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Abstract: A polarization-insensitive graphene-assisted electro-optic modulator is proposed. The
orthogonal T-shaped metal slot hybrid plasmonic waveguide allows the polarization-independent
propagation of transverse electric field mode and complex mode. By the introduction of dual-layer
graphene on the ridge waveguide, the polarization-insensitive modulation depths of the TE mode and
complex mode are 0.511 dB/µm and 0.502 dB/µm, respectively. The 3 dB bandwidth of the modulator
we have proposed is about 127 GHz at the waveguide length of 20 µm. The power consumption of
72 fJ/bit promised potential graphene electro-optic modulator applications for on-chip interconnected
information transfer and processing.
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1. Introduction

An electro-optical modulator is an important device in an optical fiber network and
photonics integrated circuit [1]. EO modulators based on the bulk or thin-film LiNbO3
technology are mature but are still facing the challenges of relatively large size and high
modulation voltage [2]. Though the fabrication of modulators based on silicon is perfectly
compatible with the CMOS process, the limited EO coefficient leads to the low modulation
efficiency [3]. The III-V semiconductor modulators offer a compact size, but the insertion
loss (IL) and the stability are still not enough for practical applications [4]. Due to the
intrinsic material characteristics, nonlinear polymer-based modulators have the merits of
high EO coefficient, low driving voltage, and low dispersion [5]. However, their favorable
performance largely depends on the high performance of poled EO polymer, which is
obtained from a complex synthetizing process with low productivity. In addition, the
reliability is yet to be proven in practical applications [6].

Graphene is a single-layer two-dimensional honeycomb lattice structure with excellent
optoelectronic properties, such as an ultra-wide transmission spectral range, a tuning effect
of light absorption, and high electronic conductivity and modulation rates. In addition,
the Fermi level of graphene can be tuned by the applied voltage, thereby adjusting the
absorption [7]. In 2011, the first graphene electro-optic modulator was experimentally
fabricated. Its modulation depth (MD, which we define as the difference between the “on
state” and the “off state”) was 0.1 dB/µm [8]. After that, a modulator using graphene to
form a double-layer flat capacitor was fabricated. The modulation depth was increased to
0.16 dB/µm [9]. Due to the strong mode confinement, the surface plasmon effect has also
been introduced into graphene modulators [10,11]. Huang et al. proposed a waveguide-
coupled hybrid plasmonic graphene modulator with a wide 3 dB bandwidth that can reach
0.48 THz and a power consumption of about 145 fJ/bit [12], which proves the privilege of a
graphene-based hybrid plasmonic waveguide modulator. However, due to the feature of
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atomic thickness, graphene-based modulators are sensitive to the polarization [13], which
implies the independent modulation of the TE mode, transverse magnetic field (TM) mode,
or TE-TM complex mode. The simultaneous modulation of both the TE mode and the TM
mode is still to be implemented with a new waveguide [14,15].

In this paper, we propose a modulator based on a T-shaped metal slot waveguide and
graphene to support the simultaneous modulation of both the TE mode and the TE-TM
complex mode. Dual-layer graphene covers the top and one sidewall of the ridge waveg-
uide. The finite element method is used study and optimize the geometric dimensions
with respect to the equal modulation of the TE mode and the TE-TM complex mode. The
simulation results show that the TE mode and the complex mode can be modulated at
the depth of 0.511 dB/µm and 0.502 dB/µm, respectively. The 3 dB bandwidth of this
modulator that we have proposed is about 127 GHz at the modulation length of 20 µm.

2. Device Structure
2.1. Hybrid Plasmonic Slot Waveguide

The proposed graphene modulator with a T-shaped hybrid plasmonic slot waveguide
is shown in Figure 1. The device design and simulations are performed at the center
wavelength of λ = 1550 nm. Three silver blocks (Ag, nAg = 0.14447 + 11.366i) and a
sandwiched silicon oxide (SiO2, nSiO2 = 1.45) insulator construct the orthogonal horizontal
T-shaped slot waveguide. Dual 0.33 nm-thick graphene sheets isolated by hexagonal boron
nitride (hBN, nhBN = 1.98) with a thickness of 10 nm cover the top and one sidewall of
the plasmonic waveguide. Two metal contacts connect the lower and the upper graphene
sheet to the external voltage source, respectively [16]. The whole structure is supported
by the SiO2 substrate. The refractive index varies with the wavelength change. Therefore,
the real part and imaginary part of the effective refractive index of Ag is confirmed at
each wavelength by introducing the interpolation function to offer the precise result in the
simulations.
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Our proposed dual built-in orthogonal slot waveguide can support two polarizations
simultaneously, which overcomes the limitation of the polarization dependence of the
common plasmonic waveguides. As shown in Figure 1, the T-shaped metal slot waveguide
supports two modes with different polarizations. As shown in Figure 2, Ex and Ey represent
the electric field distribution of the TE mode and the TE-TM complex mode, respectively.
As shown in Figure 2a, at the optical wavelength of 1550 nm, the TE mode mainly exists in
the vertical Ag slot, which is due to the surface plasmon excitation by the B1 and B2 Ag
blocks [17]. The complex mode mainly exists in the horizontal slot, partially extending
to the vertical slot waveguide, as shown in Figure 2b. Hence, the complex mode can be
viewed as a mixed plasmonic mode generated in perpendicular metal slits.
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wavelength of 1550 nm.

To better evaluate the performance of the proposed modulator, the parameters of
mode power attenuation (MPA), modulation depth (MD), and propagation loss (PL) are
introduced. Here, MPA, MD, and PL can be defined as:

MPA = 40π
(
log10 e

)
Im
(

Ne f f

)
λ (1)

MD = MPA(OFF)− MPA(ON) (2)

PL = MPA(ON) (3)

In the above equation, λ is the incident wavelength, Im (Neff) is the imaginary part of
the effective refractive index, the modulation depth is defined as the difference between
mode power attenuation (“OFF” state) and mode power attenuation (“ON” state), and
propagation loss refers to mode power attenuation (“ON” state).

2.2. Graphene Film

Graphene is a novel material with a two-dimensional single-layer honeycomb lattice
structure. This unique feature offers graphene controllable optical absorption, considerable
carrier mobility, 2.3% uniform optical absorption in a wide band, and other optical proper-
ties [18,19]. As shown in Figure 1, the 10 nm-thick hBN is sandwiched by two graphene
films, which forms a plate capacitor. The applied bias voltage changes the Fermi level of
the graphene and then the light absorption. The intrinsic tuning mechanism is consistent
with that of the single-layer graphene modulator. The main difference is the capacitor
structure that is constructed by the upper-layer graphene, lower-layer graphene, and the
sandwiched hBN insulator.

In simulation, graphene can be defined either as a three-dimensional material with
very thin thickness or as a two-dimensional structure without thickness [20]. In 3D model
simulations, a fine mesh is demanded to obtain an accurate result, which implies long
calculations and low efficiency. Therefore, the 2D model, which could provide similar
accuracy and be more efficient, is adopted in this work. In this model, the graphene layer is
considered as a surface conductive medium without thickness. In practical simulations, the
performance of the modulator is mainly affected by the conductivity, and the conductivity
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is mainly determined by the Fermi level, µc, the optical frequency, ω, and the relaxation
time, τ, according to the Kubo formula [21,22]. The Fermi level, µc, as well as the surface
conductivity, σg, are tuned by applying an external voltage. When no voltage or a low
voltage is applied, the graphene behaves like metal, with high light absorption, which
corresponds to the “OFF” state. However, when a certain voltage is applied, graphene
behaves like a dielectric material, which corresponds to the “ON” state. Equation (1)
illustrates the relationship between the Fermi level and the applied voltage [23]:

µc = }vF

√
πη
∣∣Vg − V0

∣∣ (4)

where νF is the Fermi velocity of graphene (νF = 2.5 × 106 m/s) [24] and η is determined
by the insulation and thickness of hBN. As shown in Figure 3 below, µc can be changed
from 0.2 to 0.6 eV as the applied bias voltage changes from 0.325 to 2.915 V.
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3. Design and Optimization

To confirm the influence of the waveguide dimensions on the mode distribution,
simulations based on the FDTD method were carried out. Based on Maxwell’s equations
in wave optics, the two-dimensional wave optics module in the software (Lumerical Ltd.,
Vancouver, BC V6E 2M6, CA) was chosen. The mode in the waveguide was first studied
to obtain different polarizations. Then, parametric scanning and global calculation were
performed to determine the optimal waveguide size by monitoring the mode field status
and modulation performance. In this process, the wavelength was set to be λ = 1550 nm.
The frequency, f0, was determined by the light speed and the wavelength. The dielectric
constant, ε, of hBN is 8.85424 × 10−12F/m. Here, the modulation (MD) is defined as the
difference between the mode power attenuation (MPA) values at µc = 0 eV and µc = 1 eV.
The propagation loss (PL) is the power attenuation (MPA) at µc = 0 eV.

3.1. w1

The TE mode and the complex mode in this hybrid plasmonic waveguide can be
regarded as orthogonal polarizations supported by the Ag-SiO2-Ag structure. The Re(Neff)
of the TE mode as a changing relationship of the Ag block width, w1, is shown in Figure 4a.
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An unremarkable Re(Neff) variation is observed, which can be attributed to the lateral TE
mode confinement, which is insensitive to the width change of Ag block B2 and Ag block
B3. Conversely, the complex mode distribution is constrained by the T-shaped metal slots.
Therefore, the Re(Neff) of the complex mode decreases with the increment in w1, which is
due to the enhanced light absorption occurring in the gap between Ag blocks B2 and B3, as
shown in Figure 4b.
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As Figure 5 shows, for the TE mode, no significant MD and PL changes are observed.
However, the MD and PL of the complex mode decrease with increases in w1. To obtain
the same MD, w1 was chosen to be 200 nm, at which the real part of the effective index
difference Re(∆Neff) of the TE and that of the complex modes are both around 0.05.
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3.2. h1

The height, h1, of the horizontal slot largely affects the complex mode field distribution.
Therefore, the Re(Neff) of the TE mode, as a changing relationship of the Ag gap, h1, is
investigated. As Figure 6a shows, the limited Re(Neff) change of the TE mode at different µc
values is observed when h1 varies from 35 to 45 nm. Conversely, the Re(Neff) of the complex
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mode decreases rapidly with the increment in h1, which is due to the fast reduction in
plasmonic mode confinement with increases in the metal gap distance.
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The MDs of the TE mode and complex mode show inverse variations. The modulation
depth of the TE mode rises with increases in h1, while the MD of the complex mode drops
down as h1 increases from 35 to 45 nm. The electric field distributions of the TE mode and
the complex mode (h1 = 35 nm and 40 nm) are shown in the insets of Figure 7. Due to the
asymmetric waveguide structure, the enlargement of h1 leads to the asymmetric distortion
of the two modes. Moreover, the unbalanced placement of the graphene layers results in
the inverse modulation when the metal gap, h1, is increasing. However, the same MD can
be obtained at h1 = 40 nm. A similar scenario can be observed in the change in PL, and the
same PL of the TE mode and complex mode is realized at h1 = 41 nm. Therefore, h1 was
compromisingly chosen to be 40 nm.
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3.3. w2

In this design, w2 which is crucial for the restraint of the TE mode, refers to the gap size
between Ag blocks B1 and B2 as well as B1 and B3. Similarly, the Re(Neff) of the TE mode
and the complex mode, as a changing relationship between the width of this slot, w2, is
investigated. As shown in Figure 8a,b, predictably, the Re(Neff) decreases as w2 varies from
35 to 45 nm, which is attributed to the weakening of the mode confinement. Consequently,
the MD of the TE mode reduces with the increasing of w2, as shown in Figure 9. For the
complex mode, a stronger electric field can be observed at w2 = 45 nm compared to that at
w2 = 35 nm. As a result, the MD of the complex mode increases with the increment in w2.
However, both modes have the same MD of about 0.53 dB/um at w2 = 40 nm.
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The PLs of both modes decrease when w2 shifts from 35 to 45 nm, which is due to
reduced mode penetration into the Ag block of B1. At w2 = 40 nm, the PL difference between
the two modes is about 0.01 dB/µm. For the purpose of polarization independence, w2 was
chosen to be 40 nm.

3.4. h2

In Figure 1, h2 represents the height of the proposed plasmonic waveguide. It is
necessary to confirm the impact of h2 on the characteristics of hybrid plasmonic waveguide
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at µc = 0 and µc = 1 eV. As shown in Figure 10a, the Re(Neff) of the TE mode gradually
increases with increases in waveguide height, while the Re(Neff) of the complex mode
gradually declines with increases in h2, as shown in Figure 10b.
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As Figure 11 shows, as h2 varies from 250 to 300 nm, the MD difference between
the two modes first shrinks then gradually expands. The same MD for the two modes
can be obtained at h2 = 285 nm. In addition, the increment in h2 is accompanied by the
gradual decrement of PL in both modes. The insets show the electric field distributions
of the two modes at h2 = 250, 285, and 300 nm. At h2 = 285 nm, the PL difference between
two modes is about 0.005 dB/µm. Therefore, the hybrid waveguide height, h2, was chosen
to be 285 nm.
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3.5. wB1

In this work, wB1 represents the width of the Ag block B1, as shown in Figure 1.
Similarly, the Re(Neff) of the TE mode and the complex mode all decrease when wB1 varies
from 50 nm to 150 nm. As shown in Figure 12a,b, no obvious Re(Neff) change happens
when wB1 is larger than 100 nm.
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The MD and PL, as a changing relationship of wB1 for the TE mode and the complex
mode, are shown in the Figure 13. The MD of the TE mode decreases as wB1 varies from
50 nm to 150 nm. Conversely, the MD of the complex mode increases when wB1 varies
from 50 nm to 150 nm. The differences between the two modes first decrease then enlarge
gradually. The same MD can be obtained at wB1 = 100 nm. The increment in wB1 is
accompanied by the gradual decrement of PL for both modes. The insets in Figure 13
show the electric field distribution of the two modes at wB1 = 50, 100, and 150 nm. At
wB1 = 100 nm, the PL difference between two modes is only about 0.005 dB/µm. With
comprehensive consideration of MD, the hybrid waveguide height, wB1, was chosen to be
100 nm.
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3.6. hB2 and hB3

The height of Ag blocks B2 and B3 may have an influence on the performance of
the modulator. Because of the complete height of the plasmonic slot waveguide, h2 is
stable. When hB2 is increasing, the height of block B3 decreases accordingly. Therefore,
the confirmation of hB2 would give the answer to hB3. As shown in Figure 14, Re(Neff) is
investigated as a changing relationship of hB2 for the TE mode and the complex mode.
When hB2 varies from 70 nm to 170 nm, the fluctuation in the Re(Neff) of the TE mode is
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only around 0.002 at µc = 0 eV. At µc = 1 eV, the Re(Neff) of the TE mode gradually rises
from 2.084 to 2.088. In comparison, the Re(Neff) of the complex mode primarily drops when
hB2 is lower than 105 nm then rises up again.
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As shown in Figure 15, the MDs of the TE mode and the complex mode gradually
decrease. The same MD value for two modes can be obtained at hB2 = 120 nm. As hB2
increases, the PL of the TE mode monotonously decreases. The smallest PL difference
between the two modes is 0.005 dB/µm at hB2 = 100 nm. The PL difference is about
0.007 dB/µm at hB2 = 120 nm. The insets show the electric field distributions of the TE
mode and the complex mode at hB2 = 100, 120, and 160 nm. To obtain better polarization
independence, hB2 was set to be 120 nm. Since h2 is 285 nm, h1 is 40 nm, and hB2 is 120 nm,
hB3 was set to be 125 nm.
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4. Performance and Discussion
4.1. µc

After the confirmation of the geometric dimensions, the relationship between the
modulation performance and the Femi level, µc, was investigated. As Figure 16 shows,
when µc rises to 0.4 eV, the Re(Neff) values of the TE mode and the complex mode reach
maximums of 2.1742 and 2.1142, respectively. As µc shifts to 0.6 eV, the Re(Neff) values of
the TE mode and the complex mode gradually reduce to 2.1601 and 2.1012, respectively. At
µc = 0.6 eV, Re(∆Neff) is only 0.06.
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Figure 16. Re(Neff) and Re(∆Neff) of the TE mode and the complex mode versus Femi level, µc.

As shown in Figure 17, a sharp drop in PL can be observed with the µc increasing
from 0.2 eV to 0.6 eV. Therefore, we define the “ON” state at µc= 0.6 and the “OFF” state at
µc = 0.2 eV. In this case, the MDs of the TE mode and the complex mode are 0.502 dB/µm
and 0.511 dB/µm, respectively. The difference between MDTE-mode and MDcomplex mode is
only 0.007 dB/µm at λ = 1550 nm.
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4.2. Optical Bandwidth

The optical bandwidth, as a changing relationship of the optical wavelength, was
investigated with the Fermi level, µc, increasing from 0.2 eV to 0.6 eV. As Figure 18 shows,
Re(Neff) decreases with increases in wavelength. At λ = 1.1 µm and µc = 0.6 eV, the
maximum Re(Neff) values of the TE mode and the complex mode are 2.1723 and 2.2294,
respectively. At λ = 1.1 µm and µc = 0.2 eV, the Re(Neff) values of the TE mode and the
complex mode are 2.1684 and 2.2238, respectively. At λ = 1.9 µm and µc = 0.6 eV, the
Re(Neff) values of the TE mode and the complex mode are 2.0762 and 2.1394, respectively.
At λ = 1.9 µm and µc = 0.2 eV, the Re(Neff) values of the TE mode and the complex mode
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are 2.0942 and 2.1524, respectively. The Re(∆Neff) is no larger than 0.005 as the wavelength
varies between 1.1 and 1.9 µm, which offers polarization independence to the TE mode and
the complex mode.
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culations, we consider graphene to be undoped, and we set the quantum capacitance to 
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At µc = 0.2 eV, the Im(Neff) of the TE mode varies from 0.01613 to 0.02869 when the
wavelength varies from 1.1 to 1.9 µm, as shown in Figure 19. Meanwhile, the Im(Neff)
of the complex mode increases from 0.01655 to 0.02897, which mainly results from the
enhancement of the graphene–light interaction due to the increasing dielectric constant
with increases in wavelength. The MPA change of both modes is very limited within
the wavelength range. The MDs of the TE mode are 0.43145 dB/µm and 0.48145 dB/µm
at λ = 1.1 µm and 1.9 µm, respectively. Similarly, the MDs of the complex mode are
0.47636 dB/µm and 0.49797 dB/µm at λ = 1.1 µm and 1.9 µm, respectively. The proposed
device exhibits better polarization independence at longer wavelengths.
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4.3. Frequency Response and Power Consumption

To calculate the frequency response and power dissipation, we made the modulator
model equivalent to the circuit model, which is shown in Figure 20, and the dynamic
response and power consumption of the proposed modulator were investigated. Here,
Cair, which is composed of two electrodes and the air is around 12 fF [25]. The capacitor,
C, consists of dielectric capacitance, CD, and the quantum capacitance, CQ. In simulation
calculations, we consider graphene to be undoped, and we set the quantum capacitance to
CQ = 0. Therefore, the capacitor, C, can be represented by:

C = εrε0wol L/d (5)
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In Equation (5), L is the modulation length of this modulator, while wol = 620 nm
represents the overlap width of dual-layer graphene. εr and d are the permittivity and
thickness of the hBN isolation layer. The total resistance, Rtotal, is composed of the sheet
resistance, RS, of graphene and the resistance, Rc, which is composed by metal–graphene
contact. Here, Rs and RC can be set as 100 Ω/�[26] and 100 Ω-µm [16], respectively. The
total resistance, Rtotal, can be calculated by [27]:

Rtotal = Rs ×
wg1 + wg2

L
+

2Rc

L
(6)

where wg1 is 1120 nm and wg2 is 1400 nm. Then, Rtotal is 28.9 Ω. Theoretically, the 3 dB
bandwidth (f 3-dB) of the proposed modulator is determined by the delay effect of the
resistors and capacitors. Hence, f 3-dB can be evaluated by [28]:

f3dB =
1

2πRtotalCtotal
(7)

With above optimized parameters, the bandwidth is around 127 GHz. When the
modulation length, L, is 20 µm and the applied bias voltage varies from 0.325 V to 2.915 V
(∆U = 2.59 V), the power consumption can be estimated by:

Ebit = Ctotal(∆U)2/4 (8)

Then, we have an Ebit of 0.072 pJ/bit.
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4.4. Discussion

To clarify the merits of proposed design, the theoretical performances of the polarization-
insensitive graphene modulators that have been reported are comprehensively compared
with that of this work. As shown in Table 1, the device we proposed has a higher bandwidth
and f 3-dB as well as the smallest Ebit compared to those proposed in other studies. Moderate
MD and ∆MD values can also be obtained. The characteristics of Re(∆Neff) are also better
than in most reported works. These favorable characteristics mainly originate from the
hybrid waveguide structure, which provides a balanced mode field. The metal slot that
supports the plasmonic mode offers the opportunity for wideband operation. It exhibits
the favorable features of a small footprint, high speed, and low power consumption.

Table 1. Modulator performance comparison with reported works.

Ref. Bandwidth (nm) Re(∆Neff) MD (dB/µm) ∆MD (dB/µm) f3dB (GHz) Ebit (fJ/bit)

[29] 1500–1600 - 0.06 0 13.4 -
[30] 1500–1600 - 0.08 0 80 -

[31] 1200–1600 -
mode A: 1.05,
mode B: 1.13,
mode C: 0.52

Min: 0.08
Max: 0.61 95 138.8

[32] 1530–1565 4.7 × 10−3 TM mode: ~0.2975,
TE mode: ~0.2895 ~8 × 10−3 30.2 2980

[33] 1367–1771 ~0.5 TM mode: 1.113,
TE mode: 1.119 ~6 × 10−3 6.1 7800

[34] 1450–1650 ~0.1 TM mode: 1.392,
TE mode: 1.347 0.045 ~100 -

[35] 1300–1800 1.2 × 10−3 - - 135.6 -

This work 1100–1900 5 × 10−2 TE mode: 0.511,
complex mode: 0.502 0.009 127 72

5. Conclusions

A polarization-insensitive graphene-assisted electro-optic modulator is proposed.
The orthogonal T-shaped metal slot structure offers polarization insensitivity. The pro-
posed dual-layer graphene structure could enhance the light interaction and reduce the
effective width of graphene, which is favorable for increasing bandwidth and reducing
power consumption. Simulations with finite element algorithms show that the modulation
depths of the TE mode and the complex mode supported by the proposed modulator
are 0.502 dB/µm and 0.511 dB/µm, respectively. The 3 dB bandwidth is about 127 GHz
when the modulation length is 20 µm. The power consumption may be restrained to
72 fJ/bit. The proposed modulator with a favorable bandwidth and relatively low power
consumption has potential applications in high-speed on-chip interconnected information
transfer and processing.
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