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Abstract: Turbulence-induced fading is a critical performance degrading factor for underwater
wireless optical communication (UWOC) systems. In this paper, we propose a quasi-cyclic (QC) low-
density parity-check (LDPC) code with multiple-pulse-position modulation (MPPM) to overcome
turbulence-induced fading. MPPM is adopted as a compromise between the low-power efficiency
of on–off keying (OOK) and the low bandwidth efficiency of pulse position modulation (PPM).
The bit error rate (BER) performance of LDPC-coded MPPM over turbulence UWOC channels is
investigated. The log-likelihood ratio (LLR) of MPPM is derived, and a simplified approximation is
used for iterative decoding. Subsequently, the closed-form expression of the BER, without forward
error correction (FEC) code, is obtained for the generalized-gamma (GG) fading model. Finally,
Monte-Carlo (MC) simulation results are provided to demonstrate the correctness of the derived
closed-form expressions and the effectiveness of the LDPC code with simplified LLR to improve the
BER performance for different MPPM formats over fading channels.

Keywords: UWOC; LDPC; MPPM; BER; fading

1. Introduction

The fifth-generation (5G) wireless communication network is widely deployed, which
has significantly increased capacity and supported larger-scale connections, but is limited
primarily to terrestrial communication. The upcoming sixth-generation (6G) network is ex-
pected to provide wider coverage with a seamless connection from space to underwater [1].
Though an important part of heterogeneous and massive-scale networks, underwater wire-
less communication has many challenges, due to the complex nature of the underwater
channel. Underwater wireless optical communication (UWOC) is considered an effective
solution, due to its high energy-efficiency, high-speed communication and security [2]. To
make the UWOC robust and reliable in all conditions, the effects of absorption, scattering
and turbulence, resulting in attenuation, delay spread and fading must be comprehensively
understood. Many studies have experimentally and theoretically characterized the under-
water optical absorption and scattering caused by suspended matter, ions, plankton and
other factors [3–5]. Random fluctuations of water density, temperature and salinity, result-
ing from surf, tide geothermal and so on, generate random variations on the refractive index
of water, which causes turbulence. When a light beam passes through water, turbulence
effects, such as beam wandering, spreading, jitter, and intensity fluctuation (i.e., fading),
degrade the received optical signal [6,7]. It is of great significance to investigate the fading
characteristics of underwater turbulence and to find corresponding mitigation techniques.

Various studies have investigated the scintillation index, describing turbulence strength,
which is affected by the eddy diffusivity ratio, aperture diameter, wave model and so
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on [8–10]. Experimental studies also characterized underwater turbulence caused by
different phenomena and proposed statistical distributions to fit the optical intensity fluctu-
ations [7,11–16]. A combination of exponential and log-normal distributions was proposed
in [11] to describe the fluctuations of the probability density function (PDF) in the presence
of air bubbles. Furthermore, to obtain closed-form and analytically tractable expressions
for crucial system performance metrics, the mixture exponential-gamma distribution is
adopted to characterize channel irradiance fluctuations resulting from air bubbles [12].
In [13,14], a generalized-gamma (GG) distribution was used to model the fading of coherent
and non-coherent light induced by temperature inhomogeneity. For salinity variation in-
duced turbulence, Weibull distribution can efficiently fit the acquired scintillation data [15].
Moreover, the mixture exponential-GG (EGG) distribution can describe the statistics of
underwater optical beam irradiance fluctuations due to air bubbles and temperature gra-
dient [16]. Experimental study under different underwater scenarios, incorporating the
effects of temperature gradients, salinity variation and air bubbles, demonstrate that using
beam expander-and-collimator (BEC) at the transmitter side, and/or aperture averaging
lens (AAL) at the receiver side, GG and exponentiated Weibull (EW) distributions can
excellently match the PDF of measured data in weak to strong turbulence [7].

Several turbulence mitigation techniques, such as channel coding [17], multi-hop
relaying transmission [18], aperture averaging [19], and spatial diversity [20], were studied.
Spatial diversity with linear combining at the receiver, such as equal gain combining
(EGC) and maximum ratio combining (MRC), can effectively alleviate fading impairments.
Though the MRC has optimal linear diversity reception, it is complicated due to the
requirements of both phase and fading amplitude estimation of all branches. However,
EGC, with low complexity and implementation simplicity, performs close to MRC in most
scenarios [21]. Aperture averaging can reduce the scintillation by enlarging the receiver
aperture area. System size and cost increase as aperture area increases, while performance
gain saturates due to background noise. The channel coding technique can substantially
reduce the error rate in weak turbulence channels. However, it should be combined with
other techniques to combat the degrading effects in moderate to strong turbulence [22].

UWOC performance also greatly depends on the modulation scheme. Modulation
schemes are based on spectral efficiency, power efficiency and implementation complexity.
Due to implementation simplicity, UWOC usually employs intensity modulation with
direct detection (IM/DD), rather than a coherent technique. Subcarrier intensity mod-
ulation (SIM), such as phase-shift keying (PSK) and quadrature amplitude modulation
(QAM), can effectively exploit bandwidth and improve error performance, but has issues,
such as clipping requirements, limited modulation index, and susceptibility to nonlinear-
ity [23]. Furthermore, to overcome adverse effects of strong turbulence on the performance
of QAM/PSK, adaptive modulation and diversity/coding are required [24–26]. On–off
keying (OOK) and pulse position modulation (PPM) schemes are widely used in optical
communication because of their simplicity. OOK format has superior bandwidth efficiency,
but inferior average power efficiency compared with PPM. Additionally, the OOK scheme
requires an adaptive threshold to achieve optimal detection in turbulent channels. To
overcome these drawbacks, power-efficient multipulse PPM (MPPM) can be adopted as
a tradeoff between OOK and PPM. The MPPM scheme has higher power efficiency com-
pared to OOK and higher bandwidth efficiency compared to the PPM [27]. Optical sources
can be efficiently driven with a large current for pulse modulation, ensuring a relatively
high signal-to-noise ratio (SNR) [28].

Several works reported the performance of the MPPM-based free-space optical (FSO)
and UWOC systems over turbulent channels. The study in [29] presented the performance
of PPM and MPPM formats in conjunction with a binary convolutional code and iterative
soft-decision detection for the FSO communication with weak turbulence modeled by a log-
normal distribution. The influence of bit-symbol mapping of MPPM on the iterative receiver
performance was analyzed and then provided a design rule to obtain optimal mappings for
the iterative detection scheme. The symbol error rate (SER) performance of MPPM-based
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FSO system with fixed decision threshold (FDT), optimized decision threshold (ODT) and
dynamic decision threshold (DDT) over EW-distributed fading channels were studied
in [30]. The study derived closed-form SER expressions for the three thresholds scheme
and investigated the effects of aperture averaging. It was shown that the performance of
DDT is better than those of FDT and ODT. However, the DDT scheme is computationally
complex due to requirements for channel state information (CSI).

Furthermore, combining effects of EW-distributed fading and pointing errors, SER
performance of (m, n) MPPM-based FSO system with a new soft decoder is studied in [31].
The decoder considers the largest m slots of a received signal block (n slots) as the signal
slots without CSI. The new soft-decision technique outperforms the DDT scheme. In [32],
comprehensive theoretical SER expressions (not closed-form) for soft-decision MPPM, with-
out CSI, and simplified expressions for fast and slow fading for the FSO non-memoryless
channels were derived. The numerical and simulation results for log-normal and gamma-
gamma fading were presented. Taking into account the effects of inter-symbol interference,
oceanic turbulence and receiver noise, the BER performance of spatial diversity with MPPM
receivers applied to UWOC systems operating over log-normal turbulence was investigated
in [33]. For the UWOC systems affected by salinity turbulence, the BER of variable weight
MPPM coding schemes was evaluated, based on Weibull distribution in [34]. In [31,34],
curve-fitting methods were used to obtain high accuracy conditional SER and BER formulas
in the additive white Gaussian noise (AWGN) channel, and the corresponding closed-form
SER and BER expressions in the presence of turbulence were derived, based on Gauss-
Laguerre integration and the cumulative distribution function (CDF) of the transmitted
optical irradiance.

This paper analyses the BER performance of low-density parity-check (LDPC)-coded
MPPM UWOC systems with aperture averaging over turbulence channels. To the best of
our knowledge, there is no detailed BER performance evaluation of LDPC-coded MPPM
UWOC systems over turbulence channels with different fading models. LDPC is a powerful
coding scheme with a sparse parity check matrix [35], which can approach the Shannon
capacity in the AWGN channel. The LDPC code outperforms Turbo and Reed–Solomon
(RS) codes in bursty-error channels and can be very effective for high-speed optical systems
because of its low hardware complexity and low latency [36,37]. In this work, Quasi-Cyclic
(QC) LDPC codes described in IEEE.802.16 standard [38] are investigated due to their
pros, such as simple construction, easy hardware implementation, lower computational
complexity of the encoding and decoding, and flexible adjustment of the code length
and the code rate [39]. GG and EW distributions are adopted in the study as aperture
averaging alleviates intensity scintillation and makes GG and EW distribution suitable for
modelling fading in all the considered turbulent scenarios, as outlined in [7]. The main
contributions of this paper are as follows: (i) the initial log-likelihood ratio (LLR) for LDPC
decoding is derived, based on Gaussian distribution and Jacobian logarithm, and then
simplified (ii) based on Gauss-Laguerre integration and the CDF of GG distribution, the
closed-form expression of the BER without LDPC, but experiencing GG fading, is presented,
and (iii) Monte-Carlo (MC) simulation is used to verify the derived BER expressions and
the efficiency and applicability of the LDPC scheme to mitigate turbulence-induced fading.

The remainder of this paper is organized as follows: Section 2 describes the LDPC-
coded MPPM UWOC system, channel model and general assumptions. The soft demapping
and decoding are detailed in Section 3. For comparison, the BER performance without
LDPC code over the GG fading channel is analyzed in Section 4. Numerical and simulation
results are presented, compared and discussed in Section 5. Finally, Section 6 concludes
the paper.

2. System and Channel Models

Figure 1 shows a simplified configuration of an LDPC-coded MPPM UWOC system
over turbulent channels. At the transmitter, pseudorandom binary streams are parsed
into groups of k-bits and encoded by a QC-LDPC encoder following IEEE.802.16 standard,
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generating corresponding groups of codewords with m-bits, where k and m are the infor-
mation length and code length of LDPC, respectively. Further, the codewords are grouped
into blocks with a length of L, and then the blocks are mapped into symbol constellations
on the basis of w-pulse M-slot (M, w) MPPM format, producing a modulated electrical

signal, where L = blog2

(
M
w

)
c. Assuming no interslot interference and perfect slot

synchronization, the system performance is not affected by the bit-to-symbol mapping.
The electrical signal modulates the laser, resulting in an optical signal x with an average
optical power of Pav. After propagating through the turbulent underwater channel, the
optical signal is received and converted to an electrical signal y by a photodetector (PD).
Subsequently, the signal is demodulated, based on soft-decision with log-likelihood ratio
information, which is further fed to the decoder for iterative decoding.

Figure 1. Schematic of the LDPC-coded MPPM UWOC system over turbulent channels.

The received electrical signal is expressed as [31]:

y = Rhx + n, (1)

where R is the photodetector responsivity, x is equal to zero and MPav/w in the non-signal
time slot and signal time slot, respectively. The AWGN with zero mean is represented by n,
single-sided power spectral density by N0, and the variance of σ2

n = N0/2. The channel
gain is h, which can be expressed as h = hlh f , where hl is the path loss and is assumed to
be unity, h f represents the slow-fading coefficient. Here, we use GG distribution to model
received optical intensity fluctuation.

The PDF of GG distribution is expressed as [7]:

fGG(s) =
p

adΓ(d/p)
sd−1 exp

(
−(s/a)p), s > 0 (2)

where d, a and p are fading, scaling and shape parameters, respectively. The gamma
function is represented by Γ(·). The fading coefficient is described as h f ∼ GG(m, v, Ω),
the CDF of which is given by:

FGG(s) =
Y
(

d
p ,
( s

a
)p
)

Γ(d/p)
, (3)

where Y(a, x) denotes the lower incomplete gamma function.
At the receiver, slot-by-slot detection is applied. Thus, the received electrical signal in

one slot can be written as:

y =

{
Rhlh f MPav/w + n signaltimeslot

n non− signaltimeslot
(4)

Further, the instantaneous electrical signal-to-noise ratio (SNR) is given by:

γ =

(
Rhl MPav√

2wσn

)2
h2

f =
−
γh2

f (5)
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where
−
γ =

(
Rhl MPav√

2wσn

)2
represents the average SNR in the absence of fading.

3. LLR Calculation

The min-sum algorithm is adopted for iterative decoding due to a lower-complexity
approximation to the sum-product algorithm (SPA) [40]. Prior to decoding, the initial LLR
of every bit is obtained from soft de-mapping. Let S =

[
S1, S2, · · · Sq

]
be the set of all

possible (M, w) MPPM, where q =

(
M
w

)
, Si = [s1, s2, · · · sM] is a vector denoting a slot-

symbol for the (M, w) MPPM format with w pulses and M slots. C = {C1, C2, · · ·C2L} ∈ S
is the set of effective symbols. Assuming the bit-symbol Ai = [a1, a2, · · · aL] is mapped into
the slot-symbol Ci = [c1, c2, · · · cM], its corresponding received slot-symbol is expressed
as Yi = [y1, y2, · · · yM]. Let Hi denote the set of indices for which Ci has a signal time slot.
Let Ps(y) and Pn(y) be the conditional probability density functions of a received slot with
a value of y on signal and non-signal time slots. The likelihood ratio of a slot of y is given
by lr(y) = Ps(y)/Pn(y) [41]. Based on the previous assumption, we derive the bit LLR
as follows.

The probability of the l-th bit in one symbol conditioned on Y is given by:

P(al = b|Y ) = ∑
Ci ∈ C
al = b

P(Ci|Y ), i ∈
{

1, 2, · · · 2L
}

, b ∈ {0, 1}. (6)

Using Bayes theorem, we have:

P(Ci|Y ) =
P(Y|Ci )P(Ci)

P(Yi)
=

P(Y|Ci )P(Ci)

∑2L
j=1 P

(
Y
∣∣Cj
)

P
(
Cj
) . (7)

It is assumed that the transmitted symbols Ci are equiprobable, i.e., the priori P(Ci)
remains the same, resulting in [42]:

P(Ci|Y ) =
P(Y|Ci )

∑2L
j=1 P

(
Y
∣∣Cj
) ; (8)

where:

P(Y|Ci ) = ∏
e∈Hi

Ps(ye) ∏
z/∈Hi

Pn(yz) = ∏
e∈Hi

Ps(ye)

Pn(ye)

M

∏
z=1

Pn(yz) = ∏
e∈Hi

lre

M

∏
z=1

Pn(yz). (9)

Substituting (9) into (8), we obtain:

P(Ci|Y ) =
∏e∈Hi

lre ∏M
z=1 Pn(yz)

∑2L
j=1

[
∏e∈Hj

lre ∏M
z=1 Pn(yz)

] =
∏e∈Hi

lre

∑2L
j=1 ∏e∈Hj

lre
. (10)

Using (10) and (6), we have:

P(al = b|Y ) =

∑ Ci ∈ C
al = b

∏ e∈Hi
lre

∑2L
j=1 ∏e∈Hj

lre
. (11)
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So, the LLR of al is expressed as:

L(al) = ln
[

P(al = 0|Y )

P(al = 1|Y )

]
= ln

 ∑
Ci ∈ C
al = 0

∏
e∈Hi

lre

− ln

 ∑
Ci ∈ C
al = 1

∏
e∈Hi

lre

; (12)

L(al) is the initial LLR for further iterative decoding of LDPC. When the MPPM system
is without LDPC, the bit al can be directly decoded based on the following decision:

al =

{
1, L(al) < 0
0, L(al) > 0

(13)

According to (1), Ps(y) should be the convolution of PDFs of channel gain and AWGN.
However, to simplify the calculation, herein we approximate Ps(y) with Gaussian distribu-
tion due to slow fading. Thus, we obtain:

lr(y) =
Ps(y)
Pn(y)

= exp
(

2yI − I2

N0

)
(14)

where I = RhMPav/w. Substituting (14) into (12), we have:

L(al) = ln

 ∑
Ci ∈ C
al = 0

exp

(
∑

e∈Hi

2ye I − I2

N0

)− ln

 ∑
Ci ∈ C
al = 1

exp

(
∑

e∈Hi

2ye I − I2

N0

) (15)

The calculation of (15) is very difficult for a practical system because of the com-
plex operation (even appearing infinity) and requirement of CSI. Thus, a simple and low
computational complexity expression should be applied. Based on the approximation of
ln(em + en) ≈ max(m, n) (Jacobian logarithm), (15) can be written as:

L(al) = max
Ci ∈ C
al = 0

(
∑

e∈Hi

2ye I − I2

N0

)
− max

Ci ∈ C
al = 1

(
∑

e∈Hi

2ye I − I2

N0

)
(16)

Furthermore, it can be simplified to:

L(al) = max
Ci ∈ C
al = 0

(
∑

e∈Hi

ye

)
− max

Ci ∈ C
al = 1

(
∑

e∈Hi

ye

)
(17)

In the simplification from (16) to (17), the absolute value of LLR is changed while its
sign (plus or minus), which depends on the largest received slots and decides the bit, keeps
the same due to monotonicity. Therefore, the simplification satisfies the requirement of the
iterative soft decision but does not need CSI.

4. BER Performance without the FEC

To verify the efficiency of LDPC code to mitigate turbulence-induced fading, we
compare the BERs with and without LDPC code in Section 5, prior to which approxi-
mated average BER of the MPPM UWOC system without FEC over GG-distributed fading
channels are deduced.
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The average BER Pb is obtained by averaging the conditional BER p(ε|γ) over the
fading channels as:

Pb =
∫ ∞

0
p(ε|γ)pγ(γ)dγ (18)

where pγ(γ) is the PDF of instantaneous SNR, and its CDF Fγ(γ) can be obtained using (3)
and (5), and is given as

Fγ(γ) =

Y

(
d
p ,
(

γ

a2−γ

)p/2
)

Γ(d/p)
. (19)

A curve-fitting method is an alternative to derive the exact analytical expression of the
conditional BER of MPPM-based systems [34,43]. A hyper-exponential fitting technique is
applied to derive the closed-form approximation expression of the conditional BER in [34].
An exponential fitting, which is a special case of hyper-exponential fitting, is adopted
to obtain the tractable closed-form conditional SER expression in [31]. Here, the hyper-
exponential fitting is used, and thus we assume p(ε|γ) = b1 exp

(
−b2γb3

)
, where b1, b2

and b3 ∈ R+ and are evaluated by fitting to the Monte Carlo-simulated BER in the absence
of any fading (i.e., AWGN channel). The Monte Carlo simulation is verified to ensure the
correctness prior to fitting, which is presented in Section 5. Then, with the integration by
parts, change of variables and Gauss-Laguerre quadrature formulation [43], we have:

Pb = −
∫ ∞

0 Fγ(γ)dp(ε|γ)

= b1
m
∑

i=1
wi

Υ

 d
p ,

[
1

a2−γ

(
xi
b2

) 1
b3

]p/2


Γ(d/p) ;

(20)

where xi isthe ithzeroofLaguerrepolynomials Lβ
m(x),wi = Γ(m+ β+1)xi/

{
m!
[
(m+1)Lβ

m+1(xi)
]2}

is the corresponding weight coefficient and β = 0. m = 10 is assumed, and then values of xi
and wi in (20) are shown in Table 1.

Table 1. Zeros of L10(x) and corresponding weight coefficients.

xi wi

0.13779347054049237 0.308441

0.7294545495031706 0.40112

1.8083429017403165 0.218068

3.4014336978549595 0.0620875

5.552496140063418 0.00950152

8.330152746764144 0.000753008

11.843785837899944 0.0000282592

16.279257831377613 4.24931 × 10−7

21.99658581198083 1.83956 × 10−9

29.92069701227372 9.91183 × 10−13

5. Results and Discussion

This section demonstrates the effect of LDPC code on alleviating turbulence-induced
fading by comparing the BER performance of the coded and uncoded MPPM UWOC system
in different fading scenarios modeled by various statistical distributions. An illustration of
the system flowchart is given in Figure 2.
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Figure 2. The flowchart for studying the effect of turbulence on UWOC using MPPM scheme.

Figure 3 shows the BER and SER of uncoded (5, 2) MPPM for the AWGN-only channel.
The simulation results are utilized to obtain the constants b1, b2 and b3 of the conditional
PDF p(ε|γ), which is verified by contrastive analysis. By comparison, the SER, based on
the simplified LLRs of Equation (17) is close to, but lower than, that based on finding the
largest slots as the symbol slot, i.e., SER = 0.836 exp(−0.5231γ), which is obtained using
exponential fitting to the analytical SER in [31]. Meanwhile, the corresponding BER, based
on simplified LLRs, is not greater than the BER upper bound defined in [27]. Hence, the
correctness of the simulation for the system is demonstrated, resulting in b1 = 0.4251,
b2 = 0.5861 and b3 = 0.9655.

Figure 3. Bit error rate and symbol error rate of the (5, 2) MPPM UWOC system in the absence
of fading.
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Figure 4 shows the BER performance of the (5, 2) MPPM UWOC system in the presence
of weak, moderate, and strong turbulences modeled by GG distribution. The channel
parameters of GG distribution are obtained from [7] and given in Table 2, where aperture
averaging was taken into account, as the experiments were carried out using AAL, and
σ2

I = Γ(d/p)Γ
(

d+2
p

)
/Γ2

(
d+1

p

)
− 1 represents the scintillation index. The theoretical BERs

without LDPC code are obtained using (20). As expected, the simulation and theoretical
results demonstrate excellent matching, validating the mathematical analysis. The BERs
increase with increase of the scintillation index σ2

I (i.e., turbulence strength). The LDPC
code substantially improves the BER performance for all cases. For example, the LDPC
coded system can achieve a BER of 10−5 at the SNRs of 14.4 dB and 19.9 dB, respectively, at
moderate (σ2

I = 0.5782) and strong (σ2
I = 2.0399) turbulence. In the absence of the LDPC

code, the BERs are higher than 10−2 at the SNR of 22 dB, demonstrating significant coding
gain. In weak turbulence with σ2

I = 0.2073, a code gain of ~12.1 dB is obtained at the
BER of 10−4.

Figure 4. BERs of the (5, 2) MPPM UWOC system with/without LDPC code in the GG-distributed
fading channel with different scintillation indexes.

Table 2. The parameters of GG-distributed fading channels, adopted from [7].

Channel Condition a d p σ2
I

Salinity random variations 7.882 × 10−6 15.32 0.3288 0.2073

Temperature random variations
mixed presence of air bubbles 0.64 1.6668 1.038 0.5782

Random presence of air bubbles 1.407 × 10−7 3.764 0.1942 2.0399

Figure 5 presents the BER performance of (6, 3) MPPM UWOC system over the same
turbulence channel, but modeled by different popular statistical distributions, including
log-normal, gamma-gamma, EW and GG. Log-normal and gamma-gamma generally model
fading induced by weak and moderate/strong turbulence, respectively [44]. Here, the
four distributions were used to fit the same experimental data suffering weak fading
described in Table 2, Line 2 (the detailed parameters are given in [7], Table IV, Line 5).
Uncoded UWOC system shows a similar BER performance at low SNRs irrespective of
channel model. A difference in BER performance is observed at higher SNR. Log-normal
distribution underestimates the fading, resulting in the best BER performance among the
four-channel fading models. The LDPC code with simplified LLRs always improves the
BER performance of MPPM for the UWOC systems and shows identical BER performance,
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irrespective of turbulence-induced fading distribution. For the four distributions, coding
gains are 10.7 dB, 12.4 dB, 13.6 dB and 11.8 dB at the BER of 10−4, respectively.

Figure 5. BERs of the (6, 3) MPPM UWOC system with/without LDPC code in the same weak
turbulence channel modeled by different statistical distributions.

Figure 6 shows the comparison of BERs of uncoded and coded OOK, PPM and MPPM
UWOC systems over a weak turbulence channel model by GG distribution. The initial
LLR of OOK is given by

(
2yI − I2)/N0, where I is a constant corresponding to the fixed

threshold value. PPM is a special case of (M, w) MPPM (i.e., w = 1), whose initial LLR
is obtained by (17). As reported in other work, the uncoded OOK with a fixed threshold
shows a high error floor in the turbulence channel [45]. An adaptive threshold, that
depends on the turbulence strength, is required for optimum OOK performance. The
LDPC coding significantly improves the OOK performance, but the performance of coded
OOK is inferior to MPPM. That is because LDPC decoding depends on initial LLRs (i.e.,
the received signal, which is significantly deteriorated by turbulence). By comparison,
(6, 3), (5, 2) and (4, 1) MPPM offer improved BER performance with coding gains of 11.8 dB,
12.1 dB and 12.3 dB at the BER of 10−4, respectively. Though the BER performance improves
and coding gains get higher for (6, 3), (5, 2) and (4, 1) MPPM, the spectral efficiencies given

by η = blog2

(
M
w

)
c/M decrease accordingly. This is expected, as MPPM always has

a tradeoff between spectral efficiency and power efficiency [27].

Figure 6. BERs of the UWOC systems with different modulation schemes in the GG fading channel
with a scintillation index of σ2

I = 0.2073.
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6. Conclusions

In this paper, we evaluated the BER performance of LDPC-coded MPPM UWOC sys-
tems over turbulence-induced fading channels. For iterative decoding, the initial bit LLR of
MPPM was derived and simplified, based on Gaussian distribution and Jacobian logarithm.
Furthermore, a closed-form expression of the BER without FEC was presented for using
the Gauss-Laguerre integration and GG distribution fading models. MC simulation was
adopted to verify the correctness of the closed-form analytical results and to demonstrate
the effectiveness of LDPC code with simplified LLRs on turbulence mitigation for different
modulation formats. LDPC code with simplified LLRs can significantly improve BER
performance in fading channels. LDPC offered code gains of 11.8 dB, 12.1 dB and 12.3 dB
at BER = 10−4 for (6, 3), (5, 2) and (4, 1) MPPM scheme in the GG fading channel with
a scintillation index of σ2

I = 0.2073. Furthermore, LDPC code with simplified LLRs is
suitable for practical implementation because of less computational complexity and no
requirement for CSI.
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