects are shown in Table 2. We repeat
the experiment many times for each chosen digit and present three groups of experiment
results, that is, 24 tests for each number of coefficients under different conditions. Table 2 is
the total number of correctly classified digits in the 24 tests.

Table 2. Experiment classification results of 24 static digits.

Mode Number of Coefficients
Noise-Free Noisy

Correct Correct/Total (%) Correct Correct/Total (%)

Non-differential

9 3 12.50 3 12.50
15 11 45.83 3 12.50
22 18 75.00 6 25.00
33 24 100.00 15 62.50

Differential

9 20 83.33 21 87.50
15 18 75.00 21 87.50
22 24 100.00 24 100.00
33 24 100.00 24 100.00
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The results of the noise-free condition demonstrate that, the more coefficients we use,
the more digits can be correctly classified. Overall, the performance of differential mode
surpasses that of non-differential. The classification results of differential mode are all
correct, with more than 22 coefficients, while that of non-differential mode are all correct,
with 33 coefficients.

To create a noisy experiment scene, we take a reading lamp as a noise source artificially.
As shown in Figure 12, the noise, with a frequency of 100 Hz, is slowly varying compared to
the refreshing rate of the DMD (22,727 Hz), which is consistent with that in simulation. The
mean value of background noise is 0.086 V, as shown in Figure 12, and the mean value of
desired signal is 0.13 V, as shown in Figure 11, so the SNR is 1.79 dB calculated by formula
SNR = 10 × lg(0.13/0.086).

Figure 12. Measurements of noise.

The results of the noisy experiment scene in Table 2 demonstrate that the classification
performance of non-differential mode is affected by the noise, as the number of correct
classifications in noisy condition is less than that in noise-free condition. Conversely, the
results of the differential mode show that differential mode can reduce the impact of noise
effectively. Overall, the performance of differential mode exceeds that of non-differential in
either noisy or noise-free condition. The classification results of differential mode in both
noisy condition and noise-free condition are all correct, with more than 22 coefficients.

The experiment results coincide with simulation results, thus confirming the feasibility
of a network trained by simulation measurements applied to practical scenes. The method
of training the network by simulation data removes the need of experimentally collecting
massive labeled data; this is useful and may promote various deep learning fields.

3.3. Network Performance Test with Experiment Data of Moving Objects

We demonstrate the proposed method in classifying fast-moving digits by using the
experimental setup shown in Figure 2b. The DMD, data acquisition card, and photodiode
operate at the same parameters in static object experiments. We use the network trained
by the simulation rotated image dataset for fast-moving object classification. The laser-
engraved digits are put on a fast-moving disk that is driven by a motor. The disk can rotate
at various speeds by tuning the Pulse-Width Modulation (PWM) of a speed controller. We
set the PWM to 0%, 20%, 40%, and 60%, and the corresponding linear velocity of the digits
is 0.729, 1.638, 4.265, and 6.626 m/s, respectively. These digits pass through the field of
view successively. In order to show the speed of the fast-moving objects intuitively, we use
a camera (FLIR, BFS-U3-04S2M-CS) of 60 fps to record videos of rotating digits at various
speeds. The exposure time is 1/60 s and the frame of video is in a size of 180 × 180 pixels.
Figure 13 presents the snapshots of digit “4” in motion at various speeds (Visualization S1).
The digit is moving so fast that it can hardly be recognized by the human eye even at the
lowest linear velocity of 0.729 m/s.
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Figure 13. Snapshots of digit “4” in motion at different speeds captured by using a 60-fps camera
with an exposure time of 1/60 s (see Visualization S1).

As an example, we set PWM to 0% so that the digits move at a linear velocity of
0.729 m/s. Figure 14a shows the single-pixel measurements of the digits passing through
the field of view successively in 1.5 s. We collect 34,090 single-pixel measurements. When
the digits are moving in the field of view, light can pass through the disk, resulting in high
intensity. Conversely, when there is no digit or the digit is partly in the field of view, the
light is blocked by the disk, resulting in low intensity. We deliberately block one of the
digits on the disk to mark the handwritten digits, such as the digit “2” shown in Figure 1c.
Compared with the unblocked digits, there are more low-intensity measurements caused
by the blocked digit. In this way, we can know which digit the intensity data correspond to.
Figure 14b is the enlarged view of the single-pixel measurements of digit “4” in Figure 14a.
Figure 14c is the differential measurements by using the measurements of Figure 14b based
on Equation (7). During the period of an object passing the field of view, we can loop the
DST patterns many times and acquire a series of single-pixel measurements, which are
used to perform tests for a digit many times.

Figure 14. Single-pixel measurements of moving digits: (a) single-pixel measurements of objects
passing through the field of view successively in 1.5 s, (b) partially enlarged view of (a) (see Visual-
ization S2), and (c) differential measurement from (b).
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Only the entire digit in the field of view can be correctly classified, so we select the
desired data by discarding measurements under the threshold. The threshold is computed
by using the following calculation:

t =
Smax − Smin

β
+ Smin, (13)

where Smax represents the maximum of the single-pixel measurements, and Smin the
minimum. β is a factor that controls the level of the threshold, which needs to be selected
according to different experimental conditions. β may be diverse at different speeds.
The single-pixel measurements of the inversion pattern P− are usually low, so we select
the desired data only by the single-pixel measurements of P+. Among the single-pixel
measurements of P+, we look for the data continuously higher than the threshold, and
these data are exactly the single-pixel measurements selected by the threshold.

We note that the faster objects move, the shorter time an object passes through the
field of view, and the fewer measurements we acquire for an object. This results in a small
number of tests. In practice, classification results are influenced by many factors, such
as ambient noise. A small number of tests is highly contingent, hurting the reliability
of classification results. Therefore, we propose the data rolling utilization approach in
Section 2.4 to increase the number of tests, so as to improve the reliability of classification
results.

The single-pixel measurements in Figure 14 are acquired with 15 coefficients in dif-
ferential mode; that is, 30 measurements are employed for a classification test. By setting
a threshold, we get 673 desired measurements from the single-pixel measurements in
Figure 14b. If we adopt the regular data utilization approach, one test is conducted with
every 30 measurements, so we can perform only 22 tests. If we adopt the data rolling
utilization approach in Section 2.4, we can perform 322 tests with the same 673 desired
measurements. The 322 test results are shown in Table 3. The digit “4” appears the most
from the test results, so we regard it as the classification test result of the data in Figure 14b.
If the test result is the same as the digit label, then the classification test is correct. In this
way, we can get the classification results of other measurements.

Table 3. Experiment test results of moving digits in Figure 14b.

Label “4”

Result “0” “1” “2” “3” “4” “5” “6” “7” “8” “9”

Number of
tests 0 74 20 0 198 0 0 0 0 30

We also take the reading lamp as a noise source (the noise is shown in Figure 12)
and conduct four groups of comparative experiments with four linear velocities of the
digits, 0.729, 1.638, 4.265, and 6.626 m/s. The experiment results are shown in Table 4. The
following conclusions can be drawn. First, for all the four linear velocities, the results of
non-differential mode are affected by noise seriously, as the correct/total in noisy condition
drops dramatically versus that in noise-free condition. Second, as expected, when noise is
added, the differential mode significantly outperforms the non-differential mode, which
agrees with the simulation results shown in Figure 10. Third, when the digits move at
low velocity, the correct/total improves with the number of coefficients on the whole. At
0.729 m/s, the correct/total of differential mode in noise-free condition achieves 100% with
more than 15 coefficients. At 1.638 m/s, the correct/total of differential mode in noise-free
condition achieves 100% with 22 coefficients. Finally, there is a trade-off between motion
speed and the number of patterns. At both 4.265 and 6.626 m/s, differential mode performs
the best with 15 coefficients, that is, 30 patterns, while non-differential mode performs the
best with 22 coefficients, that is, 22 patterns. This is because more patterns take a longer
time to acquire measurements for one classification, meaning severer motion blur.
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Table 4. Experiment classification results of moving digits.

Linear
Velocity

(m/s)
Mode Number of

Coefficients
Noise-Free Noisy

Correct Total Correct/Total Correct Total Correct/Total

0.729

Non-
differential

9 18 43 41.86 6 42 14.29

15 37 44 84.09 8 41 19.51

22 40 42 95.24 18 42 42.86

33 42 43 97.67 17 40 42.50

Differential

9 29 43 67.44 27 43 62.79

15 43 43 100.00 40 43 93.02

22 42 42 100.00 42 42 100.00

33 44 44 100.00 41 41 100.00

1.638

Non-
differential

9 41 91 45.05 14 93 15.05

15 79 94 84.04 17 91 18.68

22 90 94 95.74 39 94 41.49

33 92 92 100.00 39 92 42.39

Differential

9 79 91 86.81 60 92 65.22

15 91 92 98.91 86 91 94.51

22 95 95 100.00 90 90 100.00

33 86 92 93.48 87 92 94.57

4.265

Non-
differential

9 85 220 38.64 33 232 14.22

15 143 221 64.71 42 231 18.18

22 196 220 89.09 79 231 34.20

33 139 219 63.47 73 230 31.74

Differential

9 155 220 70.45 132 232 56.90

15 145 221 65.61 161 231 69.70

22 121 219 55.25 143 231 61.90

33 88 219 40.18 93 231 40.26

6.626

Non-
differential

9 102 356 28.65 52 357 14.57

15 189 357 52.94 68 357 19.05

22 222 355 62.54 87 357 24.37

33 108 356 30.34 90 356 25.28

Differential

9 153 356 42.98 167 357 46.78

15 220 356 61.80 243 358 67.88

22 119 356 33.43 116 355 32.68

33 100 353 28.33 101 354 28.53

4. Discussions

The target object we chose as a demonstration is 28 × 28 pixels in size, totaling 784 pix-
els. In the experiment test, we, at most, selected 33 coefficients continuously from low-
frequency to high-frequency in DST domain. According to the experiment results in
Section 3.3, the trade-off between motion speed and the number of measurements indicates
that more measurements decrease the accuracy when the object moves fast. On the premise
of a favorable accuracy, we tend to use fewer coefficients. In the case of larger object
image, such as 280 × 280 pixels, the total pixels increase manifold. To keep a small number
of measurements, the way to pick coefficients in transform domain is explored. Picking
coefficients at intervals in the transform domain is a probable way.

It is thought that the classification ability of deep learning relies on the distribution
of training data. If the distribution of training data is too far from the actual application,
the classification ability of the network may decrease. In our experiment, the training data
were designed in the definite application scene, moving digits on a rotating disk, which
can hardly be adapted to objects with other movements.

The proposed method focuses on the classification scenes where the field of view
contains only a single object. At the present stage, multiple objects classification is a more
complicated problem, and our method does not apply to it. Improvement on feature
acquisition and advanced network framework are expected to address the problems.
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A camera acquires images directly, which we regard as measuring in “spatial domain”,
whereas the proposed method measures in “transform domain”. The two measuring
methods produce the same amount of data, but the measurement of each point of the two
methods contains quite different information. A measurement in the transform domain
corresponds to the weight of a frequency component in the spatial domain, which is
the global information of spatial domain. However, a measurement in the spatial domain
corresponds to only a pixel, which is the local information of the spatial domain. Performing
classification by global information has an advantage over local information and is less
disturbed by noise. In addition, the energy of natural images is concentrated at the low-
frequency band in the transform domain; thus, we can carry out classification by a small
number of measurements at the low-frequency band. Conversely, a small number of
measurements in the spatial domain make it difficult to achieve object classification.

5. Conclusions

We proposed a single-pixel classification method with deep learning for fast-moving
objects. Based on the structured detection scheme, the proposed method utilizes a small
number of DST basis patterns to modulate the image of objects and acquires 1D single-
pixel measurements sent to a neural network for classification. The neural network is
designed to use differential measurements as network input and trained by simulation
single-pixel measurements based on the physics of the measuring scheme. The differential
measuring scheme can reduce the influence of slowly varying noise. Experiment results
of rotating handwritten digits confirm that the neural network trained by simulation
data has strong generalization ability. In order to ensure the credibility of moving-object
classifications results, the data rolling utilization approach is employed for repeated tests.
The correct/total of static object classification experiment reaches 100%. Meanwhile, the
correct/total can reach 100% at low speed (0.727 and 1.638 m/s) and 74.84% when objects
move as fast as 6.626 m/s. The motion speed of the object is limited by the refresh rate of
the SLM. When noise is added, the differential mode significantly outperforms the non-
differential mode. In the static object experiment, the correct/total of the differential mode
improves by 58.13%, on average, over the non-differential mode. In the moving-object
experiment, the correct/total of the differential mode improves by 26.18%, on average, over
the non-differential mode. The results show that our method enables fast-moving object
classification of a high accuracy in a noisy scene, which can hardly be achieved by human
vision. The proposed method provides a new way to classify fast-moving objects.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/photonics9030202/s1. Visualization S1: Moving digits at different
speeds captured by using a 60-fps camera. Visualization S2: Single-pixel measurements of the moving
digit ‘4’.

Author Contributions: Conceptualization, J.Z., M.Y. and S.Z; validation, M.Y., S.Z., Z.Z., J.P. and
Y.H.; writing, M.Y., S.Z., J.Z. and Y.H.; supervision, J.Z.; funding acquisition, M.Y., Z.Z., J.P. and J.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by National Natural Science Foundation of China (NSFC),
grant numbers 61905098 and 61875074; Fundamental Research Funds for the Central Universities,
grant number 11618307; Guangdong Basic and Applied Basic Research Foundation, grant numbers
2020A1515110392 and 2019A1515011151; and Talents Project of Scientific Research for Guangdong
Polytechnic Normal University, grant number 2021SDKYA049.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available upon reasonable request
from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/photonics9030202/s1
https://www.mdpi.com/article/10.3390/photonics9030202/s1


Photonics 2022, 9, 202 17 of 17

References
1. Marr, D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information; The MIT Press:

Cambridge, UK, 2010.
2. Rawat, W.; Wang, Z. Deep convolutional neural networks for image classification: A comprehensive review. Neural Comput. 2017,

29, 2352–2449. [CrossRef]
3. Ciregan, D.; Meier, U.; Schmidhuber, J. Multi-column deep neural networks for image classification. In Proceedings of the 2012

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Providence, France, 16–21 June 2012.
4. Sermanet, P.; LeCun, Y. Traffic sign recognition with multi-scale convolutional networks. In Proceedings of the 2011 International

Joint Conference on Neural Networks (IJCNN), San Jose, CA, USA, 31 July–5 August 2011.
5. Bruce, V.; Young, A. Understanding face recognition. Br. J. Psychol 1986, 77, 305–327. [CrossRef] [PubMed]
6. Jiankang, D.; Jia, G.; Niannan, X.; Stefanos, Z. Arcface: Additive angular margin loss for deep face recognition. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 16–20 June 2019.
7. Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep learning and its applications to machine health monitoring. Mech.

Syst. Signal. Process. 2019, 115, 213–237.
8. Andreopoulos, A.; Tsotsos, J.K. 50 years of object recognition: Directions forward. Comput. Vis. Image Und. 2013, 117, 827–891.

[CrossRef]
9. Vollmer, M.; Möllmann, K.P. High speed and slow motion: The technology of modern high speed cameras. Phys. Educ. 2011, 46,

191–202. [CrossRef]
10. Edgar, M.P.; Gibson, G.M.; Padgett, M.J. Principles and prospects for single-pixel imaging. Nat. Photonics 2019, 13, 13–20.

[CrossRef]
11. Zhang, Z.; Ma, X.; Zhong, J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun. 2015, 6, 6225.

[CrossRef]
12. Gibson, G.M.; Johnson, S.D.; Padgett, M.J. Single-pixel imaging 12 years on: A review. Opt. Express 2020, 28, 28190–28208.

[CrossRef]
13. Sun, B.; Edgar, M.; Bowman, P.R.; Vittert, L.E.; Welsh, S.; Bowman, A.; Padgettet, M.J. 3D computational imaging with single-pixel

detectors. Science 2013, 340, 844–847. [CrossRef]
14. Sun, M.J.; Zhang, J.M. Single-pixel imaging and its application in three-dimensional reconstruction: A brief review. Sensors 2019,

19, 732. [CrossRef]
15. Yao, M.; Cai, Z.; Qiu, X.; Li, S.; Peng, J.; Zhong, J. Full-color light-field microscopy via single-pixel imaging. Opt. Express 2020, 28,

6521–6536. [CrossRef]
16. Carmona, P.L.; Traver, V.J.; Sánchez, J.S.; Tajahuerce, E. Online reconstruction-free single-pixel image classification. Image Vision

Comput. 2019, 86, 28–37. [CrossRef]
17. He, X.; Zhao, S.; Wang, L. Ghost Handwritten Digit Recognition based on Deep Learning. arXiv 2020, arXiv:2004.02068. [CrossRef]
18. Rizvi, S.; Cao, J.; Hao, Q. High-speed image-free target detection and classification in single-pixel imaging. In Proceedings of the

SPIE Future Sensing Technologies, Online, 9–13 November 2020.
19. Fu, H.; Bian, L.; Zhang, J. Single-pixel sensing with optimal binarized modulation. Opt. Lett. 2020, 45, 3111–3114. [CrossRef]
20. Jiao, S.; Feng, J.; Gao, Y.; Lei, T.; Xie, Z.; Yuan, X. Optical machine learning with incoherent light and a single-pixel detector. Opt.

Lett. 2019, 44, 5186–5189. [CrossRef]
21. Zhang, Z.; Li, X.; Zheng, S.; Yao, M.; Zheng, G.; Zhong, J. Image-free classification of fast-moving objects using “learned”

structured illumination and single-pixel detection. Opt. Express 2020, 28, 13269–13278. [CrossRef]
22. Alzubaidi, L.; Zhang, J.; Humaidi, A.J.; Dujaili, A.A.; Duan, Y.; Shamma, O.A.; Santamaría, J.; Fadhel, M.A.; Amidie, M.A.; Farhan,

L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021, 8, 53.
[CrossRef]

23. Kellman, M.R.; Bostan, E.; Repina, N.A.; Waller, L. Physics-based learned design: Optimized coded-illumination for quantitative
phase imaging. IEEE Trans. Comput. Imaging 2019, 5, 344–353. [CrossRef]

24. Wang, F.; Wang, H.; Wang, H.; Li, G.; Situ, G. Learning from simulation: An end-to-end deep-learning approach for computational
ghost imaging. Opt. Express 2019, 27, 25560–25572. [CrossRef]

25. Gonzales, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson Global Edition: Edinburgh, UK, 2020.
26. Aelterman, J.; Luong, H.Q.; Goossens, B.; Pižurica, A.; Philips, W. COMPASS: A joint framework for parallel imaging and

compressive sensing in MRI. In Proceedings of the 2010 IEEE International Conference on Image Processing (ICIP), Hong Kong,
12–15 September 2010.

27. Sun, B.; Edgar, M.; Bowman, P.R.; Vittert, L.E.; Welsh1, S.; Bowman, A.; Padgett, M.J. Differential computational ghost imaging. In
Proceedings of the Computational Optical Sensing and Imaging, Arlington, TX, USA, 23–27 June 2013.

28. Welsh, S.S.; Edgar, M.P.; Bowman, R.; Jonathan, P.; Sun, B.; Padgett, M.J. Fast full-color computational imaging with single-pixel
detectors. Opt. Express 2013, 21, 23068–23074. [CrossRef]

29. LeCun, Y.; Cortes, C.; Burges, C.J.C. The MNIST Database of Handwritten Digits. Available online: http://yann.lecun.com/exdb/
mnist/ (accessed on 22 February 2022).

30. Zhang, Z.; Wang, X.; Zheng, G.; Zhong, J. Fast Fourier single-pixel imaging via binary illumination. Sci. Rep. 2017, 7, 12029.
[CrossRef] [PubMed]

http://doi.org/10.1162/neco_a_00990
http://doi.org/10.1111/j.2044-8295.1986.tb02199.x
http://www.ncbi.nlm.nih.gov/pubmed/3756376
http://doi.org/10.1016/j.cviu.2013.04.005
http://doi.org/10.1088/0031-9120/46/2/007
http://doi.org/10.1038/s41566-018-0300-7
http://doi.org/10.1038/ncomms7225
http://doi.org/10.1364/OE.403195
http://doi.org/10.1126/science.1234454
http://doi.org/10.3390/s19030732
http://doi.org/10.1364/OE.387423
http://doi.org/10.1016/j.imavis.2019.03.007
http://doi.org/10.1088/1674-1056/abd2a5
http://doi.org/10.1364/OL.395150
http://doi.org/10.1364/OL.44.005186
http://doi.org/10.1364/OE.392370
http://doi.org/10.1186/s40537-021-00444-8
http://doi.org/10.1109/TCI.2019.2905434
http://doi.org/10.1364/OE.27.025560
http://doi.org/10.1364/OE.21.023068
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://doi.org/10.1038/s41598-017-12228-3
http://www.ncbi.nlm.nih.gov/pubmed/28931889

	Introduction 
	Methods and System Architecture 
	The System Architecture 
	Differential Measuring in Transform Domain 
	Neural Network Design and Training 
	Data Rolling Utilization for Repeated Tests 

	Neural Network Performance Test 
	Network Performance Test with Simulation Data 
	Network Performance Test with Experiment Data of Static Objects 
	Network Performance Test with Experiment Data of Moving Objects 

	Discussions 
	Conclusions 
	References

