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Abstract: Traditional machine vision is widely used to identify apple quality, but this method finds
it difficult to distinguish the apple stem and calyx from defects. To address this, we designed a
new method to identify the stem and calyx of apples based on their concave shape. This method
applies a fringe projection in a computer vision system of 3D reconstruction, followed by multi-
threshold segmentation and a 2D convex hull technique to identify the stem and calyx. A camera and
projector were used to reconstruct the 3D surface of the front half of an inspected apple. The height
information for each pixel was reconstructed by a fringe projection and mathematical transformation.
The 3D-reconstructed result was subjected to a multi-threshold segmentation technique and the
segmentation results contained a concave feature in the curved line, representing the concave stem
and calyx. The segmentation results were then subjected to a 2D convex hull technique, allowing for
the identification of the stem and calyx. This method was evaluated using four groups of apples, and
the proposed method is able to identify the stem and calyx with 98.93% accuracy.

Keywords: stem and calyx identification; multi-threshold segmentation; 2D convex hull; fringe
projection

1. Introduction

The apple is a popular fruit, which is rich in nutritional value and consumed world-
wide. With the development of apple-growing technology and the increase in apple
cultivation, global apple production has increased significantly. The consumer demand for
high-quality apples has increased, and apple quality is mainly evaluated by fruit appear-
ance [1,2]. The early detection of fruit damage is economically important, as the presence
of even a single rotten or defective apple in a box of apples accelerates damage to all the
apples, so the efficient removal of damaged fruit is necessary to preserve the quality of the
remaining apples in the box. Low-quality apples reduce economic benefits and damage the
reputation of the seller. Thus, it is essential to evaluate the appearance of apples early for
optimal storage. Traditional apple grading relies on human workers who observe apples
on an assembly line and select apples after visual inspection. Although somewhat effective,
this method is time-consuming and has a low accuracy. Therefore, it is essential to develop
an automatic system to inspect apples quickly and with high accuracy.

According to a consumer survey [3], 90% of consumers think the most important
characteristic of apples is their flavor, with only a few consumers prioritizing the color,
variety, or price. Bruised and blemished apples may have an altered flavor. Considering the
consumer demand for apples that taste good, an effective inspection system is required to
identify blemishes and bruises before the apples are distributed to markets. However, the
stem and calyx regions of apples may look similar to defects on the apple’s surface, making
it difficult to distinguish these regions during practical identification [4,5]. Therefore, it is

Photonics 2022, 9, 346. https://doi.org/10.3390/photonics9050346 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics9050346
https://doi.org/10.3390/photonics9050346
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0003-4282-9821
https://orcid.org/0000-0001-8137-671X
https://doi.org/10.3390/photonics9050346
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics9050346?type=check_update&version=1


Photonics 2022, 9, 346 2 of 12

critical to develop improved methods to distinguish the stem and calyx from apple surface
defects. Machine vision is applied in many fields [6–9].Since the early 1990s, machine vision
has been adapted for the rapid and precise identification of fruit quality [10]. Machine
vision technology does not require physical contact with the apples, which reduces the
risk of additional damage [11–13]. Machine vision has been applied to assess the quality of
apples based on the color [14], size [15], and the presence of bruises [16–18], and size and
color identification has been applied in practical production [19,20].

Many studies have explored strategies to identify surface bruises on apples. For
example, Throop et al. designed a machine that can transfer apples and use a camera to
photograph the stem and calyx regions [21]. However, this machine is expensive and cannot
effectively differentiate between defects and the stem or calyx. Zhang et al. proposed a
method to identify the stem and calyx, which relies on the formation of different spots
after the projection of encoded dot-matrix structured light on the stem and calyx regions or
the fruit surface [22]. Spot location changes can be used as coding primitives to produce
M-dot arrays, and then the analysis of the matched difference matrix can identify the stem
and calyx regions with 93.17% accuracy. Yang et al. built an imaging system using a linear
structured light emitter, which detects structured light streak patterns based on structured
light contours and can identify fruit stem and calyx regions [23]. Jiang et al. proposed a
method to identify apple stem and calyx regions based on pattern recognition, and used
vector machine, nearest neighbor classifier, decision tree, and AdaBoost classifier methods
to distinguish defects from the stem and calyx regions [24]. The experimental results show
that this method can identify the apple stem with a 95% correct classification rate and the
calyx with a 96% correct classification rate. Zhang et al. proposed an automatic identifi-
cation algorithm to identify the stem and calyx regions using an evolution-constructed
feature. This method uses a near-infrared spectrum to obtain images and constructs a
series of transformations by evolution-constructed features, allowing the identification
of high-quality features with 94% accuracy [25]. Tian et al. used hyperspectral imaging
combined with principal component analysis and neural networks to segment the stem
and calyx. This model exhibited 97.8% accuracy, but the identification was slow and effi-
ciency was low [26]. Zhang et al. used the structure of near-infrared light to reconstruct a
three-dimensional model of an apple, which was compared to a standard spherical model
to segment the stem and calyx, but the slow scanning speed of the line-structured light did
not allow for an online assessment of apple quality [27].

These studies show significant progress, but these methods are insufficient for the
rapid and accurate stem and calyx identification required for an actual production line.
Mechanical positioning methods have low accuracy, because it is difficult to hold an apple
steadily. Spectral identification techniques typically have high recognition accuracy, but
require large amounts of data for image processing, with long processing times and high
system hardware costs, making these strategies unsuitable for practical online processing.
The main purpose of this work was to develop a computer vision system to identify the
stem and calyx of an apple. To achieve this, a multi-threshold technique and 2D convex
hull techniques were used to identify the convex and concave parts of the apple surface.
The system allows for adaptations to the size and position of an apple during inspection.

The efficient identification of the stem and calyx regions requires the following sub-
objectives: (1) the construction of a stem and calyx identification system (see Section 2.2);
(2) the reconstruction of the 3D model of the apple to be tested (see Sections 2.2 and 2.3);
(3) the construction of a mathematical model of multi-threshold segmentation to segment
the apple phase–height image, and implement a two-dimensional convex hull technique
to calculate the convex hull in segmented apple phase–height segmentation images (see
Section 2.4); (4) testing the recognition performance of this algorithm to identify the stem
and calyx (see Section 3); (5) discussing the advantages and limitations of the method, and
considering changes for future implementation (see Section 4).
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2. Materials and Methods
2.1. Samples Used in the Experiments

Many types of apples are grown in China. The ‘Fuji’ apple is one of the most popular
cultivars, and has good nutritional value. To test the effectiveness of this method to identify
the stem and calyx regions in different apples, we purchased 60 ‘Fuji’ apples of different
sizes and shapes from the local market in Hefei as experimental samples. These examples
included 20 apples with defects and 40 apples without apparent defects. The apples were
red and yellow in appearance, 40~80 mm in diameter, and 35–60 mm in height. To increase
the randomness of samples, the apples were placed on an electric spinning plate, which
moved 60◦ at a time, and a screw-sliding table, which moved randomly. The screw-sliding
table and the electric spinning plate worked together and effectively increased the number
of experimental groups, ensuring the stem and calyx regions were randomly positioned
in each apple image. Then, we randomly selected five different images for each apple.
This gave a total of 300 experimental groups, including 280 effective experimental groups
in four categories: (a) 34 groups of apple images with defects, without an apparent stem
and calyx; (b) 62 groups of apple images with defects, with an apparent stem and calyx;
(c) 36 groups of apple images without defects, without an apparent stem and calyx;
(d) 148 groups of apple images without defects, with an apparent stem and calyx.

2.2. Fringe Projection System

The fringe projection system, as shown in Figure 1, included a camera (Basler a2A1920-
160ucBAS, Basler AG, Ahrensburg, Germany), a projector (DLP Light-Crafter 4500, Texas
Instruments, Dallas, TX, USA), a screw-sliding table, an electric spinning plate, and a
computer. The resolution of the camera was 1920 × 1200 pixels, the focal length of the lens
was 8 mm, and the effective formation of the slide rail was 300 mm. The angle between
the camera and the projector was approximately 30◦, the optical center of the camera and
projector was parallel to the reference plane, and imaging occurred with the apple 0.4~0.5 m
in front of the field of view. The electric spinning plate was fixed to a screw-sliding table
and rotated in the plane of operation, while the reciprocating screw-sliding table moved
along the slide rail in the direction of the y-axis.
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Figure 1. Schematic illustration of fringe projection system. Figure 1. Schematic illustration of fringe projection system.

The principle of the fringe projection system is shown in Figure 2. This widely-used
technique is based on the use of structured illumination for an optical three-dimensional
shape measurement. First, fringes were projected onto the surface of the object by the
projector. Fringes were deformed by passage through the object’s height modulation,
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capturing the height information of the object. The image information was transferred into
a computer and the phase–height of the object could be reconstructed by an analysis of
the fringes.
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Figure 2. Schematic diagram of the system.

As shown in Figure 2, point C represents the optical center of the projector and point
D represents the optical center of the camera. Line CD is parallel to the reference plane,
the camera optic axis is perpendicular to the reference plane, and the distance from the
optical center of the camera to the reference plane is l. For point H, a random point on the
surface of the object, the distance from this point to the reference plane is h, and the lines
connecting the optical center of the camera and the optical center of the projector intersect
the reference plane at points A and B, respectively [28,29]. The mathematical expression of
the fringe image taken by the camera was:

I(x, y) = a(x, y) + b(x, y) cos(2π fxx + ϕ) (1)

where x and y are the spatial coordinates; a(x, y) is the average intensity; b(x, y) is the
intensity modulation; fx is the spatial frequency along the x-axis direction; and ϕ represents
the initial phase. Assuming the phases at points B and H were:

ΦB = 2π fxxB + ϕ (2)

ΦH = 2π fxxA + ϕ (3)

xA = OA, xB = OB (4)

The phase difference between point H and point B was:

∆Φ = ΦH −ΦB = 2π fx(xA − xB) = 2π fx AB (5)

To the similar triangles ∆HCD, ∆HAB, and point B, we knew that:

CD
AB

=
l − h

h
=

2π fx × CD
∆Φ

(6)

Therefore, the phase–height mapping relationship to the measured object could be
calculated as:

h =
l × ∆Φ

2π fx × CD + ∆Φ
(7)
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2.3. Height Measurement

The phase-shift method can measure three-dimensional images with advantages of
good stability and high accuracy. Here, a five-step phase shift was used to solve the phase
of the fringe. The general mathematical expression of the intensity of every point in the
phase-shift fringe is:

Ii(x, y) = a(x, y) + b(x, y) cos[φ(x, y) + δi] (8)

where i represents the number of phase-shift steps; i = 1, 2 · · · 5; δi = 2πi/5; δi represents
the phase shift, and φ is the phase to be determined, which was calculated as:

φ(x, y) = − tan−1

[
∑5

i=1 Ii(x, y) sin δi

∑5
i=1 Ii(x, y) cos δi

]
(9)

The value of φ, calculated by Equation (9), is limited at (−π,+π], so φ is also known
as the wrapped phase. This requires the unwrapping of the phase to calculate the absolute
phase Φ:

Φ(x, y) = φ(x, y) + 2πk(x, y) (10)

where k represents the integer fringe orders. Here, we used a three-frequency method of
high, medium, and low frequency to unwrap the wrapped phase.

The low-frequency fringe contained only one period, so the low-frequency wrapped
phase φ1 did not require phase unwrapping to obtain the low-frequency absolute phase
B, i.e., φ1 = Φl . Based on the mathematical proportionality between the low-frequency
absolute phase Φl , the medium-frequency absolute phase Φm, and the high-frequency
absolute phase Φh, the fringe levels corresponding to the medium-frequency wrapped
phase φm and the high-frequency wrapped phase φh could be calculated as follows (Km
and Kh):

Km = Round
[
( fm/ fl)×Φl − φm

2π

]
(11)

Kh = Round
[
( fh/ fm)×Φm − φh

2π

]
(12)

where Round[] denotes rounding to the closest integer value; fh, fm, and fl represent
the frequencies of the high-frequency fringes, the medium-frequency fringes, and the
low-frequency fringes, respectively. In turn, it could be calculated that:

Φm(x, y) = φm(x, y) + 2πKm(x, y) (13)

Φh(x, y) = φh(x, y) + 2πKh(x, y) (14)

2.4. Stem and Calyx Identification

As described earlier, a real-time apple inspection system requires the ability to distin-
guish the stem and calyx from true defects. In our approach, we considered the surface of
an apple to be composed of both convex and concave parts. The concave parts were usually
around the stem or calyx, and the convex parts were nearly spherical, so our approach
was to try to identify the concave parts on the apple’s surface. We assumed that the stem
and calyx always appeared in the center of a concave surface and that a bruise always
appeared on a convex surface, so to distinguish the stem and calyx regions, we tried to
identify concave surfaces.

As shown in Figure 2, we obtained the phase–height image of each apple by a fringe
projection and 3D reconstruction technique. After 3D reconstruction to generate the image
of the apple, we next performed a multi-threshold segmentation to segment the 3D recon-
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struction. First, as shown in Equation (15), we calculated the segmentation spacing h from
the height maximum and minimum values of the phase–height image.

h = (Φmax −Φmin)/N (15)

where h denotes the segmentation spacing between adjacent segmentation layers; Φmax
represents the maximum value of the phase–height image; Φmin represents the minimum
value of the phase–height image; N represents the number of layers of segmentation of the
phase–height image, the most important multi-threshold parameter in this approach.

After the determination of the segmentation range and segmentation spacing h, we
next segmented between the maximum and minimum values to generate N equally spaced
layers. Then, we selected an optimum number of layers (N) to segment the phase–height
image and obtain all segmented images. Figure 3 shows a schematic diagram illustrating
the multi-threshold segmentation for N equal to six layers. The positions of the blue lines
indicate the layers which were segmented. Each segmentation layer was parallel and
equally spaced. Equation (16) shows the calculation principle for the segmentation of the
phase–height image.

Pn(x, y) =
{

1, i f Φ > Φmax − nh
0, otherwise

(16)

where n = 1, 2, · · · , N; Pn represents the segmentation result.
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After obtaining the segmentation result, all layers were next processed with the 2D
convex hull technique. Figure 4 shows the selection of an optimal threshold number of
layers (N = 120) to segment a phase–height image. Using the 2D convex hull technique,
we processed all segmentation results to obtain the 2D convex hull (Qn) data. As shown in
Figure 5a, compared to the segmentation result (Pn), the 2D convex hull result (Qn) better
filled the concave feature. Using the algorithm, we could easily separate concave and
convex features. The concave feature information (Dn) was obtained by subtracting the
2D convex hull data (Qn) from the segmentation information (Pn) to obtain the concave
features (Dn) of the apple. Using Equation (17), the concave features were identified using
the 2D convex hull algorithm:

Dn(x, y) = Qn(x, y)− Pn(x, y) (17)

where Dn is the concave feature; Qn is the 2D convex hull result.
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By segmenting the reconstruction results and then calculating the 2D convex hull of
the segmentation results, we obtained the concave features in all layers. We then processed
Dn and the edge of the apple image to identify the stem and calyx in the image. The specific
Equation (18) was as follows:

R = S ∪ D1 ∪ D2 · · · ∪ Dn (18)

S in Equation (18) represents the outer contour edge curve of the apple image region;
R represents the identified stem or calyx.

To explain this approach more intuitively, we illustrate the multi-threshold segmenta-
tion technique, 2D convex hull technique, and algorithm process in Figure 5. As shown in
Figure 5b, we used multi-threshold segmentation to segment the 3D-reconstructed result.
The colored lines in (b) represent part of the segmentation region. The lines on the 3D
reconstruction were exactly parallel and equally spaced. The lines on the convex surface
were parabolic, and their curvature directions were maintained, but the lines on the concave
surface were more complex. Adjacent lines may have been obscured due to sharp changes
in depth. As shown in Figure 5c, we used a 2D convex hull technique to calculate the
convex hull of the segmentation result, thereby obtaining smoother and more continuous
lines. Figure 5d shows the superposition results of all concave features and (e) shows the
identification of the stem and calyx.

3. Results
3.1. Assessment of Method Accuracy

In order to assess the efficiency of this identification method, we developed two rules
for the identification of the apple stem and calyx, and tested the method on 280 apple
images. We introduced a connected component to determine whether the stem and calyx
were detected. Connected components greater than 1000 pixels were considered images
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with accurately identified stem and calyx regions, while connecting components less than
1000 pixels indicated that the images contained no stem and calyx regions. After confirming
the detection of the stem and calyx, we judged whether the stem and calyx regions were
located in the center or at the edge of the apple image, and classified the results based on
the Euclidean distance between the center of the stem and calyx regions and the nearest
edge. For a Euclidean distance greater than 100, the stem and calyx were considered to be
located in the center of the apple image, while a distance of less than 100 indicated that the
stem and calyx were located on the edge of the apple image.

3.2. Identify Results

To evaluate the effectiveness of the method, 280 apple images were imported into the
MATLAB R2021a software platform, and typical results are displayed in Figure 6. The
first column of each group shows the original image of an apple; the second column of
each group shows the result of the stem and calyx identification, where the stem and calyx
regions have a lower gray value than the surface region of the apple; the third column shows
the 2D convex hull subtraction diagram; and the fourth column shows the identification of
the stem and calyx regions located in the center or near the edge of the images. The average
processing time was 0.353 s, so approximately three apples were analyzed per second. The
average stem and calyx identification rates were calculated as 97.06%, 100.00%, 100.00%,
and 98.65% for groups 1©, 2©, 3©, and 4©, respectively (Table 1).
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Figure 6. Stem and calyx recognition results. (a) Apple images with defects but no apparent stem and
calyx; (b) apple images with defects and detected stem and calyx; (c) apple images without defects
and no apparent stem and calyx; (d) apple images with defects and detected stem and calyx.

Table 1. Stem and calyx recognition accuracy.

Category Number of Samples Number of Correct
Identifications

Identification
Rate/%

1© 34 33 97.06
2© 62 62 100.00
3© 36 36 100.00
4© 148 146 98.65

Total 280 277 98.93
1© Apple images with defects and no apparent stem and calyx; 2© apple images with defects and detected stem

and calyx; 3© apple images without defects and no apparent stem and calyx; 4© apple images with defects and
detected stem and calyx.

The results showed that 2 out of the 184 images of apples without defects were
misidentified and 1 out of 96 apple images with defects was misidentified. As shown in
Figure 6, independent of whether an image contained the stem and calyx, this method
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was accurate for the analysis of the reconstructed images. The results showed that this
identification method improved the identification rate.

4. Discussion

In our experiment, we tested 280 apple images. Using the lead screw-sliding table and
the electric spinning plate, we simulated an actual detection environment. Compared to
previous methods described in the Introduction, our method was more accurate. Some
strategies have been accurate, so the accuracy of those methods cannot be directly compared
with the analysis of a single apple at a time, which was performed here. Some modifica-
tions may be required to apply this strategy for production line detection. The projector
and camera in our detection platform could start automatically and synchronously, for a
convenient system.

This study was the first application of multi-threshold segmentation and 2D convex
hull techniques to identify stem and calyx regions. The image analysis software may
have not been able to accurately distinguish between surface bruises and the apple stem
and calyx, so an improved process is needed for apple grading. The method developed
here allowed the accurate identification of the stem and calyx regions, with only 3 out of
280 apple images inaccurately identified. These results showed that this method was an
effective way to abstract the stem and calyx areas of the apple, but it depended on the
appropriate selection of the value of N. We tested different values of N in the range of 5 to
500, and after many experiments, N of 120 was selected as the best threshold to identify the
stem and calyx to balance identification time and error, as shown in Figure 7. The stem and
calyx regions were not correctly identified for N values of less than or equal to 10. A value
of N of 120 gave an optimal identification, but different values may be required for different
samples or different applications. For N values bigger than or equal to 300, the stem and
calyx regions were identified, but deeper bruises and edges could be misidentified as stem
and calyx regions. Future work should focus on the determination of the best threshold
value for this method to accurately identify the stem and calyx regions, and to identify
surface bruises.
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segmentation of 120; (d) identification results for segmentation of 300.

Even with an appropriate N selection, there were still some incidents of false identifi-
cation. In one case, a shadow on the surface of the apple interfered with the reconstruction,
leading to an inaccurate result. As shown in Figure 8, cavities in the reconstructed result
corresponding to the stem appear dark in color, as do surface blemishes. The identification
system filled the cavities, but the effect of shadows was not completely eliminated, so the
filled region still differed from the curved features of the apple. The system may misidentify
filled areas as stem and calyx regions because the multi-threshold and 2D convex hull
techniques are sensitive to non-surface features.
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Figure 8. Identification results when the surface contains shadows. (a) Image of an apple; (b) 3D
reconstruction with shadows; (c) identification results when the surface contains shadows; (d) 3D re-
construction result after morphological image processing; (e) identification result after morphological
image processing.

In a second example of misidentification, the stem and calyx were located in the dead
center of the projection. This area was obscured by shadows, preventing the complete
reconstruction and identification of the stem and calyx. One way to address this problem
would be to optimize the direction of projection and adjust the placement of the apple
using a mechanical device. The proposed method shared the limitation of conventional
camera identification in that only the upper part of the apple was imaged. For improved
identification, rotating an apple at a certain angle using an electric spinning plate and
combining multiple images should allow for a better stem and calyx identification to meet
the requirements of industrial application.

Imaging could also be complicated if severe water loss caused blackened regions of
apple rot. Blackened areas would present a sharp contrast with the undamaged peel. In
this case, rotten fruit can be identified using an algorithm.

5. Conclusions

We developed a method for stem and calyx identification based on a fringe projection.
This method used a phase-shift fringe projection based on the concave characteristics of the
stem and calyx and solved the convex hull in the concave region of an apple phase–height
map in a hierarchical way by a digital transformation and graphical algorithm, followed
by analyzing the phase difference map before and after processing. A total of 280 apple
images was analyzed, and the results showed that this method could effectively identify the
stem and calyx regions of apples with an overall correct identification rate of 98.93%. This
method can reduce the potential interference of the stem and calyx regions for an improved
identification of defects. Compared with the existing stem and calyx identification methods,
the method developed here exhibited an improved accuracy for an improved assessment
of the apple stem and calyx.
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