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Abstract: Visible light communication (VLC) is a highly promising complement to conventional
wireless communication for local-area networking in future 6G. However, the extra electro-optical and
photoelectric conversions in VLC systems usually introduce exceeding complexity to communication
channels, in particular severe nonlinearities. Artificial intelligence (AI) techniques are investigated to
overcome the unique challenges in VLC, whereas considerable obstacles are found in practical VLC
systems applied with intelligent learning approaches. In this paper, we present a comprehensive
study of the intelligent physical and network layer technologies for AI-empowered intelligent VLC
(IVLC). We first depict a full model of the visible light channel and discuss its main challenges. The
advantages and disadvantages of machine learning in VLC are discussed and analyzed by simulation.
We then present a detailed overview of advances in intelligent physical layers, including optimal
coding, channel emulator, MIMO, channel equalization, and optimal decision. Finally, we envision
the prospects of IVLC in both the intelligent physical and network layers. This article lays out a
roadmap for developing machine learning-based intelligent visible light communication in 6G.

Keywords: visible light communication; artificial intelligence; machine learning; physical layer;
network layer

1. Introduction

As 5G’s commercialization progresses, the number of 5G base stations worldwide has
surpassed one million. This marks the beginning of globally competitive future-oriented
research on 6G networks. According to several research reports [1–3], it is widely assumed
that 6G communication will go beyond the current wireless spectrum and shift towards
higher frequencies. The millimeter-wave and terahertz spectrum have long been the
research focus academically and industrially, except that the equipment is of extremely
high cost. Recently, the spectrum of light, i.e., visible and infrared light, provides a potential
supplement for 6G. During the last decade, visible light communication is being cast in
the spotlight by 6G researchers as a green, energy-efficient, high-speed communication
method [4].

Visible light communication transmits (VLC) signals in a spectrum range of 400–800 Thz,
which owns a very different physical property compared with both conventional wireless
transmission and optical communication. Communication with visible light provides
benefits of electromagnetic interference resistance, vast spectrum resources, and high-speed
transmission capabilities. Moreover, it can be equipped with common lighting systems
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to allow simultaneous illumination and communication. Furthermore, the short wave-
length of light source allows for the creation of super-compact cells, which are ideal for 6G
communication. Nevertheless, signal communication at such a small wavelength poses
critical challenges to transmitting and receiving devices. Semiconductor materials with
wide bandgaps must be employed to achieve such high-frequency photons [5]. The extra
electro-optical and photoelectric conversions compared to wireless communications intro-
duce undesirable nonlinear distortions and hinder the high-speed transmission in visible
light communications [6,7]. Traditional algorithms and strategies can help to mitigate the
specific negative influence from visible light to its communication performance [8,9]. How-
ever, these algorithms cannot offset the performance difference between VLC applications
and their existing counterparts. Thankfully, artificial intelligence (AI) has become a critical
component of the 6G network [10]. It is expected to be the optimal solution for enabling
visible light communication.

Machine learning (ML) has emerged to be the most popular technique for prediction,
classification, and pattern identification, and has shown great success in data mining, image
recognition, and other areas in the last decade. The recent development of AI processing
units further accelerates the advancement of the more powerful deep neural networks
(DNN). Many machine learning techniques have been successfully implemented in the
fields of optical communication [11] and wireless communication [12]. However, the ma-
chine learning algorithm also has their own set of drawbacks, such as high computational
complexity, long training times, and poor generalization. In the more complicated visible
light communications, these issues will be amplified. In the more complicated visible light
communications, these issues will be amplified. Therefore, machine learning should be
wisely adopted to the visible light communication scenario, in the case that it may not be a
viable solution.

Nowadays, wireless networks have progressed from software-defined radio (SDR)
and cognitive radio (CR) [13] to AI-powered intelligent radio (IR) [10]. Visible light commu-
nication, as a communication method sprouting from 6G, aims to skip the first two stages
and go directly to the IR stage. To accomplish this leap, we need to build the framework
of intelligent visible light communication (IVLC). IVLC will be a broad concept covering
both the intelligent physical layer and the intelligent network layer (including the tradi-
tional data link layer and network layer). As we have seen, 6G is still in its early stages
of development, and 6G-based IVLC is in an even more preliminary stage. Therefore, the
intelligent physical layer, which is more different from traditional wireless, could be the
core breakthrough point in forthcoming years.

In this paper, we will introduce the concepts of the intelligent physical layer and
the intelligent network layer of IVLC. The underlying physical layer will be given great
consideration. Among the existing machine learning algorithms, there are four main cat-
egories according to the purpose of implementation: regression [14], classification [15],
clustering [16], and dimensionality reduction [17]. However, in IVLC, especially in the
physical layer, the existing machine learning algorithm is not designed to achieve the above
functions. For this reason, we redefine the categories of machine learning techniques in
the physical layer of the IVLC based on the communication system framework, including
optimal coding, channel emulator, MIMO, channel equalization, and optimal decision.
As seen in Section 3, such categorization intersects with the traditional ML applications,
which facilitates readers who are interested in investigating intelligent visible light commu-
nication. Each module of the communication framework is featured with unique issues
and thus requires specially-designed machine learning algorithms. We will go through
the major obstacles of visible light communication and discuss how AI-empowered IVLC
could overcome them. It is possible that the newly emerging intelligent visible light com-
munication may play a key role in the 6G communication network, enabling worldwide
smart connectivity and the construction of air–space–ground–sea integrated networks.
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2. Statues and Challenges of VLC

Visible light communication introduces special nonlinearities due to the additional
electro-optical conversion, which can significantly impair communication performance.
Due to the spontaneous radiation properties of LEDs, visible light signals can only be
directly modulated in communication. This means that changes in signal amplitude
will directly affect the carrier concentration, and thus the recombination of electrons and
holes [18]. In this section, we present the complexity of visible channels in terms of physical
channels and modulation formats, and afterward, show the superiority of machine learning
and the attendant costs.

2.1. Visible Light Communication E2E Channel

The VLC end-to-end channel H(x) includes a digital-to-analog converter (DAC, in
arbitrary waveform generator), electronic amplifier (EA), bias tee, LED, transmission
channel, receiver, and analog-to-digital converter (ADC, in oscilloscope), as shown in
Figure 1. The entire transmission link contains electrical voltage signals, current signals,
and optical signals, as well as the conversion between them. However, due to the complexity
of the visible light channel, research now focuses on the LED emitter and the transmission
channel, which are (d), (e), and (f) of Figure 1.
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From the communication point of view, the most primitive LED transmission model is
the frequency domain model, which is given as [19]:

H(ω) = e−
ω
ωc (1)

where ωc is a fitted coefficient. This model mainly represents not only the frequency-
selective fading phenomenon of the visible light channel, but also the inter-symbol interfer-
ence (ISI) and linear memory effects. The high-frequency fading of the exp (exponential)
fits well with the limited bandwidth of visible light communication. Therefore, when
only linear channels are considered, the expression form of exp is also applicable to the
underwater visible light channel [20].

However, a linear model alone cannot describe a channel that is as complex as visible
light communication. The first consideration is the V-I transfer model of VLC [21], which
extends from the solid state power amplifier (SSPA) model [22]. Similarly, there are equiv-
alent circuit models [23] to equate the V-I transfer curve and frequency response of VLC.
Such a model implies that the nonlinear term is only amplitude-dependent, independent of
frequency and time, and independent of adjacent symbols.
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If we want to take all the above factors into account, a simple way is to equate the
overall linearity and nonlinearity to the Volterra series [24,25], as a black-box model. A
second-order Volterra expansion can be expressed as [25]:

y(m) =
N−1

∑
i=0

h(i)x(m− i) +
L−1

∑
i=0

L−1

∑
j=k

w(ij)x(m− i)(m− j) (2)

where h and w are the linear and nonlinear weights, and N and L are the tap numbers of
linearity and nonlinearity. When the signal bandwidth is small (14 MHz bandwidth) and
the signal amplitude is small (40 mA DC bias), the second-order Volterra is proven to have
better similarity [24]. High-speed visible light communication, however, often requires a
higher signal-to-noise ratio (SNR) and modulation bandwidth to meet the 6G transmission
rate requirements. Higher-order Volterra series may be expected to fit well, but would
introduce an exponential increase in computational complexity.

None of the above-mentioned channel models from the communication dimension
actually take the substance of photoelectric and electro-optical conversion into account
in computation. They simply treat it as a black box. Since LED is a GaN wide-bandgap
semiconductor material based on a multi-quantum wells (QWs) structure, the carrier rate
equation can be modeled for LED from semiconductor material considerations [26–29].
The model is named as the ABC model, where A, B, and C represent Shockley–Read–Hall
(SRH, nonradiative) recombination, radiative recombination, and Auger recombination
(nonradiative), respectively. Considering both recombination and leakage of carriers, the
recombination rate R can be expressed as follows [28]:

R = An + Bn2 + Cn3 + f (n) (3)

f (n) ≈ an + bn2 + cn3 + dn4 . . . (4)

where A, B, and C represent the SRH, radiative, and Auger recombination coefficient. n
is the minority carrier concentration. f (n) is the carrier leakage term, which has been
expanded into the Taylor series. The carrier lifetime τ, which determines the modulation
bandwidth, is given as [18]:

τ =
n
R
≈ n

An + Bn2 + Cn3 + an + bn2 + cn3 + dn4 . . .
(5)

The carrier density is determined by the effective injected current density, which is
expressed as [27]:

∆n
∆R

= −R +
ηinj J

qe
(6)

J =
I

wactive
(7)

where ηinj is the injection efficiency, J is the current density, qe is the elementary charge, I
is the current intensity, and wactive is the thickness of the effective active region. Then, the
optical output power is given by [18]:

P = VactiveEphotηEQEBn2 (8)

here, Vactive is the volume of the active layer, Ephot is the photon energy and ηEQE is the
external quantum efficiency (EQE).

As can be seen here, since the initial transmission signal is in the form of a voltage; it
first goes through a nonlinear V-I conversion [21]. Then, the relationship between current
and carriers is a dynamic nonlinear relationship. Moreover, at higher currents, there will be
an efficiency droop [28]. It is also easy to understand that the effective radiative carriers
have only second-order terms and the total number of carriers has higher-order terms.
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When the current increases, the number of carriers increases, and the effective light-emitting
carrier ratio Pratio will first increase and then decrease.

Pratio =
Bn2

An + Bn2 + Cn3 + an + bn2 + cn3 + dn4 . . .
(9)

Because of the aforesaid dynamic nonlinear equations, all of the carrier-related publica-
tions mentioned above use a tiny signal and low bandwidth assumption in their derivation.
The carrier density is minimal enough to ignore the higher-order terms due to the low
current density caused by the tiny signal. If the signal has a limited bandwidth, the pulse
duration is sufficient to make the left side of Equation (6) equal to zero. Abandoning
the higher-order and differential terms would greatly simplify the modeling of visible
light channels, but it also poses the problem of not being able to satisfy the modeling of
high-speed VLC. In later work based on both the carrier rate equation and an equiva-
lent discrete-time circuit modeling [7,30], the same assumptions were required, and the
experimental verification of the channel modeling was performed with only 2 MHz [30].

In addition to the large signals and high bandwidth that make visible light channel
modeling difficult [19,21], another challenge is transmission channel modeling [31–33].
Much work has focused on indoor visible light transmission modeling, such as multi-
path impulse-response analysis [31], ray-tracing methods based on channel impulse re-
sponse [32], and photon-based statistical modeling [33]. However, this is only one aspect of
visible light communication applications. When transmitting in an outdoor environment,
the effects of atmospheric turbulence in visible wavelengths must also be modeled. Water
environment modeling is also essential while broadcasting underwater.

Furthermore, as illustrated in Figure 1, numerous modules introduce nonlinearities.
For example, there are high-power electrical amplifiers at the transmitter side, which can
have large nonlinearities at high currents. The linear dynamic range of the receiver PIN is
usually smaller than the LED, and too much optical power can cause saturation of the PIN,
which is serious especially when using APD detectors. Therefore, the nonlinear modeling
of the driver circuit and the receiver based on different detector implementations are also
very important.

Because of the additional optoelectronic and electro-optical conversion, as well as the
rest of the nonlinear modules, the VLC end-to-end channel is extremely complex, as summa-
rized in Table 1. This also presents a significant problem for VLC’s high-speed connectivity.

Table 1. Challenges of visible light communication E2E channel.

Challenges Reasons References

Optoelectronic and
electro-optical conversion Introduces additional nonlinearity [26–29]

Large signals Brings the device into the nonlinear region [21]
Wide bandwidth Introduces severe ISI [19]

Different transmission
channel modeling

Diverse application scenarios, such as indoor,
underwater [31–33]

2.2. Modulation Format in VLC

Because of the explained limitations in commercially available LED light sources,
LED-based VLC system typically presents extremely limited bandwidth (several MHz).
Apart from developing LEDs with novel structure and the optimization of the driving
circuits, using advanced modulation formats is also an alternative for high-speed VLC
systems. In this section, we will introduce several common modulation technologies in the
VLC system.

On-off keying (OOK) as the most basic modulation format in a communication system,
uses the “on” and “off” state of the carrier to transmit the binary information “1” and
“0”. The advantages of OOK modulation are simple implementation and low cost. In
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2001, early research on LED-based VLC system applies an OOK non-return to zero (NRZ)
modulation [34]. With the development of equalization technology, a 662-Mbit/s VLC link
based on a single blue LED using OOK-NRZ modulation has been demonstrated [35].

Pulse amplitude modulation (PAM) is a one-dimensional (1-D) multilevel modulation.
Compared with OOK, the spectral efficiency of PAM is less restricted. In [36], based on
Volterra decision feedback equalization (DFE), a 1.1-Gbit/s white LED-based VLC system
is experimentally demonstrated. Investigation on the comparison of the performance of
PAM with different orders has also been reported in [37]. Experimental results indicate that
through a three-tap pre-equalizer, a data rate of 2 Gbit/s is achieved.

For the VLC system, there is strong noise at the low-frequency components. Although
this noisy spectrum can be avoided through up-conversion, the in-phase (I) and quadrature
(Q) channels are not fully utilized if using 1-D modulation such as OOK or PAM. Carrierless
amplitude-phase modulation (CAP) as a variant of QAM can not only avoid the low-
frequency noise but also demonstrate a fuller utilization of the I and Q channels. It uses
a pair of orthogonal Hilbert filters for up-conversion instead of subcarrier. CAP has been
widely used in VLC systems due to its merits of low complexity and high spectral efficiency.
The early demonstration of CAP modulation in VLC systems has been reported in 2012, in
which a 1.1-Gbit/s 23-cm free space transmission is realized [38]. Multiband CAP has also
been proposed for multi-user application; through flexible bit allocation, a VLC system
with the spectral efficiency of 4.85 bit/s/Hz is demonstrated [39].

When using the above modulation technologies, equalizers with several taps are
required to mitigate the ISI because of the bandwidth limitation effect in VLC system. If
there is strong ISI, the taps of the equalizer will increase rapidly. Alternatively, multicarrier
modulation technologies such as orthogonal frequency division multiplexing (OFDM),
discrete multitone (DMT), and discrete Fourier transform spread (DFTS)-OFDM are possible
to avoid ISI.

The OFDM signal is generated as follows: First, the transmitting sequence in the
frequency domain is divided into parallel subchannels. Then, the time-domain symbols
in a slot are the inverse fast Fourier transform (IFFT) of the frequency-domain symbols
from each subcarrier. After adding CP and parallel to serial conversion, a complex-valued
OFDM signal is generated. However, the transmitting signal is restricted to real value in
VLC system. Therefore, an extra up-conversion is required for complex-to-real conversion.
In [40], a 3-Gbit/s OFDM VLC system based on bit loading and power loading is demon-
strated, indicating that OFDM has great potential of combining with adaptive bit- and
power-allocation algorithms.

DMT is similar to OFDM, except that it uses Hermitian symmetry before IFFT, so that
the signal after IFFT is real-valued. The step of up-conversion is not needed. In [41], using
the maximum ratio combination a 2.3-Gbit/s underwater DMT VLC system is realized.
Additionally, adaptive bit- and power-allocation algorithms can also be applied for DMT.
It is reported that using a bit-loading and power-loading scheme, the data rate of the
underwater VLC system based on Si-substrate LED has achieved 3.37 Gbit/s.

Although OFDM and DMT offer desirable resistance to ISI and flexible bit and power
allocation, they are faced with a high peak-to-average power ratio (PAPR). DFTS-OFDM is
proposed to mitigate the problem. The difference is that DFTS-OFDM employs an extra
FFT operation between the serial-to-parallel conversion and IFFT. In [42], the authors have
proven that by employing DFTS-OFDM the PAPR can be significantly reduced.

The complementary cumulative distribution function (CCDF) of the transmitted signal
with different modulation formats is illustrated in Figure 2. The results indicate that the
PAPR of OOK-NRZ is the lowest, followed by PAM 4. while the PAPR of CAP and PAPR of
DFTS-OFDM are higher but exhibit similar performance. Obviously, OFDM has the highest
PAPR. As a result, signals using different modulation may experience different nonlinear
channel responses, which further aggravates the complexity.
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2.3. Advantages and Disadvantages of ML in VLC

To show the performance benefits and costs of machine learning in visible light
communication, we simply construct a visible light simulation model based on [19,25,30],
as shown in Figure 3. The second-order Volterra series is used to replace the one single tap
time-discretization, which represents the memory rate equation. The conversion curve of
voltage, current, and optical power is used to represent the memoryless optical transform.
exp is used as the overall channel frequency response. It should be emphasized that
this is only a simplified simulation model; some parameters are determined by some
communication experimental data. This simulation channel is not the focus of this article,
but it is enough to illustrate the characteristics of machine learning.
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In order to visualize the performance of machine learning, we chose to compare it in
the field of channel equalization. Figure 4 shows the performance difference between no
channel equalization, traditional nonlinear equalization, and machine learning. We used
the least mean square (LMS)-based second-order Volterra algorithm as a representative of
the traditional nonlinear equalizer. Both linear and nonlinear taps were set to 31. A one-
layer hidden-layer multilayer perceptron (MLP) was used as a representative of machine
learning. The size of the input layer was 31 and the size of the hidden layer was 128.
As demonstrated in the figure, both nonlinear algorithms can have a good performance
improvement. MLP outperforms the Volterra algorithm at various SNR. However, at low
SNR, the enhancement is not as much, which is because this is an additive noise-limited
system at this point. At high SNR, the MLP’s ability to compensate for nonlinearities is
even more evident.
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As indicated by the above results, machine learning does improve performance. How-
ever, we also need to consider its drawbacks. The first is the computational complexity, as
shown in Table 2. In this simulation, the trainable parameters of MLP reach 4225, while
it is 527 for the Volterra algorithm. MLP has a much higher computational complexity
than Volterra, which will be more obvious in actual systems where nonlinearities are more
severe. This also means that machine learning algorithms need more convergence time.

Table 2. Computational complexity of MLP and Volterra.

Algorithm Input Layer 1st Weight Layer 2nd Weight Layer Drd Weight Layer Trainable Parameters

MLP
(general) N W1 W2 WD

(N + 1)×W1 +
D
∑

i=2
(Wi−1 + 1)×Wi

Volterra
(general) Nlin, Nnon-lin / / / Nlin +

Nnon-lin×(Nnon-lin+1)
2

Another problem with machine learning is generalizability. Figure 5 shows some
results of generalizability studies on the Volterra algorithm and MLP. It can be seen that
different training data lengths affect the performance of the equalizer. If the trained model
is used for other random seed-generated data, the performance is degraded by a specific
degree. This degree of degradation is relatively less in the Volterra algorithm. As mentioned
above, there are many different modulation formats in visible light communication. For
this reason, we also tried to use the model trained based on OFDM signals for CAP signal
recovery. In this respect, one can see the more serious generalizability problems of MLP.
While machine learning has better performance, data-driven learning can cause it to learn
features that do not belong to the channel, for example, the data stream itself. The issues
mentioned above can significantly slow down the application and development of machine
learning in intelligent visible light communication. Much work should be carried out to
address these aspects.
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3. Machine Learning in Physical Layer of IVLC

In this section, we will present some applications of machine learning in the physi-
cal layer of intelligent visible light communications, such as channel emulator, channel
equalization, optimal decision, MIMO, and optimal coding, as shown in Figure 6.

3.1. Channel Emulator

As discussed in Section 2, the end-to-end channel for visible optical communication
is exceptionally complex. In the transmission model, for example, in atmospheric envi-
ronments, gas molecules and aerosol particles in the atmosphere absorb and scatter light
radiation in the near-infrared band, resulting in a loss of signal received power. In addition,
the change of atmospheric turbulence causes severe distortion to the optical signals. For
another example, in the underwater environment, the attenuation of underwater light
depends on the wavelength, where the attenuation of the signal increases with frequency.
Moreover, there are other propagation effects such as temperature fluctuations, salinity, scat-
tering, dispersion, and beam steering. For underwater VLC applications whose bandwidth
is not too high (tens of MHz), the power attenuation with frequency can be approximately
modeled as a linear relationship, allowing the modeling of underwater VLC multipath
channels using compressive sensing (CS) method [43]. Traditional methods for high-speed
point-to-point VLC cannot support accurate VLC end-to-end channel modeling, but ma-
chine learning is able to simulate the complicated nonlinear dynamics of VLC channels [44].
In massive multiple-input multiple-output (m-MIMO) VLC, the machine learning-based
methods enable accurate estimation of the channel matrix [45].

3.1.1. TTHNet

Conducting an experimental transmission test in an underwater environment is costly,
but there is no accurate analytic model as a reference for underwater high-speed VLC. In
order to reduce the cost of testing underwater VLC systems, a machine learning method
is needed to model the underwater channel. The two-tributaries heterogeneous neural
network (TTHnet) uses a convolutional neural network (CNN) for modeling the linearity
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of the underwater VLC channel and a two-layer MLP with a hollow layer for modeling the
nonlinearity of the underwater VLC channel [44]. The two-branch heterogeneous structure
makes full use of the CNN’s shared parameters, thus reducing the system complexity. At
the same time, it utilizes the MLP’s extremely strong nonlinear fitting capability to fit the
nonlinearity in the channel. Experiments show that the channel modeled by TTHnet is
extremely close to the real channel, and the average spectrum mismatch is only 36.2% of
the MLP-based channel emulator and 44.3% of the CNN-based channel emulator.

3.1.2. FFDNet

Since the modulation bandwidth of a single LED is limited, the use of m-MIMO LED
and PD arrays are expected to substantially increase the capacity and transmission rate of
VLC systems. However, due to the complexity of VLC channels, it is extremely difficult to
estimate the m-MIMO channel matrix, which requires deep learning methods. Fast and
flexible denoising convolutional neural network (FFDnet) is used for channel estimation in
millimeter-wave communication recently [46,47], which is also applicable in VLC [45]. As
an image denoising tool using machine learning, FFDnet is able to recover the input noisy
channel matrix into an almost noiseless channel matrix. Compared with the minimum
mean square error (MMSE) method, the FFDnet has a stronger denoising effect, which
can increase the peak signal-to-noise ratio (PSNR) of the recovered channel matrix image.
Unlike the nonlinear channel modeling in point-to-point high-speed VLC links, the channel
matrix is treated as an image and processed using machine learning methods of image
processing, which is of great importance in channel estimation of m-MIMO-VLC channels.

3.1.3. Conclusions

The channel capacity determines the upper bound of the communication system rate,
and therefore, the accuracy of the channel estimation determines the communication effi-
ciency of the actual system. Complex VLC channels should be accurately predicted thanks
to the widespread use of powerful ML techniques in channel estimation. ML algorithms
will guide IVLC to break through its own bottlenecks and complete the comprehensive
integration of high-speed communication and large-scale heterogeneous networking to
achieve technical solutions for next-generation communication.

3.2. Channel Equalization

Channel equalization techniques generally estimate the transfer function of com-
munication channels and try to remove the channel distortion by an adaptive filter [48].
However, the common equalizers with linear adaptive algorithms become powerless in
the field of high-speed VLC, because of the intrinsically limited modulation bandwidth of
LEDs [49] and nonlinear distortion introduced by photoelectric devices and VLC channels.
Recently, ML-based equalizers, such as artificial neural networks (ANN) [50], etc., have
been developed for VLC systems. ML-based equalizers have shown outstanding equalizing
performance, especially on modeling nonlinear phenomena, by adopting neural-network-
based algorithms. Despite this, challenges such as massive computational complexity, slow
convergence speed, and relatively poor generalization still prevent the further practical ap-
plication of ML-based equalizers for VLC systems. Therefore, researchers have developed
many variants, as presented next, to overcome those challenges.

3.2.1. Pre-Equalization GK-DNN

Conventionally, one would replace postequalization with pre-equalization to reduce
the computational complexity and power consumption at the receiver side. Research
works such as a weighted lookup table (WLUT), etc., have been proposed to mitigate the
nonlinear distortion in VLC systems [51]. However, LUT-based pre-equalization methods
suffer from a massive increase in computational complexity when dealing with high-order
and high-ISI communication scenarios. Therefore, researchers have come up with ML-
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based pre-equalization methods in the field of VLC systems to provide a new way of
solving computational problems of LUTs.

In [52], a pre-equalization method, namely Gaussian kernel-aided deep neural network
pre-distortion (GK-DNN-PD), is proposed for a high-order modulated high-speed VLC
system. GK-DNN-PD outperforms the LUT-PD in terms of memory depth (MD) and the
required training dataset, which leads to lower computational complexity. The experimental
results show a 1.56 dB Q-factor gain compared with LUT-PD.

The proposed GK-DNN-PD method consists of two phases: the training phase and
the communication testing phase. In the training phase, the received signal, which is not
pre-distorted, will be linearly equalized, giving us the label sets of the GK-DNN channel
estimator. Then, the clean transmitted signal with certain MD would be the feature sets.
Then, the GK-DNN channel estimator will be trained to obtain the weight and bias of
the estimator. Next in the communication testing phase, the weight and bias obtained
in the first phase would be used to pre-distort the clean signal that is to be transmitted.
Specifically, the difference between the clean signal and the output of the GK-DNN channel
estimator is also considered, in addition to the weight and bias during the pre-distortion
progress. Additionally, clipping operation is also adopted to reduce the peak to PAPR,
which consequently reduces the nonlinear degradation.

Moreover, an NN-based pre-equalizer is proposed in [53] to mitigate the semicon-
ductor optical amplifier (SOA) pattern effect for 50G PON, confirming the feasibility of
NN-based pre-equalizer in intensity modulation and direct detection (IM/DD) system.

3.2.2. Postequalization GK-DNN

Since the conventional nonlinear postequalization methods based on the Volterra
series suffer from a massive increase in computational complexity when dealing with
high-order nonlinearity, researchers have turned to the ML for new inspirations. However,
the time-consuming training progress of most ML-based postequalizers limits its actual
application. To accelerate the training processing and greatly relieve the computational
complexity of the equalizer at the receiver side, researchers have proposed the Gaussian
kernel-aided deep neural network (GK-DNN) [54] in the field of VLC systems.

Compared to the classical MLP, the major unique feature of GK-DNN is that the input
data would go through a functional mapping that is based on Gaussian function, namely
the Gaussian kernel, which maps the windowed input data to a nonlinear space to reduce
the number of iterations and time consumption of the fitting progress. The researchers
believe that the adjacent symbols’ influence towards the central (or current) one is in
accordance with Gaussian distribution, hence the mapping operation would accelerate the
training processing. The expression of the Gaussian kernel is given in [54]. It should be
noted that the scope-controlling parameter of the Gaussian kernel would greatly affect the
equalization performance of GK-DNN. Generally, the larger the parameter is, the faster
the training process would be. However, there is a trade-off between the training process
acceleration and equalization performance. Therefore, the Gaussian kernel parameter
selection is vital to obtain the best performance. Moreover, the selection of the number of
hidden layer nodes is equivalently important, which directly decides the computational
complexity of the equalizer. According to the experimental results in [54], the GK-DNN
equalizer could efficiently realize the postequalization in the VLC system with the aid of
Gaussian kernel, which reduces the iteration epochs of the neural network by 47.06%.

3.2.3. Postequalization FSDNN

The frequency-slicing deep neural network (FSDNN) is a variant application of DNN
that could be used in a high-speed VLC system [55]. It has the characteristics of processing
high and low frequency respectively to decrease computation complexity by 11.15% com-
pared to the traditional MLP when it comes to the equalization performance in VLC system.

In order to solve the nonlinear frequency spectrum fading issue of the received signal
after going through the VLC channel, DNN is introduced as an outstanding postequalizer
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to equalize linear and nonlinear distortion. However, the DNN structure must be complex
enough, which means that more layers and nodes are needed and computation complexity
improves to handle complicated linear and nonlinear distortions. For the expectation to
release the pressure of DNN, it is worth noticing that high and low domain frequency suffer
different degrees of fading. The high-frequency spectrum suffers more serious amplitude
attenuation, while the low-frequency spectrum suffers less fading in the received signal
in VLC system, so complex MLP structure is unnecessary for the low-frequency domain.
Therefore, the received signal can be separated into high-frequency and low-frequency
domains and processed, respectively, using a DNN equalizer with different complexity.

The received wide-band signal is split into two narrow-band parts in the frequency
domain. Its frequency spectrum is separated into two sub-bands using a low-pass filter
and a high-pass filter. Then, the two sub-band signals are respectively fed into two MLPs
to train individually. The main factors of the two-MLP network should be tested artificially
and adjusted to optimal values, including the number of layers, nodes in every layer, taps,
and epochs. Once the MLP is finished training and the weight values are fixed, the sum of
the output signal from two MLPs is the equalized and recovered signals.

3.2.4. Postequalization TFDNet

The commonly used ML-based equalizers in VLC systems often aim at fitting the
waveform of the transmitting signal, which is a time-domain-serial signal. It is expected
that the well-learned received signal should have the same spectrum as the transmitted
one. However, waveform-fitting ML equalizers would sometimes cause the spectrum
difference between the equalized signal and the original one. This suggests that we should
take both time- and frequency-domain information into consideration to obtain a better
equalization performance.

A novel postequalizer, namely joint time-frequency deep neural network (TFDNet), is
reported in [56] to compensate for the nonlinear distortions in the VLC system. TFDNet
could reveal comprehensive information of nonstationary signals received in the VLC sys-
tem by considering both time and frequency domain information simultaneously. TFDNet
can be divided into three main procedures: (1) the received one-dimensional (1D, time
domain) signal goes through a short-time Fourier transformation (STFT) operation and
would be transferred into a two-dimensional (2D, time-frequency domain) signal, which
is a matrix and could be denoted as Y; (2) then, the obtained STFT matrix Y is fed into
the NN to be trained. The labels could always be obtained by manipulating the original
transmitting signal. If we assume that each row of Y represents a certain frequency com-
ponent, then Y would be fed into the following network column by column; (3) finally,
after the NN finishes the training progress, the reconstructed transmitting signal could be
obtained by carrying out the inverse STFT (ISTFT) operation, where the analysis window
must satisfy the COLA constraint [57]. Experimental results in [56] also confirm that the
proposed TFDNet could resist severe nonlinear distortions and achieve a 0.1 Gbps and
0.2 Gbps data rate gain for VLC system compared to other nonlinear compensators such as
Volterra and DNN.

3.2.5. Postequalization DBMLP

To further improve the utility of NN equalizers, researchers had proposed a modified
double-branch multilayer perceptron (DBMLP) postequilibrium algorithm [44] to further
reduce the consumption of energy and computational resources. DBMLP reconstructed
the MLP postequalization algorithm using the structure of the Volterra series postequaliza-
tion algorithm as a template. DBMLP combines the advantages of linear adaptive filters
and MLP, which can improve the BER performance of the algorithm while reducing the
complexity of the algorithm by 74.1%. The core structure of DBMLP is two branches of
linear and nonlinear ones. In the DBMLP structure, a CNN with a convolutional layer and
a dense-layer structure to simulate the linear distortion in the signal bandwidth is the first
branch. In addition, a hollow MLP with an airlift layer and two dense-layer structures
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to simulate the nonlinear distortion outside the signal bandwidth is the second branch.
The nonlinearity of the output of the first branch is corrected by the output of the second
branch, and the hollow layer can ignore the effect of the intermediate signal on the signals
on both sides.

To further reduce power consumption and complexity, a pruning algorithm based on
DBMLP is proposed [58]. The algorithm performs the operation of pruning by setting the
smaller absolute value of weights of the connections to be pruned to 0 based on sparsity.
The weights of the linear branch are not prunable while the nonlinear ones are prunable.
The experimental results confirm the superiority of this approach.

3.2.6. Post-Equalization PCVNN

To improve the SNR in Underwater Visible Light Communication (UVLC) system,
high LED power must be encouraged due to the LED’s incoherent characteristic and the
water medium’s considerable attenuation. The nonlinearity grows more severe as the signal
amplitude increases. Consequently, symbols on the outside of the constellation sustain
a more nonlinear distortion than those on the inside. Based on complex-valued neural
network (CVNN) [59], an adaptive partition equalizer (PCVNN) [60] has been presented,
which reduces the complexity and has superior performance.

In PCVNN, the constellation is segmented into two areas by a proper threshold to
distinguish between large-amplitude signals and small-amplitude signals. Then, the large-
and small-amplitude signals are fed into two complex-valued neural networks. Finally, a
fully connected neural network is then used to combine the signals into a complete one.
Since large and small signals experience different nonlinear impairments, such a network
structure can recover the signal more accurately and can greatly reduce the complexity of
the model for small signals. The final experimental results also verified this conjecture [60].
PCVNN achieves up to 56.1% computational complexity reduction compared with the
standard CVNN at the same performance.

3.2.7. Postequalization LSTM-Equalizer

High-speed VLC is limited by inherent nonlinear effects. Linear equalizers with limited
taps seem powerless, and the Volterra series schemes suffer from high computational
complexity when the high-order taps are required. With the rise of ML in solving nonlinear
problems, long short-term memory (LSTM) networks are studied for VLC systems.

In [61], researchers proposed a memory-controlled LSTM NN equalizer for both linear
and nonlinear compensation, which outperforms the conventional Volterra-based and
FIR-based equalizers. LSTM carries out channel equalization as a pattern classifier where
the output of LSTM cells is activated by a specially designed function. Training data with
high priority would be assigned by LSTM to the latest training sequence. The proposed
LSTM equalizer in [61] contains an input layer, a logical hidden layer with long and short-
term memory, a classification layer, and an output layer with a merge node. A standard
LSTM cell structure is used for long/short-term memory links. Moreover, a batch random
resequencing procedure is adopted to control the memory effect.

Recently, the variants of LSTM have also drawn the attention of researchers because
the simple LSTMs have a slow convergence speed. This is because the LSTM unit’s
inner parameters prolong the training period. A convolution-enhanced LSTM (CE-LSTM)
equalizer, which extracts the features by using a convolutional layer, is proposed in [62] to
shrink the complexity of the LSTM network and speed up the convergence progress. The
experimental results also confirmed the feasibility of the proposed CE-LSTM equalizer.

3.2.8. Postequalization MPANN

Although the ML-based equalizers for mitigating both the linear and nonlinear distor-
tions in VLC systems have been booming recently, the computational complexity is still a
problem that needs to be further solved. Therefore, an ML-based equalizer with relatively
optimal equalization performance while still maintaining a low complexity is needed in
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the field of VLC. One promising way is to greatly relieve the equalizer’s complexity by
moderately sacrificing partial performance.

Researchers have developed a simplified ML-based equalizer, namely the memory-
polynomial artificial neural network (MPANN) [63], to prune the network structure and
still maintain similar equalization performance as MLP or other NNs. Likewise, the input
data to be fed into MPANN could be obtained by windowing the received time-serial signal.
The length of the window is usually called the memory length, which also represents the
dimensions of the features. The major characteristic of MPANN is that its input layer,
namely the memory-polynomial layer (MP layer), would expand the input features by
one certain function, which is memory polynomial expansion. In addition, the Gaussian,
Fourier basis, and other trigonometric polynomials (e.g., Legendre, Chebyshev, etc.) could
be the function in the input layer. It is believed that the demanded nodes of the modified
NN structure could be significantly decreased if one could provide a prior knowledge of
the nonlinear model. Therefore, the memory polynomial expansion is adopted to map the
input features to higher dimensional data space. Then the output pattern of the MP layer is
multiplied by the corresponding weights and fed into the following hidden layer of the
NN. A regular activating (ReLU) and weighting process are conducted in the hidden layer
and back propagation (BP) algorithm is utilized to update the parameters. Then, finally, the
output layer is utilized to output the equalized symbol. The experimental results confirmed
that the MPANN could achieve the same equalization performance as the regular MLPs
and only requires less than a quarter of the complexity [63].

3.2.9. Conclusions

As can be seen from the above presentation, the application of neural networks in
channel equalization has become more than a simple application. The integration of neural
networks with communication systems is starting to emerge. Figure 7 illustrates the existing
neural network channel equalization in VLC. Different branches of neural networks are
beginning to emerge, and many more choose to extract communication-specific features
from the input data. Beyond that, fast development of computational power resources make
it promising to implement ML-based modules in the field of VLC. ML-based methods with
powerful nonlinear phenomenon modeling ability open a new gate to solving the inherent
nonlinear problems in VLC system. However, further optimization and improvement
would be needed for those ML-based equalizers in terms of computational complexity,
convergence speed, and generalization. Table 3 compares the equalizers mentioned above.

Table 3. Summarization of machine learning algorithms for channel equalization.

Equalizers GK-DNN FSDNN TFDNet MPANN DBMLP PCVNN LSTM

Main types of NN MLP MLP MLP MLP MLP MLP RNN
Number of hidden

layers 2 1 1 1 1 1 1

Activation function ReLU ReLU ReLU ReLU Tanh ReLU Tanh,
Sigmoid

Optimizer Adagrad Adam Adam Adam Adam Adam Adam
Complexity Moderate Low High Low High Low High

Convergence speed Fast Moderate Moderate Moderate Slow Slow Slow
Pre-equ.
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supposed to have the best performance in the additive Gaussian white noise (AWGN)
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channel. However, as mentioned in Section 2, the VLC channel is not a simple AWGN
channel, but has nonuniform noise distribution and nonlinear effect. As a result, the
distortion of the constellation diagram may not exhibit a uniform Gaussian distribution
around the standard constellation points. On the contrary, the constellation clusters may
exhibit deviation or exhibit distortion highly relevant to the signal power. Apparently, the
conventional decision is not the optimal decision scheme, and novel algorithms that take
the statistical characteristics into account are required. Machine-learning-based decision
schemes have been widely investigated in visible light communication systems and great
improvement has been reported. These schemes can be divided into two categories:
classification and clustering.

3.3.1. K-Means

K-means is a common unsupervised ML algorithm, which is used for spherical clus-
tering. The main idea of K-means is to update the centroids of the constellation clusters,
and the class of the new input data depends on the Euclidean distance between the input
data and the dynamic centroids of the constellation clusters. It works especially well when
the constellation clusters exhibit overall deviation. K-means has been applied in multiband
carrierless amplitude and phase (CAP) VLC systems; experimental results indicate that for
each sub-band, a decision based on K-means achieves a 1.6–2.5 dB Q-factor gain compared
to a conventional scheme [64]. Moreover, if the deviation is known at the transmitting end,
K-means-based predistortion is also proposed [65]. However, if the constellation clusters
are not spherical, the performance of K-means will be decreased.

3.3.2. DBSCAN

Apart from the power-relevant nonlinear effect, a random jitter in the time domain is
also a detrimental factor in VLC systems. Decision schemes based on Euclidean distance
or K-means ignore the chronological order of the received sequence, so these methods are
not suitable to deal with random jitter. Meanwhile, density-based spatial clustering of
applications with noise (DBSCAN), as one of the clustering unsupervised ML algorithms,
can divide clusters according to density, and thus has great potential in mitigating the
impairment from random jitter. In [66], a DBSCAN-based decision scheme is demon-
strated in VLC systems. The received one-dimensional sequence with random jitter is
converted into a two-dimensional sequence with the time-axis. The key point of applying
DBSCAN in the VLC system is the normalization of amplitude and the time-axis, because
it is closely relevant to the density. Experimental results prove that the sequence with
random jitter can still be divided into the appropriate cluster according to the density of
the two-dimensional sequence.

3.3.3. GMM

The Gaussian mixture model (GMM) refers to decomposing a complex probability
density function into several Gaussian probability density functions. In brief, GMM can
make use of the linear combination of several single Gaussian probability density functions,
so that the model can fit a more complex probability distribution that cannot be described
by a single Gaussian function. Theoretically, if GMM contains enough Gaussian probability
density functions and the weight is set reasonably, the model can fit samples with an
arbitrary distribution. In a low-order modulation VLC system, the clustering algorithm
deals with nonlinear problems in the constellation decision of the received signal. However,
in a high-order modulation VLC system, the nonlinear effect is more obvious. When
it comes to strong nonlinearity, the constellation points on the outer ring may not be
a regular circular distribution. In [67], GMM is used to cluster the observation vectors
formed by continuous symbols to obtain the distribution relationship between continuous
symbols. The traditional soft-decision or hard-decision algorithm will directly remove the
correlation between symbols, leading to linear and nonlinear damage, which will result in
the lack of information leading to system performance degradation. When the correlation
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between adjacent symbols is taken into account, the GMM system achieves 1 to 1.5dB
sensitivity improvement. The more continuous symbols are considered, the more obviously
performance improves.

3.3.4. SVM

The support vector machine (SVM), as one of the classical supervised ML algorithms,
is usually used for classification. Through a small amount of training data, SVM can
find the optimum classification plane between two clusters, and the classifier model only
depends on several support vectors. If the data are not linearly separable, a kernel trick
can be used for nonlinear classification. Although SVM was originally used for binary
classification, multiclass SVM strategies such as one-versus-one (OVO) and one-versus-all
(OVA) have been proposed. In [68], SVM-based detection is proposed and demonstrated in
VLC systems. Experimental results indicate that the SVM-based scheme has a 35% increase
compared with the conventional decision scheme when there is a strong nonlinear effect.
In [69], a constellation decision based on SVM is investigated in integrated optical fiber and
VLC systems when there is random phase rotation.

3.3.5. ANN

The artificial neural network (ANN) is an alternative ML algorithm for classification.
The input of the ANN-based classifier is not limited to the in-phase (I) and quadrature (Q)
components of the present point, whereas the I/Q components of the adjacent points in
the time domain can also serve as features. The output of the ANN-based classifier is the
estimated label. In this context, an ANN-based classifier serves as the nonlinear mapping
process. In [70], ANN is used for the 8-color-shift keying (8-CSK) decision in an RGB-LED
VLC system, and other ML algorithms are investigated for comparison.

3.3.6. Conclusions

Existing research has proven the feasibility of ML-based decision schemes in VLC
systems. The ML-based decision schemes are summarized in Table 4. The two clustering
algorithms are unsupervised, and the computational complexity is low. However, the
accuracy is usually lower than supervised algorithms. In supervised algorithms, SVM
has fewer computational complexity than GMM and ANN. However, the computational
complexity of SVM and GMM will increase when the modulation order becomes higher.
ANN is supposed to have better performance as more features can be applied for nonlinear
mapping. In the future, through pruning and prior channel knowledge, the complexity of
ML-based decision schemes can be further reduced.

Table 4. Summarization of machine learning algorithms for optimal decision.

Algorithms Supervision Computational
Complexity Application

K-means N Low Low nonlinearity
DBSCAN N Low Time varying

GMM Y High Moderate nonlinearity, ISI
SVM Y Moderate Moderate nonlinearity
ANN Y High High nonlinearity

3.4. MIMO

The multiple-input multiple-output (MIMO) technique has been developing in the
field of VLC recently. Imaging MIMO and nonimaging MIMO are the two main types of
MIMO-VLC systems [71]. The channel matrix is diagonal and of full rank for imaging
MIMO scenarios; thus, a strict alignment is required between every LED and corresponding
PD. In the nonimaging MIMO scenario, the signals will leak into each other and gener-
ate interchannel interference (ICI). Hence, to separate the mixed signals, algorithms are
required. Conventional methods based on successive interference cancellation (SIC) rely on
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the power proportionality of transmitters and require transmitting diversity occasionally.
Moreover, the interference is most likely to be nonlinear in the MIMO-VLC system due to
the optoelectrical devices. Therefore, researchers have turned to the lately booming ML for
new inspiration to compensate for the ICI and nonlinearity simultaneously.

3.4.1. ICA

Researchers have proposed an ML-based method in [72], namely joint IQ independent
component analysis (ICA), to settle spatial multiplexing problems in VLC MIMO system
and enhance spectral efficiency (SE).

The model in [72] is a 2 × 2 MIMO-VLC system where superposed signals are gener-
ated. A 16-quadrature amplitude modulation (16-QAM) signal is transmitted at the Tx1
and a quadrature phase-shift keying (QPSK) is transmitted at the Tx2. As the power ratio
of two Txs—namely the scaling factor—changes, the superposed constellation (SC) could
be different. Blind source separation (BSS) using ICA could be adopted to separate and
recover the two independent data streams from two Txs. ICA assumes that the subcom-
ponents that compose the mixed observed signal are non-Gaussian and are statistically
independent of each other. Moreover, the observed mixed signal is assumed to be the linear
combination of the source signals. The proposed 2 × 2 MIMO-VLC model with different
SCs just meets those assumptions mentioned above. If we assume the source signal matrix
as s, the observed matrix as x, and the mixing matrix as A, where x = As, then we can obtain
the recovered signal by searching for the unmixing matrix W that can linearly transform x
(which is whitened) so that the estimated subcomponents are independent of each other:
s = Wx. The goal of ICA is to find the unmixing matrix W which is approximately equal to
the A-1. It should be noted that the mixing matrix A is of full rank. Two mixed time-domain
signals in MIMO CAP-modulated system could not be separated since they share the same
pulse-shaping filter pairs and consequently lost the mutual independence features at every
time slot. Therefore, the joint IQ ICA method deals with the SCs at the receiver side.

3.4.2. MIMO-MBNN

MIMO-MBNN is featured in a hybrid structure that combines both two linear and
one nonlinear equalizer to improve the received signal quality. It further removes the
nonlinear loss using a NN network, which enables this equalizer to work within high
nonlinearity. Although DNN could provide a powerful fitting function, its training con-
sumes considerable computation compared with LMS and Volterra. Previous work [73]
has shown that MIMO-MBNN outperforms SISO-DNN and SISO-LMS in operation range
(2.33 times the area) and refreshed the record (2.1Gbps within 7% FEC) of communication
rate in SR-MIMO (single receiver MIMO) VLC, demonstrating a ‘1 + 1 > 2′ effect.

Using the SR-MIMO system in [73] as an example: the system faces both ISI and ICI;
therefore, the equalizer has to remove them both. Firstly, the MIMO signal is arranged in
fixed length to train the equalizer. The two linear branches deal with the linear ISI within
the corresponding single channel. In the meantime, a nonlinear branch imports the training
vector from both channels and uses an NN to fit the nonlinear function including the ISI
and ICI. The NN outputs an Rˆ2 vector; each element is specified for a single channel. Next,
the output from a linear branch is mixed with the corresponding output from the nonlinear
branch. The mixed result is the final output. As a supervised learning process, the output
result is compared with the label. An Adam optimizer updates the weight in both linear
and nonlinear branches. This combined structure successfully utilizes the strength of the
linear equalizer and nonlinear NN network and avoids their weakness. Underwater VLC
or long-haul optical communication systems could be benefited from this algorithm that
improves their robustness against nonlinear loss and power jittering.

3.4.3. Joint Spatial and Temporal ANN Equalizer

Conventionally, MIMO decoding algorithm and compensator-like decision feedback
equalizer (DFE) are adopted in MIMO-VLC receivers to compensate the spatial crosstalk
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and remove the ISI step by step. The proposal of the vertical Bell Labs layered space time
(V-BLAST) paves the way for joint spatial and temporal equalization in MIMO systems [74].

Considering the inherent nonlinear feature of MIMO-VLC systems, researchers have
proposed the joint spatial and temporal ANN equalizer in [75] for both imaging and
nonimaging MIMO-VLC links. The structure of the joint spatial and temporal ANN
equalizer is similar to a matrix DFE structure. The data structure being fed to ANN
contains the received signal vector with a feedforward delay line and the estimated signal
vector with a feedback delay line. As for the input layer of the ANN, it contains two
dimensions where one is spatial and the other is a temporal dimension. The number
of input nodes is slightly adjusted to the oversampling factor of the fractionally spaced
equalization scheme. According to the experimental results in [75], the proposed ANN-
based joint spatial and temporal equalization scheme could outperform the traditional DFE
and is able to compensate for the nonlinear channel distortion and cross-talks. Additionally,
the proposed method could have better performance when the channel is ill-conditioned.

3.4.4. Adaptive ANN Equalizer

Spatial complexity is a major obstacle for machine learning in VLC MIMO applications.
In SR-MIMO-VLC, crosstalk between channels will lead to a significant increase in the size
of the data-driven neural network [73]. The traditional MIMO-LMS can obtain the channel
matrix more efficiently, although it cannot take into account the nonlinear impairment. Two
adaptive ANN (AANN) equalizers are proposed to combine ANN and MIMO-LMS with
an adaptive parameter [76]. The spatial complexity of the AANN can be less than 10% of
MIMO-MBNN.

An adaptive algorithm determines different algorithmic processes by the power ratio
of two transmitted signals. When the power ratio is close to one, the SISO ANN can be used
to equalize the two signals. However, when the power ratio is out of balance, it is necessary
to use MIMO-ANN algorithms, such as L-DBMLP-L (combination of MIMO-LMS, DBMLP,
and MIMO-LMS) or one hidden layer MBNN (OHL MBNN). This constitutes two AANN
algorithms, namely ADP L/DBMLP-L and ADP MIMO ANN. The proposed AANN can
achieve the same transmission performance, but with lower spatial complexity [76].

3.4.5. Conclusions

In summary, the ML-based ICI and ISI cancellation methods for the MIMO-VLC
system are expected to be promising due to the rapid development of computational
power. ML methods such as DNNs can model the nonlinear phenomenon of VLC systems
where the conventional linear methods become powerless. The future research trend for
ML in high-speed MIMO-VLC systems is still mainly about spatial and temporal joint
equalization, as well as compensating nonlinear effects.

3.5. Optimal Coding

In general, to design a communication system is to split the system into several
independent concatenated modules. These modules will realize the functionalities such as
source/channel coding/decoding, modulation/demodulation, pre- and postequalization.
The optimization of each module is carried out independently, either based on data-driven
statistics features or based on mathematical models. However, the optimization of a single
module cannot guarantee the overall optimization of the end-to-end communication of the
entire physical layer. An intriguing approach is the end-to-end joint optimization for the
physical layer [77]. The methodology is to treat physical-layer communication as an end-to-
end signal-reconstruction problem, and to apply the concept of autoencoder to represent
the physical-layer communication modules (the transmitter, the channel, and the receiver)
by one deep neural network. Autoencoder is an unsupervised deep learning algorithm.
The goal of the autoencoder is to find an optimized representation at its intermediate layer.
This intermediate representation is robust to channel perturbations, allowing the output to
be reconstructed with minimal error.
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The end-to-end learning method extended its applications in MIMO and OFDM
cases [78–80] with satisfying results. The autoencoder establishes a unified physical-layer
framework that can be used in complex communications scenarios, and can obtain a
lower bit error rate than the classic method through learning with lower computational
complexity. Most of these autoencoder approaches are optimized on the symbol-wise
categorical cross entropy [80]. However, the communication system is defined by the
bit error rate. Novel approaches developed in [80,81] can optimize the bitwise mutual
information between the input and output. Apart from that, VLC systems should consider
more instability of complicated nonlinear distortions when searching for the optimal coding
scheme. Considering recent works of VLC-based autoencoders, substantial efforts are still
demanded to develop practical solutions in the wireless optical system.
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Figure 6. Overview of machine learning algorithms in the intelligent physical layer; Optimal coding:
AutoEncoder [82–86]; Channel emulator: TTHnet [44], FFDNet [45]; MIMO: ANN [75], ICA [72],
MIMO-MBNN [73], AANN [76]; Channel Equalization: ANN [50], GK-DNN [52,54], LSTM [61],
DBMLP [44], FSDNN [55], TFDNet [56], MPANN [63], PCVNN [60]; Optimal decision: SVM [68],
K-means [64], ANN [70], GMM [67], DBSCAN [66].
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3.5.1. VLC-Based Autoencoder

End-to-end learning of the transmitter and receiver for communications over a visible
light channel was first proposed in [82]. The transmitter and receiver are mapped to the
encoder part and decoder part of the autoencoder structure. Symbol-level precoding at the
encoder input transfers the original symbols to one-hot vectors. To accurately reconstruct
the input from the received signal, the decoder works as a classifier. The transmission
channel is built with two fixed weighted layers considering the color crosstalk of opti-
cal antennas and additive noise. Then, the categorical cross-entropy function is used to
evaluate the loss between the input and the output probability vector of the transmitted
symbols. Gradients of symbol errors direct the updating of the encoder and decoder layers
through the backward-propagation process. The average symbol error rate performance
reflects the superiority of the proposed closed-loop optimized transceiver to a minimum
distance maximizing modulation scheme [83]. Apart from the photodiodes-based autoen-
coder [82,84], in [85] a convolutional autoencoder structure is proposed for image sensor
communication systems. The system utilizes spatially separated LED arrays to convey an
OOK-modulated signal and an optical image sensor as the receiver. Convolutional layers
are implemented to overcome irradiance spread and lens blur induced by the sensor. The
2D convolution operations of the proposed autoencoder bring performance gain for image-
decoding strategies in the simulated ISC systems. Besides the above works on decreasing
error rates, the method in [86] takes flicker and illumination levels into account and tries
to address real-life application constraints. However, all these works stay with numerical
validations. As discussed in Section 2.1, it should be noticed that the channel estimation
work is still in a naive stage. Experimental validation of the aforementioned end-to-end
communication schemes will suffer performance degeneration due to the unconsidered
dynamic nonlinear impairments of devices. To the best of our knowledge, there is still no
experimental demonstration of an autoencoder-based VLC system.

3.5.2. Fiber/Wireless-Based Autoencoder

The parameters of the fiber channel or wireless channel are very important for end-
to-end learning, so that the back-propagation algorithm of the neural network can be
effectively calculated. In an optical fiber communication system, the channel is governed
by the nonlinear Schrödinger equation (NLSE). Therefore, in order to apply autoencoder in
optical fiber communication, an appropriate equivalent deep neural network of NLSE has
to be established [87–90]. The experimental results demonstrated that the input information
was mapped to a set of robust transmitted waveforms via autoencoder and detected with
a measured BER under FEC threshold in intensity-modulation direct-detection (IM/DD)
optical-fiber systems [87,88]. The successful demonstrations in both wireless communica-
tion and optical fiber systems clearly validate that end-to-end learning can be a promising
technology to fundamentally reconsider communication-system design [77,87].

3.5.3. Conclusions

Above all, the only difference between VLC, fiber, and wireless-based autoencoders
lies in the channel. While the output signals of fiber or wireless can be analytically modeled
with prior domain knowledge and experience, predicting the outputs of a VLC channel
by the mathematically convenient models is very hard, if not impossible. Hence, applying
data-driven ML in VLC systems appears to be a reasonable direction. However, even
the most recent works have not been practically implemented. Future works should pay
attention to dealing with more realistic issues such as the low-frequency interference
problem or dynamic nonlinear distortions in the VLC systems. Moreover, the current
method relies on cost-prohibitive computational and temporal resources. Meta-learning-
enabled online training will speed up the application of end-to-end communication links
in the 6G architecture.
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4. Future Trend of ML in IVLC

Over the last decade, visible light communication has achieved rapid advances both
in technologies and in applications. The fundamental impetus to this achievement is
not only the progress in communication technologies including coding, modulation, and
signal processing, but also the rapid development of optoelectronic chips and devices.
The bandwidth of the state-of-art VLC devices can exceed 1 GHz [91], nearly 100 times
larger than that of 10 years ago. However, compared with the devices used in optical
fiber communication, which usually boast nearly 100 GHz bandwidth, the bandwidth for
VLC is too small to afford roughly equivalent data rates with optical fiber communication.
Thus, the integration of wired/wireless communication in future ultrahigh-data-rate 6G
networks could still be a challenge. Coherent light sources, i.e., lasers, are supposed to have
larger bandwidths. Semipolar and nonpolar LEDs are reported to increase the modulation
bandwidth. Microstructure, microcavity, and plasmon may be promising new approaches
to enable ultrahigh data rates [92]. The intrinsic diversified characteristics of VLC devices
require AI technologies to understand the device model, optimize the transmission link,
and manipulate the whole network effectively.

The future development of IVLC in the intelligent physical layer and intelligent
network layer will be presented in this part, as shown in Figure 8. We strive to provide
readers with some insight.
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4.1. Intelligent Physical Layer

In this section, we will go through how electromagnetism and information theory
can be better applied to AI-driven visible light communication. We will then present the
possible forms of distributed learning of machine learning at the intelligent physical layer.
Finally, a future application of machine learning in IVLC will be presented.

4.1.1. Fundamental Electromagnetism Theory and Frontiers in Optical Physics

The frequency bands available for next-generation wireless communication evolve
to higher frequency bands such as millimeter wave, terahertz, and visible light [93]. In
this case, the network spectrum and resources are unprecedentedly plentiful. Efforts
are underway to sense the space electromagnetic information, to govern the spectrum
allocation and beamforming by combining the fundamental electromagnetism theory with
the conventional information theory. Intelligent Reflecting Surfaces (IRS) is a promising
research direction in mm-waves and terahertz waves [94]. In visible light communication,
we can imagine the optical phased array antenna. The feature size of the photonic circuits
is far larger than that of the microelectronic circuits. Metamaterials, metasurfaces, and
metalenses enable manipulation of the propagation, polarization, amplitude, and phase of
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the injected light at a deep subwavelength scale. This kind of optical artificially structured
material is ultracompact in a scale of tens or hundreds of nanometers. On one hand, AI
technologies can be a useful tool to design such kinds of materials by using optical reverse
design. On the other hand, metamaterial can be a powerful way to realize optical neural
networks and optical computing. All of these ideas are related to optical physics and could
be promising research avenues towards 6G.

4.1.2. Distributed Channel Equalization

As mentioned above, existing research on machine learning in VLC has mainly fo-
cused on the standalone receiver or transmitter side. However, the available computational
resources of the terminals and the central office are apparently different, so that leaving
the computational complexity at the receiving or transmitting end only is not a reasonable
solution. Therefore, ML-based distributed channel equalization at both the transmitting
and receiving end is worthy of investigation. In [65], predistortion based on K-means
is proposed to mitigate nonlinear impairment in VLC systems. A spatiotemporal neural
network-based predistortion equalizer has also been proposed in RF communication sys-
tems in order to compensate for the nonlinearity caused by the power amplifier [95]. CNN
has also been proposed to be applied for behavioral modeling and digital predistortion,
and the model’s coefficients can be significantly reduced [96]. Both NN-based distortion
and postequalization do promise great performance.

However, an essential premise for pre-equalization is that the channel information
state (CSI) is known to the transmitter. The CSI is usually obtained by training sequence.
Unfortunately, the VLC channel is usually not static, and there is a mismatch between the
estimated CSI and the actual CSI, as the statistic characteristics of the transmitted signal may
be changed after pre-equalization or predistortion. The entire channel equalization should
be computed simultaneously at the transmitter and receiver side in a distributed manner,
taking into account the computational resources of both the receiver and transmitter as well
as performance optimization. The CSI mismatch can be compensated since the training
sequence is available at the receiving end. Therefore, distributed channel-equalization
methods are required in the future VLC system.

4.1.3. Modulation Format Recognition

With the continuous improvement of the transmission capacity, the future VLC net-
works must be a mixture of multiple transmission rates and multiple modulation formats,
thus modulation format recognition (MFR) will become an essential part of the overall
communication system. In the early years, traditional machine learning methods, such
as decision trees and SVM [97], were applied in VLC format recognition. The drawback
of these solutions is that they rely on manual feature extraction, which leads to a lack of
flexibility and portability.

Recently, deep learning is widely used in pattern recognition because of its ability to
mine useful feature information at a deeper level. DNN is able to extract deeper layers of
the signal by stacking layers of hidden layers [98]. However, as the number of hidden layers
in DNN increases, the structural complexity increases. Therefore, it is especially important
to design the network structure of DNNs rationally. CNN performs local feature extraction
of information by setting appropriately sized convolutional kernels, and subsequently
achieves classification through fully connected layers [99,100]. The feature-extraction part is
mainly composed of convolutional and pooling layers, and the recognition and classification
part is the same as the fully connected layer of the BP neural network. Other schemes that
combine format recognition with deep learning, such as RNN [101], PNN [102], etc., have
been gradually proposed.

It can be foreseen that due to the complexity of visible communication channels and the
diversity of modulation formats, there will be an urgent need for machine learning-based
modulation format technology. AI-driven MFR will effectively improve the recognition
rate and accuracy, accelerating the pace of visible light communication applications.
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4.2. Intelligent Network Layer

In this section, communication-aware integrated networks, as well as heterogeneous
networks, will be introduced first. Finally, since visible light communication has the charac-
teristics of both wireless and optical communication, network security will be introduced.

4.2.1. Converged Communication and Sensing

The convergence of sensing and communication network has become one of the lead-
ing trends in 6G technology and services [93]. The 6G network is expected to be a fusion
of mobile communication, sensing, and intelligent computing. Such a converged network
refers to a system that has the capabilities of target positioning (ranging, speed measure-
ment, angle measurement), target imaging, target recognition, and target tracking. The
development of higher-frequency bands such as millimeter waves, terahertz, and visible
light will have more and more overlaps with traditional sensing frequency bands. Wireless
communication and wireless sensing show more and more similarities in system design,
signal processing, and data processing. Therefore, the AI-propelled VLC technologies
will be found to be efficient in sensing technologies. A pragmatic solution is to allow
communication and sensing in the same frequency spectrum. Research endeavors must
be devoted to the solution of avoiding interference, and improving spectrum utilization.
The codesign of the sensing and communication waveform may be aided by AI tools. The
functionalities of communication and sensing are obtained based on software and hardware
resource sharing or information sharing, which can effectively improve spectrum efficiency,
hardware efficiency, and information-processing efficiency.

4.2.2. Heterogeneous Network

6G networks are becoming more and more heterogeneous, composed of different
access standards and various network deployment methods. Therefore, it is necessary to
consider the indoor and outdoor heterogeneous networking and interconnection issues of
visible light communication networks and other communication technologies, for instance,
the power line communications, optical fiber access networks, and mobile communications
in radio frequency and even higher-frequency bands. Within this complex architecture of
the future network, it is difficult for traditional models and algorithms to provide efficient
and reliable technical support. AI-driven network technologies have made a series of
progress in wireless communication to handle interference coordination and resource
scheduling (including power allocation, channel allocation, and access control), which will
reduce future wireless resource management costs and improve service quality.

The traditional network structure is network-centric with quite limited flexibility. The
users are passive nodes, and the cell is generally preset to a fixed shape according to the
transmission scheme and does not change with the communication traffic. Distributed
artificial intelligence can implement a fully user-centric network architecture. By taking
advantage of the diversity of user locations and service requirements, virtual amorphous
communities can be constructed to provide better services for each user. AI can be used to
understand users and perform user prediction, inference, and big data analysis. Moreover,
AI can realize self-organizing network operations and management by network edge
computing, and eventually form global closed-loop optimization.

4.2.3. Security Network

The characteristics of optical networks and wireless communications are combined
in VLC systems. As a result, VLC suffers more complex cyber security challenges. When
VLC becomes the infrastructure of future communication services, it will be subjected to
additional attacks [103].

The first is the jamming attack in visible light communication. Since VLC is an LOS
channel, it is highly susceptible to interference by external interference sources. Brief
jamming attacks can cause enormous volumes of data to be incorrect or leaked due to the
high transmission rates. ML can identify the presence and level of interference by learning
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interference signals targeting the physical layer in optical communications, as an example
of deep Q-learning (DQN) [103].

The second is the cyber-physical attack in visible light communication. VLC is vulner-
able to external intervention because it runs in an open environment. Injecting damaging
signals into unprotected visible communication equipment can have a variety of negative
consequences for communication [104]. By learning the characteristics of different devices
or watermarks carried by the transmission, ML can be used to identify illicit transmission
devices in VLC systems, as an example of TF-FSN [105].

The third is eavesdropping in visible light communication. VLC channels are vul-
nerable to unauthorized terminals because of their broadcast nature. Eavesdropping in
public places compromises the privacy of legitimate users. Eavesdroppers’ capacity to
infer information over the channel is reduced by a smart beam anti-eavesdropping system
based on deep reinforcement learning (DRL) [106]. The suggested intelligent beamform-
ing method based on DRL may also make full use of complicated and high-dimensional
structure information, improving network security for users.

VLC has some fixed security properties; however, entities communicating under the
same space are vulnerable to discovery and information theft. Future research will focus
on how to successfully use machine learning to counter attacks in the visible light field.

5. Conclusions

In this paper, we have provided a comprehensive study on AI-driven intelligent visible
light communication. The major challenges in visible light communication are addressed,
as well as the specific contribution of AI-enabled IVLC in overcoming these challenges.

Nonlinearity introduced by VLC due to additional electro-optical conversion is one of
the major challenges that can significantly impair communication performance. Because
of the spontaneous radiation properties of LEDs, visible light signals can only be directly
modulated in communication. This means that changes in signal amplitude will directly
affect the carrier concentration and thus the recombination of electrons and holes. This
also increased the difficulty of modeling the visible light communication E2E channel.
The improvement of machine learning for visible light communication performance is
demonstrated in the paper, but again, its drawbacks of high computational complexity and
low generalizability are presented.

Detailed applications in the intelligent physical layer of IVLC are categorized into
five scenarios based on the communication system framework: optimal coding, channel
emulator, MIMO, channel equalization, and optimal decision. For each of these categories,
detailed elaboration is given to the state of the art. Among these technologies, autoencoder
has the potential to revolutionize the existing physical layer communication architecture as
a means of optimizing end-to-end communication.

Finally, we envisage the prospect of the intelligent physical layer and intelligent
network layer. As AI continues to integrate in optical physics and electromagnetism area,
the derived IRS, metamaterials, metasurfaces, metalenses, and optical computing will
further drive the development of IVLC. In particular, optical computing and optical neural
networks will be the focus of development. As IVLC may be deployed in 6G on a large
scale, electricity-based digital signal processing will consume a lot of energy. The use
of optical computing will greatly reduce consumption. Distributed channel equalization
combines the existing communication system and the multilayer mechanism of neural
networks, which will be an effective means of rapid deployment of IVLC. At the network
layer, the main role of AI will be to reduce human intervention. It can achieve better
resource scheduling and security through intelligent learning.

Hopefully, it will be a thorough investigation of intelligent visible light communication
and serve as a practical guide for large-scale deployment of visible light communications
in future 6G networks.



Photonics 2022, 9, 529 25 of 29

Author Contributions: Conceptualization, J.S. and N.C.; methodology, J.S. and N.C.; software, J.S.;
validation, W.N.; formal analysis, J.S. and W.N.; data curation, J.S.; writing—original draft preparation,
J.S., W.N., Y.H. and Z.X.; writing—review and editing, Z.L. and N.C.; visualization, J.S., W.N. and
Z.X.; supervision, N.C.; project administration, J.S. and N.C.; funding acquisition, S.Y. and N.C. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Science Foundation of China Project (No. 61925104,
No. 62031011), the Major Key Project of PCL (PCL2021A14), China Postdoctoral Science Foundation
(2021M700025), and China National Postdoctoral Program for Innovative Talents (BX2021082).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. You, X.; Wang, C.-X.; Huang, J.; Gao, X.; Zhang, Z.; Wang, M.; Huang, Y.; Zhang, C.; Jiang, Y.; Wang, J. Towards 6G wireless

communication networks: Vision, enabling technologies, and new paradigm shifts. Sci. China Inf. Sci. 2021, 64, 110301. [CrossRef]
2. Latva-aho, M.; Leppänen, K.; Clazzer, F.; Munari, A. Key Drivers and Research Challenges for 6G Ubiquitous Wireless Intelligence;

University of Oulu: Oulu, Finland, 2020.
3. Zong, B.; Fan, C.; Wang, X.; Duan, X.; Wang, B.; Wang, J. 6G technologies: Key drivers, core requirements, system architectures,

and enabling technologies. IEEE Veh. Technol. Mag. 2019, 14, 18–27. [CrossRef]
4. Chi, N.; Haas, H.; Kavehrad, M.; Little, T.D.; Huang, X.-L. Visible light communications: Demand factors, benefits and

opportunities [Guest Editorial]. IEEE Wirel. Commun. 2015, 22, 5–7. [CrossRef]
5. Akasaki, I.; Amano, H.; Kito, M.; Hiramatsu, K. Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN

pn junction LED. J. Lumin. 1991, 48, 666–670. [CrossRef]
6. Neokosmidis, I.; Kamalakis, T.; Walewski, J.W.; Inan, B.; Sphicopoulos, T. Impact of nonlinear LED transfer function on discrete

multitone modulation: Analytical approach. J. Lightwave Technol. 2009, 27, 4970–4978. [CrossRef]
7. Linnartz, J.-P.M.G.; Deng, X.; Alexeev, A.; Mardanikorani, S. Wireless Communication over an LED Channel. IEEE Commun. Mag.

2020, 58, 77–82. [CrossRef]
8. Wang, Y.; Tao, L.; Huang, X.; Shi, J.; Chi, N. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation

and hybrid post equalizer. IEEE Photonics J. 2015, 7, 7904507.
9. Ying, K.; Qian, H.; Baxley, R.J.; Yao, S. Joint optimization of precoder and equalizer in MIMO-VLC systems. IEEE J. Sel. Areas

Commun. 2015, 33, 1949–1958. [CrossRef]
10. Letaief, K.B.; Chen, W.; Shi, Y.; Zhang, J.; Zhang, Y.-J.A. The roadmap to 6G: AI empowered wireless networks. IEEE Commun.

Mag. 2019, 57, 84–90. [CrossRef]
11. Khan, F.N.; Lu, C.; Lau, A.P.T. Machine learning methods for optical communication systems. In Proceedings of the Signal

Processing in Photonic Communications 2017, New Orleans, LA, USA, 24–27 July 2017.
12. Zhu, G.; Liu, D.; Du, Y.; You, C.; Zhang, J.; Huang, K. Toward an intelligent edge: Wireless communication meets machine

learning. IEEE Commun. Mag. 2020, 58, 19–25. [CrossRef]
13. Mitola, J.; Maguire, G.Q. Cognitive radio: Making software radios more personal. IEEE Pers. Commun. 1999, 6, 13–18. [CrossRef]
14. Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013;

Volume 398.
15. Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; Routledge: London, UK, 2017.
16. Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.

In Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (KDD-96), Portland, OR, USA,
2–4 August 1996; pp. 226–231.

17. Roweis, S.T.; Saul, L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290, 2323–2326. [CrossRef]
18. Windisch, R.; Knobloch, A.; Kuijk, M.; Rooman, C.; Dutta, B.; Kiesel, P.; Borghs, G.; Dohler, G.; Heremans, P. Large-signal-

modulation of high-efficiency light-emitting diodes for optical communication. IEEE J. Quantum Electron. 2000, 36, 1445–1453.
[CrossRef]

19. Le Minh, H.; O’Brien, D.; Faulkner, G.; Zeng, L.; Lee, K.; Jung, D.; Oh, Y.; Won, E.T. 100-Mb/s NRZ visible light communications
using a postequalized white LED. IEEE Photonics Technol. Lett. 2009, 21, 1063–1065. [CrossRef]

20. Kaushal, H.; Kaddoum, G. Underwater optical wireless communication. IEEE Access 2016, 4, 1518–1547. [CrossRef]
21. Elgala, H.; Mesleh, R.; Haas, H. An LED model for intensity-modulated optical communication systems. IEEE Photonics Technol.

Lett. 2010, 22, 835–837. [CrossRef]

http://doi.org/10.1007/s11432-020-2955-6
http://doi.org/10.1109/MVT.2019.2921398
http://doi.org/10.1109/MWC.2015.7096278
http://doi.org/10.1016/0022-2313(91)90215-H
http://doi.org/10.1109/JLT.2009.2028903
http://doi.org/10.1109/MCOM.001.2000138
http://doi.org/10.1109/JSAC.2015.2432515
http://doi.org/10.1109/MCOM.2019.1900271
http://doi.org/10.1109/MCOM.001.1900103
http://doi.org/10.1109/98.788210
http://doi.org/10.1126/science.290.5500.2323
http://doi.org/10.1109/3.892565
http://doi.org/10.1109/LPT.2009.2022413
http://doi.org/10.1109/ACCESS.2016.2552538
http://doi.org/10.1109/LPT.2010.2046157


Photonics 2022, 9, 529 26 of 29

22. Costa, E.; Pupolin, S. M-QAM-OFDM system performance in the presence of a nonlinear amplifier and phase noise. IEEE Trans.
Commun. 2002, 50, 462–472. [CrossRef]

23. Lin, R.-L.; Chen, Y.-F. Equivalent circuit model of light-emitting-diode for system analyses of lighting drivers. In Proceedings of
the 2009 IEEE Industry Applications Society Annual Meeting, Houston, TX, USA, 4–8 October 2009; pp. 1–5.

24. Kamalakis, T.; Walewski, J.W.; Ntogari, G.; Mileounis, G. Empirical Volterra-series modeling of commercial light-emitting diodes.
J. Lightwave Technol. 2011, 29, 2146–2155. [CrossRef]

25. Ying, K.; Yu, Z.; Baxley, R.J.; Qian, H.; Chang, G.-K.; Zhou, G.T. Nonlinear distortion mitigation in visible light communications.
IEEE Wirel. Commun. 2015, 22, 36–45. [CrossRef]

26. Schwarz, U.T.; Braun, H.; Kojima, K.; Kawakami, Y.; Nagahama, S.; Mukai, T. Interplay of built-in potential and piezoelectric field
on carrier recombination in green light emitting InGaN quantum wells. Appl. Phys. Lett. 2007, 91, 123503. [CrossRef]

27. Schwarz, U.T. Emission of biased green quantum wells in time and wavelength domain. In Proceedings of the Gallium Nitride
Materials and Devices IV (International Society for Optics and Photonics—SPIE), San Jose, CA, USA, 26–29 January 2009;
p. 72161U.

28. Dai, Q.; Shan, Q.; Wang, J.; Chhajed, S.; Cho, J.; Schubert, E.F.; Crawford, M.H.; Koleske, D.D.; Kim, M.-H.; Park, Y. Carrier
recombination mechanisms and efficiency droop in GaInN/GaN light-emitting diodes. Appl. Phys. Lett. 2010, 97, 133507.
[CrossRef]

29. McKendry, J.J.; Massoubre, D.; Zhang, S.; Rae, B.R.; Green, R.P.; Gu, E.; Henderson, R.K.; Kelly, A.; Dawson, M.D. Visible-light
communications using a CMOS-controlled micro-light-emitting-diode array. J. Lightwave Technol. 2011, 30, 61–67. [CrossRef]

30. Deng, X.; Mardanikorani, S.; Wu, Y.; Arulandu, K.; Chen, B.; Khalid, A.M.; Linnartz, J.-P.M. Mitigating LED nonlinearity to
enhance visible light communications. IEEE Trans. Commun. 2018, 66, 5593–5607. [CrossRef]

31. Barry, J.R.; Kahn, J.M.; Krause, W.J.; Lee, E.A.; Messerschmitt, D.G. Simulation of multipath impulse response for indoor wireless
optical channels. IEEE J. Sel. Areas Commun. 1993, 11, 367–379. [CrossRef]

32. Lopez-Hernandez, F.J.; Perez-Jimenez, R.; Santamaria, A. Ray-tracing algorithms for fast calculation of the channel impulse
response on diffuse IR wireless indoor channels. Opt. Eng. 2000, 39, 2775–2780.

33. Zhang, M.; Zhang, Y.; Yuan, X.; Zhang, J. Mathematic models for a ray tracing method and its applications in wireless optical
communications. Opt. Express 2010, 18, 18431–18437. [CrossRef]

34. Tanaka, Y.; Komine, T.; Haruyama, S.; Nakagawa, M. Indoor visible communication utilizing plural white LEDs as lighting. In
Proceedings of the 12th IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2001)
(Cat. No. 01TH8598), San Diego, CA, USA, 30 September–3 October 2001; pp. 81–85.

35. Fujimoto, N.; Yamamoto, S. The fastest visible light transmissions of 662 Mb/s by a blue LED, 600 Mb/s by a red LED, and
520 Mb/s by a green LED based on simple OOK-NRZ modulation of a commercially available RGB-type white LED using
pre-emphasis and post-equalizing techniques. In Proceedings of the 2014 The European Conference on Optical Communication
(ECOC), Cannes, France, 21–25 September 2014; pp. 1–3.

36. Stepniak, G.; Maksymiuk, L.; Siuzdak, J. 1.1 GBIT/S white lighting LED-based visible light link with pulse amplitude modulation
and Volterra DFE equalization. Microw. Opt. Technol. Lett. 2015, 57, 1620–1622. [CrossRef]

37. Li, X.; Bamiedakis, N.; Guo, X.; McKendry, J.; Xie, E.; Ferreira, R.; Gu, E.; Dawson, M.; Penty, R.; White, I. Wireless visible light
communications employing feed-forward pre-equalization and PAM-4 modulation. J. Lightwave Technol. 2016, 34, 2049–2055.
[CrossRef]

38. Wu, F.; Lin, C.; Wei, C.; Chen, C.; Huang, H.; Ho, C. 1.1-Gb/s white-LED-based visible light communication employing carrier-less
amplitude and phase modulation. IEEE Photonics Technol. Lett. 2012, 24, 1730–1732. [CrossRef]

39. Haigh, P.A.; Burton, A.; Werfli, K.; Le Minh, H.; Bentley, E.; Chvojka, P.; Popoola, W.O.; Papakonstantinou, I.; Zvanovec, S.
A multi-CAP visible-light communications system with 4.85-b/s/Hz spectral efficiency. IEEE J. Sel. Areas Commun. 2015, 33,
1771–1779. [CrossRef]

40. Chun, H.; Manousiadis, P.; Rajbhandari, S.; Vithanage, D.A.; Faulkner, G.; Tsonev, D.; McKendry, J.J.D.; Videv, S.; Xie, E.; Gu, E.
Visible Light Communication Using a Blue GaN µ LED and Fluorescent Polymer Color Converter. IEEE Photonics Technol. Lett.
2014, 26, 2035–2038. [CrossRef]

41. Wang, F.; Liu, Y.; Jiang, F.; Chi, N. High speed underwater visible light communication system based on LED employing maximum
ratio combination with multi-PIN reception. Opt. Commun. 2018, 425, 106–112. [CrossRef]

42. Ryu, S.-B.; Choi, J.-H.; Bok, J.; Lee, H.; Ryu, H.-G. High power efficiency and low nonlinear distortion for wireless visible light
communication. In Proceedings of the 2011 4th IFIP International Conference on New Technologies, Mobility and Security, Paris,
France, 7–10 February 2011; pp. 1–5.

43. Ma, X.; Yang, F.; Liu, S.; Song, J. Channel estimation for wideband underwater visible light communication: A compressive
sensing perspective. Opt. Express 2018, 26, 311–321. [CrossRef]

44. Zhao, Y.; Zou, P.; Yu, W.; Chi, N. Two tributaries heterogeneous neural network based channel emulator for underwater visible
light communication systems. Opt. Express 2019, 27, 22532–22541. [CrossRef]

45. Gao, Z.; Wang, Y.; Liu, X.; Zhou, F.; Wong, K.-K. FFDNet-based channel estimation for massive MIMO visible light communication
systems. IEEE Wirel. Commun. Lett. 2019, 9, 340–343. [CrossRef]

46. He, H.; Wen, C.-K.; Jin, S.; Li, G.Y. Deep learning-based channel estimation for beamspace mmWave massive MIMO systems.
IEEE Wirel. Commun. Lett. 2018, 7, 852–855. [CrossRef]

http://doi.org/10.1109/26.990908
http://doi.org/10.1109/JLT.2011.2157082
http://doi.org/10.1109/MWC.2015.7096283
http://doi.org/10.1063/1.2786602
http://doi.org/10.1063/1.3493654
http://doi.org/10.1109/JLT.2011.2175090
http://doi.org/10.1109/TCOMM.2018.2858239
http://doi.org/10.1109/49.219552
http://doi.org/10.1364/OE.18.018431
http://doi.org/10.1002/mop.29182
http://doi.org/10.1109/JLT.2016.2520503
http://doi.org/10.1109/LPT.2012.2210540
http://doi.org/10.1109/JSAC.2015.2433053
http://doi.org/10.1109/LPT.2014.2345256
http://doi.org/10.1016/j.optcom.2018.04.073
http://doi.org/10.1364/OE.26.000311
http://doi.org/10.1364/OE.27.022532
http://doi.org/10.1109/LWC.2019.2954511
http://doi.org/10.1109/LWC.2018.2832128


Photonics 2022, 9, 529 27 of 29

47. Jin, Y.; Zhang, J.; Jin, S.; Ai, B. Channel estimation for cell-free mmWave massive MIMO through deep learning. IEEE Trans. Veh.
Technol. 2019, 68, 10325–10329. [CrossRef]

48. Burse, K.; Yadav, R.N.; Shrivastava, S. Channel equalization using neural networks: A review. IEEE Trans. Syst. Man Cybern. Part
C (Appl. Rev.) 2010, 40, 352–357. [CrossRef]

49. Le Minh, H.; O’Brien, D.; Faulkner, G.; Zeng, L.; Lee, K.; Jung, D.; Oh, Y. High-speed visible light communications using
multiple-resonant equalization. IEEE Photonics Technol. Lett. 2008, 20, 1243–1245. [CrossRef]

50. Haigh, P.A.; Ghassemlooy, Z.; Rajbhandari, S.; Papakonstantinou, I.; Popoola, W. Visible light communications: 170 Mb/s using
an artificial neural network equalizer in a low bandwidth white light configuration. J. Lightwave Technol. 2014, 32, 1807–1813.
[CrossRef]

51. Liang, S.; Jiang, Z.; Qiao, L.; Lu, X.; Chi, N. Faster-than-Nyquist precoded CAP modulation visible light communication system
based on nonlinear weighted look-up table predistortion. IEEE Photonics J. 2018, 10, 7900709. [CrossRef]

52. Zhao, Y.; Zou, P.; Shi, M.; Chi, N. Nonlinear predistortion scheme based on Gaussian kernel-aided deep neural networks channel
estimator for visible light communication system. Opt. Eng. 2019, 58, 116108. [CrossRef]

53. Xue, L.; Yi, L.; Lin, R.; Huang, L.; Chen, J. SOA pattern effect mitigation by neural network based pre-equalizer for 50G PON. Opt.
Express 2021, 29, 24714–24722. [CrossRef]

54. Chi, N.; Zhao, Y.; Shi, M.; Zou, P.; Lu, X. Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8
visible light communication system. Opt. Express 2018, 26, 26700–26712. [CrossRef]

55. Chi, N.; Hu, F.; Li, G.; Wang, C.; Niu, W. AI based on frequency slicing deep neural network for underwater visible light
communication. Sci. China Inf. Sci. 2020, 63, 160303. [CrossRef]

56. Chen, H.; Zhao, Y.; Hu, F.; Chi, N. Nonlinear Resilient Learning Method Based on Joint Time-Frequency Image Analysis in
Underwater Visible Light Communication. IEEE Photonics J. 2020, 12, 7901610. [CrossRef]

57. Griffin, D.; Lim, J. Signal estimation from modified short-time Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 1984,
32, 236–243. [CrossRef]

58. Zhao, Y.; Chi, N. Partial pruning strategy for a dual-branch multilayer perceptron-based post-equalizer in underwater visible
light communication systems. Opt. Express 2020, 28, 15562–15572. [CrossRef]

59. Zhao, Z.; Vuran, M.C.; Guo, F.; Scott, S.D. Deep-waveform: A learned OFDM receiver based on deep complex-valued convolu-
tional networks. IEEE J. Sel. Areas Commun. 2021, 39, 2407–2420. [CrossRef]

60. Chen, H.; Niu, W.; Zhao, Y.; Zhang, J.; Chi, N.; Li, Z. Adaptive deep-learning equalizer based on constellation partitioning scheme
with reduced computational complexity in UVLC system. Opt. Express 2021, 29, 21773–21782. [CrossRef]

61. Lu, X.; Lu, C.; Yu, W.; Qiao, L.; Liang, S.; Lau, A.P.T.; Chi, N. Memory-controlled deep LSTM neural network post-equalizer used
in high-speed PAM VLC system. Opt. Express 2019, 27, 7822–7833. [CrossRef] [PubMed]

62. Li, Z.; Hu, F.; Li, G.; Zou, P.; Wang, C.; Chi, N. Convolution-enhanced LSTM neural network post-equalizer used in probabilistic
shaped underwater VLC system. In Proceedings of the 2020 IEEE International Conference on Signal Processing, Communications
and Computing (ICSPCC), Macau, China, 21–24 August 2020; pp. 1–5.

63. Hu, F.; Holguin-Lerma, J.A.; Mao, Y.; Zou, P.; Shen, C.; Ng, T.K.; Ooi, B.S.; Chi, N. Demonstration of a low-complexity memory-
polynomial-aided neural network equalizer for CAP visible-light communication with superluminescent diode. Opto-Electron.
Adv. 2020, 3, 200009. [CrossRef]

64. Lu, X.; Wang, K.; Qiao, L.; Zhou, W.; Wang, Y.; Chi, N. Nonlinear compensation of multi-CAP VLC system employing clustering
algorithm based perception decision. IEEE Photonics J. 2017, 9, 7906509. [CrossRef]

65. Lu, X.; Zhao, M.; Qiao, L.; Chi, N. Non-linear compensation of multi-CAP VLC system employing pre-distortion base on
clustering of machine learning. In Proceedings of the Optical Fiber Communication Conference (Optical Society of America), San
Diego, CA, USA, 11–15 March 2018; p. M2K.1.

66. Lu, X.; Qiao, L.; Zhou, Y.; Yu, W.; Chi, N. An IQ-Time 3-dimensional post-equalization algorithm based on DBSCAN of machine
learning in CAP VLC system. Opt. Commun. 2019, 430, 299–303. [CrossRef]

67. Lu, F.; Peng, P.-C.; Liu, S.; Xu, M.; Shen, S.; Chang, G.-K. Integration of multivariate gaussian mixture model for enhanced
pam-4 decoding employing basis expansion. In Proceedings of the Optical Fiber Communication Conference (Optical Society of
America), San Diego, CA, USA, 11–15 March 2018; p. M2F.1.

68. Yuan, Y.; Zhang, M.; Luo, P.; Ghassemlooy, Z.; Lang, L.; Wang, D.; Zhang, B.; Han, D. SVM-based detection in visible light
communications. Optik 2017, 151, 55–64. [CrossRef]

69. Niu, W.; Ha, Y.; Chi, N. Support vector machine based machine learning method for GS 8QAM constellation classification in
seamless integrated fiber and visible light communication system. Sci. China Inf. Sci. 2020, 63, 202306. [CrossRef]

70. Li, J.; Guan, W. The optical barcode detection and recognition method based on visible light communication using machine
learning. Appl. Sci. 2018, 8, 2425. [CrossRef]

71. Wang, Y.; Chi, N. Demonstration of high-speed 2 × 2 non-imaging MIMO Nyquist single carrier visible light communication
with frequency domain equalization. J. Lightwave Technol. 2014, 32, 2087–2093. [CrossRef]

72. Wang, Z.; Han, S.; Chi, N. Performance enhancement based on machine learning scheme for space multiplexing 2× 2 MIMO-VLC
system employing joint IQ independent component analysis. Opt. Commun. 2020, 458, 124733. [CrossRef]

73. Zou, P.; Zhao, Y.; Hu, F.; Chi, N. Enhanced performance of MIMO multi-branch hybrid neural network in single receiver MIMO
visible light communication system. Opt. Express 2020, 28, 28017–28032. [CrossRef]

http://doi.org/10.1109/TVT.2019.2937543
http://doi.org/10.1109/TSMCC.2009.2038279
http://doi.org/10.1109/LPT.2008.926030
http://doi.org/10.1109/JLT.2014.2314635
http://doi.org/10.1109/JPHOT.2017.2788894
http://doi.org/10.1117/1.OE.58.11.116108
http://doi.org/10.1364/OE.426781
http://doi.org/10.1364/OE.26.026700
http://doi.org/10.1007/s11432-020-2851-0
http://doi.org/10.1109/JPHOT.2020.2981516
http://doi.org/10.1109/TASSP.1984.1164317
http://doi.org/10.1364/OE.393443
http://doi.org/10.1109/JSAC.2021.3087241
http://doi.org/10.1364/OE.432351
http://doi.org/10.1364/OE.27.007822
http://www.ncbi.nlm.nih.gov/pubmed/30876338
http://doi.org/10.29026/oea.2020.200009
http://doi.org/10.1109/JPHOT.2017.2748153
http://doi.org/10.1016/j.optcom.2018.08.045
http://doi.org/10.1016/j.ijleo.2017.08.089
http://doi.org/10.1007/s11432-019-2850-3
http://doi.org/10.3390/app8122425
http://doi.org/10.1109/JLT.2014.2320306
http://doi.org/10.1016/j.optcom.2019.124733
http://doi.org/10.1364/OE.400825


Photonics 2022, 9, 529 28 of 29

74. Wolniansky, P.W.; Foschini, G.J.; Golden, G.D.; Valenzuela, R.A. V-BLAST: An architecture for realizing very high data rates
over the rich-scattering wireless channel. In Proceedings of the 1998 URSI International Symposium on Signals, Systems, and
Electronics (Cat. No. 98EX167), Pisa, Italy, 2 October 1998; pp. 295–300.

75. Rajbhandari, S.; Chun, H.; Faulkner, G.; Haas, H.; Xie, E.; McKendry, J.J.; Herrnsdorf, J.; Gu, E.; Dawson, M.D.; O’Brien, D. Neural
network-based joint spatial and temporal equalization for MIMO-VLC system. IEEE Photonics Technol. Lett. 2019, 31, 821–824.
[CrossRef]

76. Zhao, Y.; Zou, P.; He, Z.; Li, Z.; Chi, N. Low spatial complexity adaptive artificial neural network post-equalization algorithms in
MIMO visible light communication systems. Opt. Express 2021, 29, 32728–32738. [CrossRef]

77. O’shea, T.; Hoydis, J. An introduction to deep learning for the physical layer. IEEE Trans. Cogn. Commun. Netw. 2017, 3, 563–575.
[CrossRef]

78. Dörner, S.; Cammerer, S.; Hoydis, J.; Ten Brink, S. Deep learning based communication over the air. IEEE J. Sel. Top. Signal Process.
2017, 12, 132–143. [CrossRef]

79. Felix, A.; Cammerer, S.; Dörner, S.; Hoydis, J.; Ten Brink, S. OFDM-autoencoder for end-to-end learning of communications
systems. In Proceedings of the 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), Kalamata, Greece, 25–28 June 2018; pp. 1–5.

80. Cammerer, S.; Aoudia, F.A.; Dörner, S.; Stark, M.; Hoydis, J.; Ten Brink, S. Trainable communication systems: Concepts and
prototype. IEEE Trans. Commun. 2020, 68, 5489–5503. [CrossRef]

81. Balevi, E.; Andrews, J.G. Autoencoder-based error correction coding for one-bit quantization. IEEE Trans. Commun. 2020, 68,
3440–3451. [CrossRef]

82. Lee, H.; Lee, I.; Lee, S.H. Deep learning based transceiver design for multi-colored VLC systems. Opt. Express 2018, 26, 6222–6238.
[CrossRef]

83. Liang, X.; Yuan, M.; Wang, J.; Ding, Z.; Jiang, M.; Zhao, C. Constellation design enhancement for color-shift keying modulation of
quadrichromatic LEDs in visible light communications. J. Lightwave Technol. 2017, 35, 3650–3663. [CrossRef]

84. Hao, L.; Wang, D.; Cheng, W.; Li, J.; Ma, A. Performance enhancement of ACO-OFDM-based VLC systems using a hybrid
autoencoder scheme. Opt. Commun. 2019, 442, 110–116. [CrossRef]

85. Lee, H.; Lee, S.H.; Quek, T.Q.S.; Lee, I. Deep Learning Framework for Wireless Systems: Applications to Optical Wireless
Communications. IEEE Commun. Mag. 2019, 57, 35–41. [CrossRef]

86. Ulkar, M.G.; Baykas, T.; Pusane, A.E. VLCnet: Deep learning based end-to-end visible light communication system. J. Lightwave
Technol. 2020, 38, 5937–5948. [CrossRef]

87. Karanov, B.; Chagnon, M.; Thouin, F.; Eriksson, T.A.; Bülow, H.; Lavery, D.; Bayvel, P.; Schmalen, L. End-to-end deep learning of
optical fiber communications. J. Lightwave Technol. 2018, 36, 4843–4855. [CrossRef]

88. Chagnon, M.; Karanov, B.; Schmalen, L. Experimental demonstration of a dispersion tolerant end-to-end deep learning-based
IM-DD transmission system. In Proceedings of the 2018 European Conference on Optical Communication (ECOC), Roma, Italy,
23–27 September 2018; pp. 1–3.

89. Häger, C.; Pfister, H.D. Wideband time-domain digital backpropagation via subband processing and deep learning. In Proceedings
of the 2018 European Conference on Optical Communication (ECOC), Roma, Italy, 23–27 September 2018; pp. 1–3.

90. Häger, C.; Pfister, H.D. Physics-based deep learning for fiber-optic communication systems. IEEE J. Sel. Areas Commun. 2020, 39,
280–294. [CrossRef]

91. Xie, E.; Bian, R.; He, X.; Islim, M.S.; Chen, C.; McKendry, J.J.; Gu, E.; Haas, H.; Dawson, M.D. Over 10 Gbps VLC for long-distance
applications using a GaN-based series-biased micro-LED array. IEEE Photonics Technol. Lett. 2020, 32, 499–502. [CrossRef]

92. Rajbhandari, S.; McKendry, J.J.; Herrnsdorf, J.; Chun, H.; Faulkner, G.; Haas, H.; Watson, I.M.; O’Brien, D.; Dawson, M.D. A
review of gallium nitride LEDs for multi-gigabit-per-second visible light data communications. Semicond. Sci. Technol. 2017,
32, 023001. [CrossRef]

93. Polese, M.; Jornet, J.M.; Melodia, T.; Zorzi, M. Toward End-to-End, Full-Stack 6G Terahertz Networks. IEEE Commun. Mag. 2020,
58, 48–54. [CrossRef]

94. Pan, C.; Ren, H.; Wang, K.; Kolb, J.F.; Elkashlan, M.; Chen, M.; Di Renzo, M.; Hao, Y.; Wang, J.; Swindlehurst, A.L. Reconfigurable
intelligent surfaces for 6G systems: Principles, applications, and research directions. IEEE Commun. Mag. 2021, 59, 14–20.
[CrossRef]

95. Rawat, M.; Ghannouchi, F.M. Distributed spatiotemporal neural network for nonlinear dynamic transmitter modeling and
adaptive digital predistortion. IEEE Trans. Instrum. Meas. 2011, 61, 595–608. [CrossRef]

96. Hu, X.; Liu, Z.; Yu, X.; Zhao, Y.; Chen, W.; Hu, B.; Du, X.; Li, X.; Helaoui, M.; Wang, W. Convolutional neural network for
behavioral modeling and predistortion of wideband power amplifiers. IEEE Trans. Neural Netw. Learn. Syst. 2021; Early Access,
1–15. [CrossRef]

97. Fehske, A.; Gaeddert, J.; Reed, J.H. A new approach to signal classification using spectral correlation and neural networks. In
Proceedings of the First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, 2005 (DySPAN
2005), Baltimore, MD, USA, 8–11 November 2005; pp. 144–150.

98. Khan, F.N.; Zhong, K.; Zhou, X.; Al-Arashi, W.H.; Yu, C.; Lu, C.; Lau, A.P.T. Joint OSNR monitoring and modulation format
identification in digital coherent receivers using deep neural networks. Opt. Express 2017, 25, 17767–17776. [CrossRef] [PubMed]

http://doi.org/10.1109/LPT.2019.2909139
http://doi.org/10.1364/OE.440155
http://doi.org/10.1109/TCCN.2017.2758370
http://doi.org/10.1109/JSTSP.2017.2784180
http://doi.org/10.1109/TCOMM.2020.3002915
http://doi.org/10.1109/TCOMM.2020.2977280
http://doi.org/10.1364/OE.26.006222
http://doi.org/10.1109/JLT.2017.2720579
http://doi.org/10.1016/j.optcom.2019.03.013
http://doi.org/10.1109/MCOM.2019.1800584
http://doi.org/10.1109/JLT.2020.3006827
http://doi.org/10.1109/JLT.2018.2865109
http://doi.org/10.1109/JSAC.2020.3036950
http://doi.org/10.1109/LPT.2020.2981827
http://doi.org/10.1088/1361-6641/32/2/023001
http://doi.org/10.1109/MCOM.001.2000224
http://doi.org/10.1109/MCOM.001.2001076
http://doi.org/10.1109/TIM.2011.2170915
http://doi.org/10.1109/TNNLS.2021.3054867
http://doi.org/10.1364/OE.25.017767
http://www.ncbi.nlm.nih.gov/pubmed/28789268


Photonics 2022, 9, 529 29 of 29

99. Xu, W.; Wang, Y.; Wang, F.; Chen, X. PSK/QAM modulation recognition by convolutional neural network. In Proceedings of the
2017 IEEE/CIC International Conference on Communications in China (ICCC), Qingdao, China, 22–24 October 2017; pp. 1–5.

100. Yashashwi, K.; Sethi, A.; Chaporkar, P. A learnable distortion correction module for modulation recognition. IEEE Wirel. Commun.
Lett. 2018, 8, 77–80. [CrossRef]

101. Tang, Y.; Huang, Y.; Wu, Z.; Meng, H.; Xu, M.; Cai, L. Question detection from acoustic features using recurrent neural network
with gated recurrent unit. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Shanghai, China, 20–25 March 2016; pp. 6125–6129.

102. Liao, X.; Li, B.; Yang, B. A novel classification and identification scheme of emitter signals based on ward’s clustering and
probabilistic neural networks with correlation analysis. Comput. Intell. Neurosci. 2018, 2018, 1458962. [CrossRef] [PubMed]

103. Natalino, C.; Schiano, M.; Di Giglio, A.; Wosinska, L.; Furdek, M. Field demonstration of machine-learning-aided detection and
identification of jamming attacks in optical networks. In Proceedings of the 2018 European Conference on Optical Communication
(ECOC), Roma, Italy, 23–27 September 2018; pp. 1–3.

104. Li, Y.; Hua, N.; Yu, Y.; Luo, Q.; Zheng, X. Light source and trail recognition via optical spectrum feature analysis for optical
network security. IEEE Commun. Lett. 2018, 22, 982–985. [CrossRef]

105. Liu, W.; Li, X.; Huang, Z.; Wang, X. Transmitter Fingerprinting for VLC Systems via Deep Feature Separation Network. IEEE
Photonics J. 2021, 13, 7300407. [CrossRef]

106. Xiao, L.; Sheng, G.; Liu, S.; Dai, H.; Peng, M.; Song, J. Deep reinforcement learning-enabled secure visible light communication
against eavesdropping. IEEE Trans. Commun. 2019, 67, 6994–7005. [CrossRef]

http://doi.org/10.1109/LWC.2018.2855749
http://doi.org/10.1155/2018/1458962
http://www.ncbi.nlm.nih.gov/pubmed/30532768
http://doi.org/10.1109/LCOMM.2018.2801869
http://doi.org/10.1109/JPHOT.2021.3121304
http://doi.org/10.1109/TCOMM.2019.2930247

	Introduction 
	Statues and Challenges of VLC 
	Visible Light Communication E2E Channel 
	Modulation Format in VLC 
	Advantages and Disadvantages of ML in VLC 

	Machine Learning in Physical Layer of IVLC 
	Channel Emulator 
	TTHNet 
	FFDNet 
	Conclusions 

	Channel Equalization 
	Pre-Equalization GK-DNN 
	Postequalization GK-DNN 
	Postequalization FSDNN 
	Postequalization TFDNet 
	Postequalization DBMLP 
	Post-Equalization PCVNN 
	Postequalization LSTM-Equalizer 
	Postequalization MPANN 
	Conclusions 

	Optimal Decision 
	K-Means 
	DBSCAN 
	GMM 
	SVM 
	ANN 
	Conclusions 

	MIMO 
	ICA 
	MIMO-MBNN 
	Joint Spatial and Temporal ANN Equalizer 
	Adaptive ANN Equalizer 
	Conclusions 

	Optimal Coding 
	VLC-Based Autoencoder 
	Fiber/Wireless-Based Autoencoder 
	Conclusions 


	Future Trend of ML in IVLC 
	Intelligent Physical Layer 
	Fundamental Electromagnetism Theory and Frontiers in Optical Physics 
	Distributed Channel Equalization 
	Modulation Format Recognition 

	Intelligent Network Layer 
	Converged Communication and Sensing 
	Heterogeneous Network 
	Security Network 


	Conclusions 
	References

