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Abstract: Single-pixel imaging (SPI) is a promising imaging scheme based on compressive sensing. 
However, its application in high-resolution and real-time scenarios is a great challenge due to the 
long sampling and reconstruction required. The Deep Learning Compressed Network (DLCNet) 
can avoid the long-time iterative operation required by traditional reconstruction algorithms, and 
can achieve fast and high-quality reconstruction; hence, Deep-Learning-based SPI has attracted 
much attention. DLCNets learn prior distributions of real pictures from massive datasets, while the 
Deep Image Prior (DIP) uses a neural network′s own structural prior to solve inverse problems 
without requiring a lot of training data. This paper proposes a compressed reconstruction network 
(DPAP) based on DIP for Single-pixel imaging. DPAP is designed as two learning stages, which 
enables DPAP to focus on statistical information of the image structure at different scales. In order 
to obtain prior information from the dataset, the measurement matrix is jointly optimized by a net-
work and multiple autoencoders are trained as regularization terms to be added to the loss function. 
Extensive simulations and practical experiments demonstrate that the proposed network outper-
forms existing algorithms. 

Keywords: single pixel imaging; compressed sensing theory; Deep Learning; deep image prior;  
autoencoder 
 

1. Introduction 
Single pixel imaging (SPI) is an imaging method based on compressive sensing and 

has become a research hotspot as a new imaging technology. Single-pixel imaging has 
two main advantages. One is that two-dimensional imaging can be achieved with a single-
pixel detector without spatial resolution, so the cost is low, especially in special wave-
lengths such as infrared and terahertz. Second, the detector in the single-pixel system can 
collect the light intensity of multiple pixels at the same time, so that the signal-to-noise 
ratio is greatly improved. It has been widely used in medical imaging [1,2], radar [3–5], 
multispectral imaging [6,7], optical computing [8,9], optical encryption [10,11], etc. 

Compared with multi-pixel imaging, single-pixel imaging is still very time-consum-
ing, especially when performing high-resolution imaging, the sampling time and recon-
struction time are very long, which limits its application in high-resolution and real-time 
scenarios. When the number of measurements is much smaller than the number of image 
pixels, it takes a lot of time for iterative operations to reconstruct the image by optimizing 
and solving the uncertainty problem. Traditional reconstruction algorithms include Or-
thogonal Matching Pursuit (OMP) [12], Gradient Projection for Sparse Reconstruction 
(GPSR) [13], Bayesian Compressive Sensing (BCS) [14], Total variation Augmented La-
grangian Alternating Direction Algorithm (TVAL3) [15], and so on. Deep Learning has 
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achieved good results on computer vision tasks such as image classification, super-reso-
lution, object detection, and restoration. Deep neural networks have been studied for the 
reconstruction of compressed measurement images. Compared with traditional iterative 
algorithms, Deep-Learning-based reconstruction methods effectively avoid huge compu-
tation and achieve fast and high reconstruction quality. Deep-Learning-based single-pixel 
imaging has attracted much attention. In 2017, Lyu et al. proposed a new computational 
ghost imaging (GI) framework based on Deep Learning [16]. In 2018, He et al. modified 
the commonly used convolutional neural network and then proposed a new ghost imag-
ing method [17]. This method allows faster reconstruction of target images at low meas-
urement rates. In the same year, Higham et al. achieved real-time, high-resolution video 
restoration using a deep convolutional autoencoder [18]. In 2019, Wang et al. developed a 
one-step end-to-end neural network that can directly use the measured bucket signals to 
recover target images [19]. In 2022, Wang et al. combined the physical model formed by 
GI images and deep neural networks to reconstruct far-field images at resolutions beyond 
the diffraction limit [20]. In 2020, Zhu et al. proposed a new ghost imaging scheme for 
dynamic decoding Deep-Learning framework, which greatly improves the sampling effi-
ciency and the quality of image reconstruction [21]. We found that existing methods often 
require a large amount of training data to optimize the parameters of the network. How-
ever, in some fields, it is not easy to obtain enough data. The lack of a large amount of 
labeled data can easily lead to overfitting, resulting in poor reconstruction quality of the 
network. Second, the first layer weights of most networks are floating-point, limiting their 
application to single-pixel imaging. Therefore, we propose a compressed reconstruction 
network DPAP that combines Deep Image Prior (DIP) [22] and autoencoding priors. DIP 
uses a neural network′s own structural prior to solve inverse problems without requiring 
a lot of training data. This makes up for the shortcomings of existing deep neural networks 
that rely on large datasets. Our main contributions are as follows: 
1. We propose a compressed reconstruction network (DPAP) based on DIP for single-

pixel imaging. DPAP is designed as two learning stages, which enables DPAP to fo-
cus on statistical information of the image structure at different scales. In order to 
obtain prior information from the dataset, the measurement matrix is jointly opti-
mized by a network and multiple Autoencoders are trained as regularization terms 
to be added to the loss function. 

2. We describe how DPAP optimizes network parameters with an optimized measure-
ment matrix, enforcing network implicit priors. We also demonstrate by simulation 
that optimization of the measurement matrix can improve the network reconstruc-
tion accuracy. 

3. Extensive simulations and practical experiments demonstrate that the proposed net-
work outperforms existing algorithms. Using the binarized measurement matrix, our 
designed network can be directly used in single-pixel imaging systems, which we 
have verified by practical experiments. 

2. Related Work and Background 
2.1. Single Pixel Imaging System 

Figure 1 shows the single pixel imaging system that we proposed previously. The 
parallel light source is provided by a LED (CreeQ5), parallel light tube collimators and 
attenuators (LOPF–25C–405). Under the illumination of parallel light, the target is imaged 
on the DMD (0.7XGA 12° DDR) by the imaging lens (OLBQ25.4–050). The DMD consists 
of 1024 × 768 micro-mirrors that can be rotated by ±12°, and the size of each micro-mir-
ror is 13.68 um × 13.68 um. The binary measurement matrix is loaded on the DMD to 
module the image by FPGA (Altera DE2–115), and the micro-mirror whose corresponding 
element is 1 is flipped by +12°, and the micro-mirror whose corresponding element is 0 is 
flipped by −12°. In the +12° direction we place a lens (OLBQ25.4–050) to collect the light 
to the photon counter PMT (Hamamatsu H10682) to get the count value. If DMD becomes 
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N pixels through micro-mirror combination and 𝐴𝐴 is a 𝑀𝑀 × 𝑁𝑁 binarized measurement 
matrix, the ith row of the measurement matrix 𝐴𝐴 is loaded on the DMD, count value 𝑦𝑦𝑖𝑖 
can be obtained. After M modulations, the final result 𝑦𝑦(𝑦𝑦 = [𝑦𝑦1,𝑦𝑦1, … ,𝑦𝑦𝑀𝑀]) can be ob-
tained. The whole process can be expressed as: 

𝑦𝑦 = 𝐴𝐴𝐴𝐴 + 𝑒𝑒 (1) 

where 𝑒𝑒 is the existing noise, and 𝑀𝑀/𝑁𝑁 is called the measurement rate (M is less than or 
equal to N). The image 𝐴𝐴 is reconstructed from the measurement values 𝑦𝑦 and the meas-
urement matrix 𝐴𝐴. 

 
Figure 1. single pixel imaging system, DMD: Digital Micro-Mirror Device, PMT: photomultiplier 
Tube, FPGA: field programmable gate array. 

2.2. Deep-Learning-based Compressed Sensing Reconstruction Network 
Traditional compressive reconstruction algorithm: In single-pixel imaging, the 

number of measurements is much smaller than the number of image pixels, and the image 
must be reconstructed by solving the under-determined problem. Traditional compres-
sive sensing reconstruction algorithms combine the prior knowledge of the scene to solve 
an under-determined problem. The prior knowledge includes sparsity prior, non-local 
low-rank regularization, and total variation regularization. There are three main methods 
to solve this under-determined problem: convex relaxation method, greedy matching pur-
suit method and Bayesian method. Algorithms such as OMP [12], GPSR [13], BCS [14], 
TVAL3 [15] mostly solve the reconstruction problem based on the assumption that images 
are sparse in the transform domain. GPSR [13] is a convex relaxation algorithm that con-
verts a non-convex optimization problem based on 𝑙𝑙0 norm to a convex optimization 
problem based on 𝑙𝑙1 norm to solve. OMP [12] solves the minimum 𝑙𝑙0 norm problem di-
rectly through a greedy algorithm. BCS [14] is a Bayesian method that transforms the re-
construction problem into a probabilistic solution problem by using the prior probability 
distribution of the signal. TVAL3 [15] combines the enhanced Lagrange function and the 
alternating minimization method based on the minimum total variance method. These 
traditional reconstruction methods are easy to understand and have theoretical guaran-
tees. However, in these algorithms, even the fastest algorithms can hardly meet the re-
quirement of real-time. 

Deep-learning-based compressive reconstruction network: In recent years, com-
pressed reconstruction networks based on Deep Learning have been widely used to solve 
image reconstruction problems. Instead of specifying prior knowledge, data-driven ap-
proaches have been explored to learn the signal characteristics implicitly. Mousavi et al. 
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stacked denoising autoencoders (DAEs) and then reversed the overall optimization [23], 
which improved compressed signal recovery performance and reduced the reconstruc-
tion time. Kulkarni et al. adopted the idea of blocking and proposed a ReconNet model 
based on image super-resolution reconstruction [24], which improved the accuracy of im-
age compressed reconstruction. Yao et al. proposed a deep residual reconstruction net-
work (DR2Net) [25], which introduced the ResNet structure on the basis of ReconNet to 
further improve the reconstruction quality of the compressed images. Inspired by gener-
ative adversarial network (GAN), Bora et al. proposed to use a pre-trained DCGAN for 
compressive reconstruction (CS-GM) [26]. Algorithms based on Deep Learning have 
higher running speed and reconstruction accuracy, but cannot explain the process of im-
age reconstruction. Metzler et al. unroll the traditional iterative algorithm into a neural 
network, and use the training data to adjust the network parameters after unrolling. 
Through this hybrid approach, the corresponding prior knowledge can be learned from 
the training data while making the algorithm interpretable. LDAMP [27] unroll the DAMP 
[28] algorithm, and then using the algorithm parameters as the learned weights. It outper-
forms some advanced algorithms in both running time and accuracy. 

2.3. Deep Image Prior 
The deep image prior [22] is a method to solve the linear inverse problem using the 

neural network structure prior. DIP captures image statistical properties in an unsuper-
vised way without any prior training. 

arg min
𝜃𝜃
‖𝑅𝑅𝜃𝜃(𝑧𝑧) − 𝐴𝐴0‖22 , 𝐴𝐴� = 𝑅𝑅𝜃𝜃∗(𝑧𝑧) (2) 

where 𝐴𝐴0 is the damaged image, 𝐴𝐴� is the final recovered image and 𝑧𝑧 is a fixed random 
vector. Different from the existing methods, DIP treats the neural network itself as a reg-
ularization tool. It implicitly exploits the regularization effect generated by the network 
in recovering damaged images. The optimized network can produce high-quality images. 
DIP does not rely on large datasets; hence, it has broad applications in areas where real 
data is difficult to obtain or data acquisition is expensive [29,30]. In recent years, some 
studies have proposed adding explicit priors to boost the DIP with better results [31,32]. 

2.4. Denoising Autoencoder Prior 
Autoencoder prior has been shown to be incorporated into appropriate optimization 

methods to solve various inverse problems [33–35]. Bigdeli et al. defined the denoising 
autoencoder (DAE) prior [35], inspired by Alain [36]. Specifically, the DAE is trained using 
Equation 3, where 𝐷𝐷𝜎𝜎𝜂𝜂 denotes DAE and 𝐴𝐴 is the input image. 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 = 𝐸𝐸𝑥𝑥,𝜂𝜂(�𝐴𝐴 − 𝐷𝐷𝜎𝜎𝜂𝜂(𝐴𝐴 + 𝜂𝜂)�
2

) (3) 

where the expectation is over all input images 𝐴𝐴 and noise 𝜂𝜂 with standard variance 𝜎𝜎𝜂𝜂. 
The study by Alain et al. shows that the output of the optimal DAE is related to the true 
data density 𝑝𝑝(𝑙𝑙) [36]. 

𝐷𝐷𝜎𝜎𝜂𝜂(𝐴𝐴) =
∫𝑔𝑔𝜎𝜎𝜂𝜂(𝜂𝜂)𝑝𝑝(𝐴𝐴 − 𝜂𝜂)(𝐴𝐴 − 𝜂𝜂)𝑑𝑑𝜂𝜂

∫𝑔𝑔𝜎𝜎𝜂𝜂(𝜂𝜂)𝑝𝑝(𝐴𝐴 − 𝜂𝜂)𝑑𝑑𝜂𝜂
 (4) 

where 𝑔𝑔𝜎𝜎𝜂𝜂 is a Gaussian kernel with standard deviation 𝜎𝜎𝜂𝜂. More importantly, the auto-
encoder error is proportional to the log-likelihood gradient of the smoothing density when 
the noise has a Gaussian distribution [36]. 

𝐷𝐷𝜎𝜎𝜂𝜂(𝐴𝐴)− 𝐴𝐴 = 𝜎𝜎𝜂𝜂2∇log [𝑔𝑔𝜎𝜎𝜂𝜂 ∗ 𝑝𝑝](𝐴𝐴) (5) 

The DAE error vanishes exactly at the stationary points of the true data distribution 
smoothed by the mean shift kernel [36]. Therefore, the DAE error can reasonably be used 
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as a prior to solve various problems. Inspired by the above work, we use Equation 6 as a 
prior for our image reconstruction. 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 = ‖𝐴𝐴 − 𝐷𝐷(𝐴𝐴 + 𝜂𝜂)‖22 (6) 

A novel prior based on the autoencoding network was added to our network and 
achieved more desirable results. DPAP is a plug-and-play model that can be plugged into 
any effective DAE. Furthermore, different priors can be provided by different denoisers 
(BM3D [37], FFDNet [38], etc.) [39]. 

3. Proposed Network 
3.1. Network Architecture 

Inspired by deep image prior, we proposed a compressive reconstruction network 
CSDIP, shown in Figure 2. It consists of a preliminary reconstruction network 𝐹𝐹𝑓𝑓(·) and 
a DIP reconstruction network 𝐹𝐹𝑟𝑟(·). The original image 𝐴𝐴  is multiplied by a random 
measurement matrix 𝐴𝐴 to obtain the input measurement value 𝑦𝑦. 𝐹𝐹𝑓𝑓(·) maps the meas-
urement value 𝑦𝑦 to a preliminary reconstructed image 𝐴𝐴𝑟𝑟 with the same dimensions as 
the original image. 𝐴𝐴𝑟𝑟 is input to 𝐹𝐹𝑟𝑟(·) to obtain prediction of the original image 𝐴𝐴�. 𝐴𝐴� is 
multiplied by this measurement matrix 𝐴𝐴 to obtain prediction of measurement value 𝑦𝑦�. 
We adjust the parameters of the network by minimizing the difference between 𝑦𝑦 and 𝑦𝑦�. 
Update the network weights by gradient descent, so that the smaller the difference be-
tween 𝑦𝑦 and 𝑦𝑦�, the closer the network output 𝐴𝐴� is to 𝐴𝐴. Different from the existing com-
pressive reconstruction network, CSDIP set the loss function in the measurement domain 
and only uses a single image to optimize network weights. 

 
Figure 2. Structure of the proposed CSDIP. 

On the basis of CSDIP, we propose DAPA as shown in Figure 3, which mainly makes 
two improvements. First, we designed a network that includes two fully connected layers 
to optimize the measurement matrix 𝐴𝐴 by data learning. The weights of the first fully 
connected layer is used as measurement matrix 𝐴𝐴. The optimized measurement matrix 𝐴𝐴 
contains the prior information of the image data distribution and provides more underly-
ing information of the image. This can speed up the reconstruction process and make the 
network more robust. Second, we add the DAE prior as a regularization term to the loss 
function. Three copies of 𝐴𝐴� is used as three-channel fed into two DAEs with different lev-
els of noise training. Here the DAEs are all trained in advance. The outputs of the two 
DAEs are averaged, respectively, to obtain single-channel images 𝐴𝐴�1 and 𝐴𝐴�2. We take the 
difference between the output of DPAP 𝐴𝐴� and 𝐴𝐴�1,𝐴𝐴�2 as the display regularization term. 
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Figure 3. Structure of the proposed DPAP, where 𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀(∙) means to average the three-channel im-
age. 

Preliminary reconstruction network: The fully connected layer in the network is 
used to restore the low-dimensional measurements to the size of original image. This en-
sures that the subsequent reconstruction process is carried out smoothly. 

DIP reconstruction network: The structure of the DIP reconstruction network is 
shown in Figure 4. The DIP reconstruction network consists of two U_net [40] sub-net-
works, that is 𝐹𝐹𝑟𝑟1(∙) (first stage) and 𝐹𝐹𝑟𝑟2(∙) (second stage). 

The initial features are extracted by a 3*3 convolution and sent to subsequent decod-
ers and encoders. Max pooling and deconvolution layers are used for upsampling and 
downsampling. The channels of features are doubled when downsampling, and the max 
pooling layer is shared by both sub-networks. 𝐹𝐹𝑟𝑟1(∙) and 𝐹𝐹𝑟𝑟2(∙) use different convolution 
modules to learn the features, where 𝐹𝐹𝑟𝑟1(∙) uses the Edsr module [41] and 𝐹𝐹𝑟𝑟2(∙) uses the 
HIN module [42]. In the first stage, we process the output of 𝐹𝐹𝑟𝑟1(∙) through the super-
vised attention module (SAM) [43] to obtain an enhanced attention feature. This feature 
will be used as the residual feature required in the next stage. In the second stage, we first 
process the initially reconstructed image using 3 × 3 convolution (+ReLU), and then add 
the generated feature with the enhanced attention feature to obtain the multiscale feature. 
This multiscale feature is processed by two 3 × 3 convolutions (+ReLU) to obtain the 
𝐹𝐹𝑟𝑟2(∙) input. Finally, a 1 × 1 convolution is used in 𝐹𝐹𝑟𝑟2(∙) to get the output of the DIP 
reconstruction network. The cross-stage feature fusion (CSFF) module [43] is used to fuse 
the two-stage features, which enriches the multiscale features of the second stage. The two 
sub-networks of the DIP reconstruction network can focus on information at different 
scales. This enables the network to focus on finer features, thus increasing the gain of the 
network. 
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Figure 4. Structure of the DIP reconstruction network. 

The structure of Edsr module and HIN module is shown in Figure 5. The Edsr mod-
ule consists of two 3 × 3 convolutions, Dropout layers, and Selu functions. It preserves 
the residual structure of ResNet. Residual scaling is used because it greatly stabilizes and 
optimizes the training process. We use a Dropout layer after the convolution of both HIN 
module and Edsr module, which is also to stabilize the optimization process. The HIN 
module divides the input features extracted by the first convolution into two parts by 
channel, and subsequently performs a normalization operation on one part alone, leaving 
the other part unprocessed, and finally merges the two parts. The merged intermediate 
features are processed by 3 × 3 convolution to obtain the residual features. The branch 
feature is obtained after a 1 × 1 convolution of the input feature. HIN module output by 
add the residual features with branching features. Dropout layers are not added to the 
first and last two modules used in 𝐹𝐹𝑟𝑟1(∙) and 𝐹𝐹𝑟𝑟2(∙). 
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Figure 5. Structure of Edsr Module and HIN Module. 

Denoising autoencoder: The structure of the DAE that we used is given in Figure 6. 
DAEs use noisy data to learn how to efficiently recover the original input. The DAE con-
sists of an encoder and a decoder that generates the reconfiguration. Max pooling and 
deconvolution layers are used for upsampling and downsampling. The convolutional 
layer before upsampling is followed by its rectified linear units (ReLU). The size of the 
convolution kernel is 3 × 3. In the encoder, the number of channels is 64, 64 and 32, re-
spectively. In the decoder, the number of channels is 32, 32 and 64, respectively. Both the 
input and output of the DAE are 3 channels. This under-complete learning can force the 
DAE to learn the most salient features in the training data, helping the network to restore 
the most useful features of the input signal. 

 
Figure 6. The structure of the denoising autoencoder. 

3.2. Loss Function/Regularization Term Design 
The input of DPAP is a single 32 × 32 × 1 image. We take the difference between 

the two measurements as the loss function fidelity term. 𝜙𝜙𝜃𝜃 is a set of weights and biases 
for the initial reconstruction network and the DIP reconstruction network during optimi-
zation. 

𝑦𝑦 = 𝐴𝐴𝐴𝐴 (7) 

arg min
𝜃𝜃
‖𝐴𝐴𝜙𝜙𝜃𝜃(𝑦𝑦) − 𝑦𝑦‖22   𝐴𝐴� =  𝜙𝜙𝜃𝜃∗(𝑦𝑦) (8) 
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The DAE error is used as a display regularity term to accelerate DPAP to produce 
good quality images. 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 = ‖𝐴𝐴� − 𝐷𝐷(𝐴𝐴�)‖22 (9) 

To make our DAE more efficient, we first make 3 copies of the single-channel image, 
and then concatenate them in the last dimension to get a three-channel image. We train 
the DAE using three-channel images. 

𝑋𝑋 = [𝐴𝐴, 𝐴𝐴, 𝐴𝐴] (10) 

Benefiting from the three-channel strategy, more similar detailed features are learned 
by the DAE. We average the output of the DAE, still using the difference between the 
single-channel images as the regularization term. Noise level is a very important param-
eter. Too high or too low noise level will make the network unable to converge to the 
global optimal result. The network wants to trade more noise for more texture details 
when the noise level is set lower, and it prefers to create smoother results when the noise 
level is set higher [44]. If we only add a single noise during training, although more de-
tailed features such as edge texture can be preserved, the generalization ability of the net-
work is poor. Therefore, two DAEs trained with different noise levels work in parallel in 
DPAP, which helps to enhance the generalization performance of the network and pay 
attention to different levels of priors. The DAE prior can be expressed as: 

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 = �𝐴𝐴� − 𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀(𝐷𝐷𝜂𝜂1(𝑋𝑋�))�
2
2 + �𝐴𝐴� − 𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀(𝐷𝐷𝜂𝜂2(𝑋𝑋�))�

2
2
 (11) 

We add a regularization factor before the regularization term to control the balance 
between the regularization term and the fidelity term. The loss function of DPAP can be 
expressed as: 

𝐴𝐴� = arg min
𝜃𝜃,𝑥𝑥�

‖𝐴𝐴𝜙𝜙𝜃𝜃(𝑦𝑦) − 𝑦𝑦‖22 + 𝜆𝜆1 �𝐴𝐴� − 𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀(𝐷𝐷𝜂𝜂1
(𝑋𝑋�))�

2

2

+ 𝜆𝜆2 �𝐴𝐴� −𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀(𝐷𝐷𝜂𝜂2
(𝑋𝑋�))�

2

2
 

(12) 

3.3. Training Method 
A typical Deep-learning method is to learn a feasible mapping function from a large 

number of data pairs(𝑦𝑦𝑖𝑖 , 𝐴𝐴𝑖𝑖). 

𝜃𝜃∗ = arg min
𝜃𝜃
‖𝜙𝜙𝜃𝜃(𝑦𝑦𝑖𝑖) − 𝐴𝐴𝑖𝑖)‖22 (13) 

where 𝜙𝜙𝜃𝜃 is obtained by random initialization. However, this case is only suitable when 
a large amount of data is available and the test images are similar to the training set. Our 
scheme can compute a feasible solution by minimizing the measurement domain loss 
function without relying on the object data. We adjust the parameters of the network by 
minimizing the loss function in the measurement domain and update the weights by gra-
dient descent. The smaller the difference between y and 𝑦𝑦�, the closer the network output 
𝐴𝐴� is to 𝐴𝐴. It can be expressed as: 

𝜃𝜃∗ = arg min
𝜃𝜃
‖𝐴𝐴𝜙𝜙𝜃𝜃(𝑦𝑦) − y)‖22 + 𝜆𝜆1�𝐴𝐴� − 𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀(𝐷𝐷𝜂𝜂1(𝑋𝑋�))�

2

2

+ 𝜆𝜆2�𝐴𝐴� − 𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀(𝐷𝐷𝜂𝜂2(𝑋𝑋�))�
2
2  , 𝐴𝐴� = 𝜙𝜙𝜃𝜃∗(𝑦𝑦) 

(14) 

The network structure itself can capture rich low-level image statistical priors for im-
age reconstruction [45]. The mapping function 𝜙𝜙𝜃𝜃∗ obtained after the optimization of the 
network parameters can be directly used to restore the image 𝐴𝐴�(𝐴𝐴� = 𝜙𝜙𝜃𝜃∗(𝑦𝑦)). We use the 
Adam optimizer to iterate 20,000 times and update the reconstructed image every 100 
iterations. We use the same set of 91 images used in [46] to generate the training data for 
the DAEs and measurement matrices. Subsequently, 32 × 32 pixel blocks are extracted 



Photonics 2022, 9, 343 10 of 11 
 

 

from these images with a stride of 14. This process results in a total of 21,760 pixel blocks, 
which are used as input to the network. The images generated by DPAP are of poor qual-
ity in the early stages of iteration. A very high error value will be obtained if poor quality 
images are used as input to the pre-trained DAE. Therefore, if the DAE error is introduced 
into the network as a regularization term at the early stage of training, the overall loss of 
the network will be difficult to converge because the regularization term is too high, which 
is obviously a result we do not want to see. We iterate the network before adding the DAE 
until DAE error is similar to the measurement error, which can effectively avoid this prob-
lem. The regularization factor remains constant during iterations. The detailed training 
method has been given in Algorithm1. 

Algorithm 1  DPAP algorithm 
Autoencoder training: 
 Initialize encoder weight 𝐷𝐷𝑒𝑒 and decoder weight 𝐷𝐷𝑑𝑑. 
 For number of training iterations undertake the following: 
  Input batches of data (𝐴𝐴𝑖𝑖)𝑖𝑖𝑁𝑁, 
  For all i, Copy the input image (𝐴𝐴𝑖𝑖)𝑖𝑖𝑁𝑁 as three-channels: 

(𝑋𝑋𝑖𝑖)𝑖𝑖𝑁𝑁 = (𝐴𝐴𝑖𝑖 , 𝐴𝐴𝑖𝑖 , 𝐴𝐴𝑖𝑖)𝑖𝑖𝑁𝑁 
  Generate Gaussian random noise: 

[𝑑𝑑𝑑𝑑𝑑𝑑1,𝑑𝑑𝑑𝑑𝑑𝑑2] = 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑑𝑑𝑧𝑧𝑒𝑒 𝑜𝑜𝑜𝑜 𝐴𝐴𝑑𝑑 
𝜂𝜂𝑖𝑖 = [𝑑𝑑𝑑𝑑𝑑𝑑1,𝑑𝑑𝑑𝑑𝑑𝑑2, 3] 

  Add Gaussian noise: (𝑋𝑋𝑖𝑖𝜂𝜂)𝑖𝑖𝑁𝑁 = (𝑋𝑋𝑖𝑖)𝑖𝑖𝑁𝑁 + 𝜂𝜂𝑖𝑖, 
  Compute coded value: 𝑌𝑌𝑖𝑖 = 𝐷𝐷𝑒𝑒𝑋𝑋𝑖𝑖𝜂𝜂 
  Decode the coded value: 𝑋𝑋� = 𝐷𝐷𝑑𝑑𝑌𝑌𝑖𝑖 
  Updata the 𝐷𝐷𝑒𝑒 and 𝐷𝐷𝑑𝑑 to minimize the reconstruction error: 

arg min
𝐷𝐷𝑒𝑒,𝐷𝐷𝑑𝑑

�𝑋𝑋𝑖𝑖 − 𝐷𝐷𝑒𝑒𝐷𝐷𝑑𝑑𝑋𝑋𝑖𝑖𝜂𝜂�2
2 

 end for 
 Get 𝐷𝐷𝑒𝑒 and 𝐷𝐷𝑑𝑑. 
Measurement matrix training: 
 Initializes the weights of the two fully connected layers: 𝑊𝑊1,𝑊𝑊2. 
 For number of training iterations undertake the following: 
  Input batches of data (𝐴𝐴𝑖𝑖)𝑖𝑖𝑁𝑁, 
  For all i, compute the fully connected layer rebuild value: 𝐴𝐴� = 𝑊𝑊1𝑊𝑊2𝐴𝐴𝑖𝑖 
  Updata the 𝑊𝑊1 𝑀𝑀𝑀𝑀𝑑𝑑 𝑊𝑊2 to minimize the reconstruction error: 

arg min
𝑊𝑊1,𝑊𝑊2

‖𝐴𝐴𝑖𝑖 −𝑊𝑊1𝑊𝑊2𝐴𝐴𝑖𝑖‖22 

 end for 
 Get 𝑊𝑊1 and 𝑊𝑊2. 
DPAP testing: 
 Initialize the weight of preliminary reconstruction network 𝐹𝐹𝑓𝑓(·) and DIP recon-
 struction network 𝐹𝐹𝑟𝑟(·). 
 Restore the fully connected layer weight 𝑊𝑊1 as the measurement matrix 𝐴𝐴. 
 Restore the Autoencoder weight: 𝐷𝐷𝑒𝑒1,𝐷𝐷𝑑𝑑1 and 𝐷𝐷𝑒𝑒2,𝐷𝐷𝑑𝑑2. 
 For number of training iterations undertake the following: 
  Input: just one image 𝐴𝐴 
  Compute measurement value: 𝑦𝑦 = 𝐴𝐴𝐴𝐴 
  Compute the value of preliminary reconstruction network and DIP recon-
   struction network: 

𝐴𝐴𝑟𝑟 = 𝐹𝐹𝑓𝑓(𝑦𝑦) 
𝐴𝐴� = 𝐹𝐹𝑟𝑟(𝐴𝐴𝑟𝑟) 

  Compute the measurement value of the reconstruction: 
𝑦𝑦� = 𝐴𝐴𝐴𝐴� 

  Copy the input image 𝐴𝐴� as three-channels: 𝑋𝑋� = [𝐴𝐴�, 𝐴𝐴�, 𝐴𝐴�] 
  Compute Autoencoder error: 
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 𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷 = 𝜆𝜆1�𝐴𝐴� − 𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀(𝐷𝐷𝑒𝑒1𝐷𝐷𝑑𝑑1𝑋𝑋�)�
2
2 + 𝜆𝜆2�𝐴𝐴� − 𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀(𝐷𝐷𝑒𝑒2𝐷𝐷𝑑𝑑2𝑋𝑋�)�

2
2 

  Compute measurement error: 
𝐿𝐿𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑒𝑒𝑚𝑚𝑒𝑒𝑚𝑚𝑚𝑚 = ‖𝑦𝑦 − 𝑦𝑦�‖22 

  If the Autoencoder error and measurement error are on the same order of 
   magnitude: 
   Updata the preliminary reconstruction network and DIP reconstruc-
    tion network to minimize reconstruction error: 
    arg min

𝐹𝐹𝑓𝑓,𝐹𝐹𝑟𝑟
‖𝑦𝑦 − 𝑦𝑦�‖22 + 𝜆𝜆1�𝐴𝐴� − 𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀(𝐷𝐷𝑒𝑒1𝐷𝐷𝑑𝑑1𝑋𝑋�)�

2
2 + 𝜆𝜆2�𝐴𝐴� − 𝑀𝑀𝑒𝑒𝑀𝑀𝑀𝑀(𝐷𝐷𝑒𝑒2𝐷𝐷𝑑𝑑2𝑋𝑋�)�

2
2 

  else: 
   Updata the preliminary reconstruction network and DIP reconstruc-
    tion network to minimize measurement error: 

arg min
𝐹𝐹𝑓𝑓,𝐹𝐹𝑟𝑟

‖𝑦𝑦 − 𝑦𝑦�‖22 

 end for 
 Return 𝐴𝐴�. 

The measurement matrix needs to be binarized when our network is applied to a SPI 
system. We binarize the first fully connected layer weights with the sign function. 

𝐴𝐴b = sign(𝐴𝐴) � +1,𝐴𝐴 ≥ 0
−1, otherwise (17) 

where 𝐴𝐴 is a floating-point weight, and 𝐴𝐴𝑏𝑏 is a binary weight. However, the derivative 
of the sign function is almost 0 everywhere, which makes the backpropagation process 
unable to proceed smoothly. Inspired by the binarized neural network [47], we use the 
tanh function to replace the sign function during backpropagation to rewrite the gradient. 

Htanh(𝐴𝐴) = Clip(𝐴𝐴,−1,1) = max[𝐴𝐴 − 1, min(1, 𝐴𝐴)] (18) 

when the network optimization is complete, the weight matrix of the first fully connected 
layer is the binary measurement matrix we need. 

4. Results and Discussion 
In this section, a series of simulation experiments will verify the reconstruction per-

formance of our network and use the peak signal-to-noise ratio (PSNR) to evaluate the 
quality of reconstruction. 

4.1. DIP Reconstruction Network Performance Verification Experiment 
We compare the reconstruction effect of DPAP using different DIP reconstruction 

networks. We trained U_Net, Edsr [41], Wdsr [48] and our DIP reconstruction network 
(ODRN) using Algorithm 1, separately. To ensure fairness and simulate a real environ-
ment, we did not use DAEs and added uniform random noise with a noise level of 0.1. 
Table 1 and Figure 7 show the imaging results of these four networks. The reconstruction 
quality of our DIP reconstruction network is much better than U_Net, Edsr and Wdsr. 
This also proves that the stage learning network has advantages in single image recon-
struction. The first stage of DPAP learns the residual features accurately and the second 
stage adds details quickly, which ensures that DPAP reconstructs images with high qual-
ity. 
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Figure 7. PSNR values of DPAP imaging results when using different DIP reconstruction networks. 

Table 1. PSNR of reconstruction results at different measurement rates when DPAP uses different 
DIP reconstruction networks. 

Image Name Methods MR = 0.05 MR = 0.1 MR = 0.2 MR = 0.3 MR = 0.5 

eye 

U_net 17.577 22.079 17.344 23.273 26.354 
Edsr 13.494 15.140 21.459 26.885 28.414 
Wdsr 18.615 19.830 20.896 23.190 26.333 

ODRN 21.087 23.990 27.102 27.425 28.314 

butterfly 

U_net 16.494 17.177 18.141 18.344 27.669 
Edsr 12.816 10.344 16.789 18.926 21.488 
Wdsr 14.979 16.872 17.060 19.690 23.491 

ODRN 15.898 18.808 19.211 21.296 23.943 

parrot 

U_net 19.078 17.562 19.401 21.050 24.863 
Edsr 13.530 14.666 19.204 25.923 26.244 
Wdsr 17.833 18.967 21.253 21.360 22.482 

ODRN 20.552 23.373 24.736 25.083 27.107 

babara 

U_net 12.127 14.513 17.617 19.673 21.152 
Edsr 12.276 14.862 21.703 20.159 25.351 
Wdsr 12.490 14.910 19.635 22.939 25.935 

ODRN 12.957 16.011 17.709 22.087 24.623 

hat 

U_net 16.259 18.456 19.077 20.132 21.933 
Edsr 15.635 18.436 21.311 23.585 24.206 
Wdsr 17.695 20.970 21.876 21.340 24.914 

ODRN 16.982 19.671 20.410 21.882 24.336 

Mean PSNR 

U_net 16.307 17.958 18.316 20.494 24.394 
Edsr 13.559 14.690 20.093 23.096 25.141 
Wdsr 16.322 18.310 20.144 21.705 24.631 

ODRN 17.495 20.370 21.834 23.555 25.664 

The combination of DIP and the sampling process reduces the need for high-quality 
noise-free images. As shown in Figure 8, our DIP reconstruction network can recover 
sharper detailed textures and boundary contours than U_Net, Edsr and Wdsr in the case 
of noise pollution. Figure 9 shows some images generated by DPAP during testing. 
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Figure 8. Imaging results of DAPA using different DIP reconstruction networks at 0.2 measurement 
rate, from top to bottom are (a) original image; (b) reconstructed by U_Net; (c) reconstructed by 
Edsr; (d) reconstructed by Wdsr; (e) reconstructed by our DIP reconstruction network. 

 
Figure 9. Some images generated by DPAP with a measurement rate of 0.1 at different number of 
iterations. 

4.2. DPAP Performance Evaluation after Optimizing Measurement Matrix 
To verify that optimizing the measurement matrix resulted in higher gains for the 

network, we also selected the random Gaussian matrix as the measurement matrix for 
comparison. For each measurement rate, a random Gaussian matrix with a standard var-
iance of 0.01 was generated as the measurement matrix. The experimental results are 
shown in Table 2 and Figure 10. Our handcrafted measurement matrix performs much 
better than the Gaussian random matrix. Especially at 0.2 measurement rate, our hand-
crafted measurement matrix outperforms the random Gaussian matrix by 5.7 dB in PSNR. 
Optimizing the measurement matrix by data learning is a very effective method. Com-
pared to random Gaussian matrices, our handcrafted measurement matrices impose 
stricter constraints on DPAP, forcing DPAP to perform the implicit prior. 

 
Figure 10. PSNR values of imaging results when DPAP uses different measurement matrices. 
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Table 2. PSNR values of DPAP imaging results using different measurement matrices at different 
measurement rates. 

Image Name Methods MR = 0.05 MR = 0.1 MR = 0.2 MR = 0.3 MR = 0.5 

eye 
Gaussian 12.688 20.863 23.179 24.167 28.140 

FC 23.307 25.736 27.499 29.216 32.837 

butterfly 
Gaussian 14.841 10.935 17.025 18.745 24.315 

FC 17.942 20.243 23.064 22.581 26.530 

parrot 
Gaussian 14.377 17.605 18.836 22.790 26.103 

FC 21.650 23.779 25.715 29.424 32.727 

babara 
Gaussian 12.079 14.637 12.737 20.124 22.504 

FC 12.825 16.057 17.227 21.985 26.837 

hat 
Gaussian 13.905 16.697 15.671 17.342 21.545 

FC 18.206 20.383 22.820 22.066 25.365 

Mean PSNR 
Gaussian 13.574 16.142 17.489 20.635 24.522 

FC 18.786 21.240 23.265 25.106 28.859 
FC: a measurement matrix trained with two fully connected layers; Gaussian: a random Gaussian 
matrix as a measurement matrix. 

4.3. An Exploratory Experiment on Denoising Autoencoder Priors 
Different form most algorithms that rely on Alternating Direction Method Multipli-

ers (ADMM) [49], we avoid the complicated derivation of the denoising function in back-
propagation. We compared DPAP without DAE, DPAP with a single-channel DAE and 
DPAP with a three-channel DAE. Single-channel DAE means the DAE is trained with sin-
gle-channel images, and three-channel DAE means the DAE is trained with three-channel 
images. Four regularization coefficients 0.0011, 0.0012, 0.0013, 0.0014 are selected accord-
ing to the actual situation. DAE errors are added as regularization terms when DPAP it-
erates 3000 times. This is to prevent the network from converging because the regulariza-
tion term is too high. Figure 11 and Table 3 show the best results for DPAP among these 
four regularization coefficients. 

 
Figure 11. PSNR values of test pictures at different measurement rates when DPAP uses different 
channel denoising autoencoders. 
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Table 3. PSNR of 5 test images when DPAP uses different channel denoising autoencoders at dif-
ferent measurement rates. 

Image Name Methods MR = 0.05 MR = 0.1 MR = 0.2 MR = 0.3 MR = 0.5 

eye 
No DAE 23.307 25.736 27.499 29.216 32.837 

Single-channel 24.571 27.357 29.372 31.450 34.720 
Three-channel 25.183 27.789 29.748 30.682 34.793 

butterfly 
No DAE 17.942 20.243 23.064 22.581 26.530 

Single-channel 18.734 20.282 22.832 23.578 27.772 
Three-channel 19.051 20.393 24.141 24.534 28.605 

parrot 
No DAE 21.650 23.779 25.715 29.424 32.727 

Single-channel 23.820 27.377 28.256 30.104 36.140 
Three-channel 24.389 27.158 27.300 30.633 37.639 

babara 
No DAE 12.825 16.057 17.227 21.985 26.837 

Single-channel 13.344 16.614 18.837 22.401 28.920 
Three-channel 12.661 16.938 19.944 24.441 29.377 

hat 
No DAE 18.206 20.383 22.820 22.066 25.365 

Single-channel 18.963 21.620 23.251 23.604 28.653 
Three-channel 18.983 21.142 23.266 26.290 29.026 

Mean PSNR 
No DAE 18.786 21.240 23.265 25.106 28.859 

Single-channel 19.886 22.650 24.510 26.228 31.058 
Three-channel 20.053 22.684 24.880 26.653 31.888 

The performance of the network has been greatly improved after using DAE. Figure 
12 shows images reconstructed by DPAP using DAEs trained with different channels im-
ages. The underlying data density distribution learned by the DAE helps DPAP to recover 
more fine textures. The DAE with three-channel image training achieves better perfor-
mance than single-channel image, and the texture details of the reconstructed images are 
more completely preserved. This also preliminarily confirms that the DAE error can be 
used as a very effective prior to solve the problem of image reconstruction, and the high-
dimensional training data can further enrich the prior information. 

 
Figure 12. DPAP imaging results using different channel denoising autoencoders at a measurement 
rate of 0.2, from top to bottom are (a) original images; (b) reconstructions without denoising auto-
encoders; (c) a single-channel denoising autoencoder; (d) a three-channel denoising autoencoder. 

4.4. Comparison of DPAP with Other Existing Networks 
We also compare our reconstruction algorithm with the TVAL3 algorithm and two 

Deep-Learning-based algorithms, ReconNet, DR2Net. To ensure fairness, we add the 
same measurement matrix in front of ReconNet and DR2Net. The training data of the DAE 
is used to train ReconNet and DR2Net, with a total of 21,760 training samples of size 32*32. 
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ReconNet and DR2Net use the Adam optimizer for 2000 iterations, while the autoencod-
ing network and the network for optimization of the measurement matrix iterates only 
500 times. The main network of DPAP does not need to be trained, and the parameters of 
the network are optimized through an iterative strategy. Figure 13 and Table 4 give the 
PSNR of the five reconstructed images. Even compared to existing algorithms trained 
with large amounts of data, our algorithm still has significant advantages. At all measure-
ment rates, DPAP demonstrates its powerful prior modeling capabilities. The reconstruc-
tion results are shown in Figure 14. In simulation, our network achieves better loss-reduc-
tion levels (experiments show that this level is maintained around 1e-5 order of magni-
tude) and shorter convergence times than other networks under the same conditions. This 
also confirms the feasibility of our proposed scheme. Figure 15 shows the reconstruction 
error curves of DPAP, ReconNet and DR2Net at a sampling rate of 0.05. We ensure that 
ReconNet and DR2Net are already in a state of convergence. 

 
Figure 13. PSNR of test images with different algorithms at different measurement rates. 

 
Figure 14. Reconstructed images of 5 test images under different algorithms at a measurement rate 
of 0.2, from top to bottom are (a) original images; (b) reconstructed by TVAL3; (c) reconstructed by 
ReconNet; (d) reconstructed by DR2Net; (e) reconstructed by DPAP. 
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Table 4. Reconstructed PSNR of 5 test images using different networks at different measurement 
rates. 

Image Name Methods MR = 0.05 MR = 0.1 MR = 0.2 MR = 0.3 MR = 0.5 

eye 

TVAL3 24.214 25.419 29.208 31.255 34.822 
ReconNet 24.046 22.534 28.857 28.556 31.078 
DR2Net 21.999 27.876 29.522 30.799 30.404 
DPAP 25.183 27.789 29.748 31.682 34.793 

hair 

TVAL3 17.404 21.115 22.268 24.137 26.881 
ReconNet 19.018 20.897 19.443 23.745 25.126 
DR2Net 18.533 21.479 22.367 18.735 24.301 
DPAP 19.043 21.305 22.555 23.049 25.651 

parrot 

TVAL3 23.284 23.030 27.597 29.275 34.395 
ReconNet 22.736 26.245 27.647 16.051 18.995 
DR2Net 22.591 22.188 31.648 33.288 31.704 
DPAP 24.389 27.158 27.300 30.633 37.639 

babara 

TVAL3 12.585 16.159 18.865 21.274 26.366 
ReconNet 12.737 16.261 16.501 18.955 24.574 
DR2Net 13.012 15.798 14.681 19.360 19.726 
DPAP 12.661 16.938 19.944 23.777 29.377 

hat 

TVAL3 17.512 18.754 21.815 22.878 26.960 
ReconNet 19.362 21.045 22.839 24.133 25.811 
DR2Net 18.913 20.605 23.048 23.654 23.530 
DPAP 18.983 21.142 23.266 23.638 29.026 

Mean PSNR 

TVAL3 19.000 20.895 23.951 25.764 29.885 
ReconNet 19.580 21.397 22.967 24.977 27.346 
DR2Net 19.014 21.593 24.253 25.167 25.933 
DPAP 20.052 22.866 24.563 26.356 31.297 

 
Figure 15. Loss curves of ReconNet, DR2Net and DPAP at a measurement rate of 0.05. 

4.5. Validation of DPAP on A Single Pixel Imaging System 
We also applied our scheme to a single pixel imaging system. In the actual experi-

ment, we binarized the measurement matrix and loaded it into the DMD, and then used 
the measurement value of the single pixel imaging system for reconstruction. The pictures 
“flower” and “horse” were reconstructed at measurement rates of 0.1, 0.2, 0.3 and 0.5, 
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respectively. The reconstruction results are shown in Figure 16. The reconstruction effect 
of DPAP was not significantly better than that of TVAL3. We think this may be caused by 
the following two reasons. First, when DPAP is applied to a single pixel imaging system, 
the measurement matrix needs to be binarized. The binarization operation reduces the 
accuracy of the measurement matrix, which leads to a decrease in the DPAP reconstruc-
tion effect. However, we can see in Figure 13 that DPAP outperforms TVAL3 when using 
the floating-point matrix. Secondly, the texture of the image we selected is relatively sim-
ple and TVAL3 is more suitable for reconstructing this sort of picture. 

 
Figure 16. Reconstruction results of the proposed network and the conventional network on a single 
pixel imaging system, (a) the reconstruction algorithm is TVAL3; (b) the reconstruction algorithm 
is DPAP. 

5. Conclusions 
This paper proposes a compressed reconstruction network based on Deep Image 

Prior for single pixel imaging. A series of experiments show that the stage-learned net-
work DPAP, which combines autoencoding priors and DIP, can make full use of the struc-
tural priors of the network. Compared with traditional TVAL3, ReconNet, and DR2Net, 
DPAP has better reconstruction effects and faster convergence speed. The higher the 
measurement rate, the more obvious the advantage of DPAP. DPAP also does not depend 
on large data sets, so it has broad application prospects in the field of medical imaging 
where real data inside the human body cannot be obtained and some areas with strong 
confidentiality. In addition, as long as the measurement matrix is binarized, it can be 
loaded on the DMD for actual imaging, which enables our network to be directly applied 
to the single pixel imaging system. 
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